On coconvex polynomial approximation

K. KOPOTUN, D. LEVIATAN, & I. A. SHEVCHUK Vanderbilt University, Tel Aviv University, Kyiv University Mech.-Math. Faculty, National Taras Shevchenko University of Kyiv, 01017 Kyiv, Ukraine

e-mail: kkopotun@math.vanderbilt.edu, leviatan@math.tau.ac.il, shevchuk@imath.kiev.ua

Let $Y_s = \{y_i\}_{i=1}^s$ be a set of points y_i , such that $-1 < y_s < \cdots < y_1 < 1$. We denote by $\Delta^2(Y_s)$, the collection of all functions $f \in C[-1,1]$ that change convexity at the set Y_s , and are convex in $[y_1,1]$. If, say $f \in C^2[-1,1]$, then the above is equivalent to $f''(x) \prod_{i=1}^s (x-y_i) \ge 0$, in [-1,1]. For $f \in \Delta^2(Y_s)$ we denote by

$$E_n^{(2)}(f, Y_s) := \inf_{p_n \in \Delta^2(Y_s)} \max_{x \in [-1, 1]} |f(x) - p_n(x)|,$$

the error of the best uniform coconvex approximation by algebraic polynomials p_n of degree $\leq n$.

Theorem 1.If $f \in \Delta^2(Y_s)$, then

$$E_n^{(2)}(f, Y_s) \le c(s)\omega_3(f, 1/n), \qquad n > N(Y_s),$$
 (1)

where c(s) is a constant, depending only on s, $N(Y_s)$ is a constant, depending only on Y_s , $\omega_k(f,t)$ is the k-th modulus of smoothness of f. It is well-known, that (1) cannot be had with ω_k , k>3, instead of ω_3 , even if one allow both constants c and N to depend on f. Let W^r be Sobolev class of functions $f \in C[-1,1]$, that is $f \in W^r$, iff f has an absolutely continuous derivative and $|f^{(r)}(x)| \leq 1$ a.e. in [-1,1]. Corollary 1.Let r=1,2 or 3. If $f \in \Delta^2(Y_s) \cap W^r$, then

$$E_n^{(2)}(f, Y_s) \le c(s)n^{-r}, \qquad n > N(Y_s).$$
 (2)

Theorem 2. If s > 1, then in (2) one cannot replace $N(Y_s)$ with a constant N, independent of Y_s ; if s = 1, then it is possible.

References

K. Kopotun, D. Leviatan and I. A. Shevchuk, The degree of coconvex polynomial approximation, Proc. AMS, 127 (1999), 409-415.

D. LEVIATAN AND I. A. SHEVCHUK, Coconvex approximation, submitted