Mathematical Systems and Control Theory – 6th Exercise Sheet.

Discussion of the solutions in the exercise on January 29, 2020.

Problem 1 (Hamiltonian matrices): Let $\mathcal{H} \in \mathbb{R}^{2n \times 2n}$ and $J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$.

a) Show that the following statements are equivalent:

- i) The matrix \mathcal{H} is Hamiltonian, i.e., $\mathcal{H}^{\mathsf{T}}J + J\mathcal{H} = 0$.
- ii) The matrix $J\mathcal{H}$ is symmetric.
- iii) There exist $F, G, H \in \mathbb{R}^{n \times n}$ with $G = G^{\mathsf{T}}$ and $H = H^{\mathsf{T}}$ such that

$$\mathcal{H} = \begin{bmatrix} F & G \\ H & -F^\mathsf{T} \end{bmatrix}.$$

iv) The matrix \mathcal{H} is skew-adjoint with respect to the *J*-inner product

$$\langle x, y \rangle_J := y^\mathsf{T} J x,$$

i.e., for all $x, y \in \mathbb{R}^{2n}$ it holds that $\langle \mathcal{H}x, y \rangle_J = -\langle x, \mathcal{H}y \rangle_J$.

b) Show that

$$\lambda \in \Lambda(\mathcal{H}) \quad \Rightarrow \quad \overline{\lambda}, -\lambda, -\overline{\lambda} \in \Lambda(\mathcal{H}).$$

Problem 2 (Isotropic invariant subspaces): Let $\mathcal{H} \in \mathbb{R}^{2n \times 2n}$ be Hamiltonian and let

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \tag{1}$$

with $X_1, X_2 \in \mathbb{R}^{n \times r}$ such that the columns of X span an \mathcal{H} -invariant subspace \mathcal{X} , i.e.,

$$\mathcal{H}X = XZ$$

for some $Z \in \mathbb{R}^{r \times r}$. Show that if $\Lambda(Z) \subset \mathbb{C}^-$, then \mathcal{X} is *isotropic*, meaning that $\langle x, y \rangle_J = 0$ for all $x, y \in \mathcal{X}$.

Problem 3 (Hamiltonian and symplectic matrices): Let \mathbb{H}_{2n} and \mathbb{S}_{2n} denote the sets of Hamiltonian and symplectic matrices in $\mathbb{R}^{2n \times 2n}$, respectively. A matrix $S \in \mathbb{R}^{2n \times 2n}$ is called *symplectic*, if S is orthogonal with respect to the *J*-inner product, i. e., $\langle Sx, Sy \rangle_J = \langle x, y \rangle_J$ for all $x, y \in \mathbb{R}^{2n}$. Show the following statements:

- a) The matrix S is symplectic, if and only if $S^{\mathsf{T}}JS = J$.
- b) It holds that $det(\mathcal{S}) \in \{-1, 1\}$.
- c) The set S_{2n} equipped with the matrix multiplication forms a group.

d) Each $\mathcal{H} \in \mathbb{H}_{2n}$ solves

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\left\langle (I_{2n} + t\mathcal{H})x, (I_{2n} + t\mathcal{H})y \right\rangle_J \right) \Big|_{t=0} = 0 \quad \text{for all } x, y \in \mathbb{R}^{2n}.$$

e) The set \mathbb{H}_{2n} is a Lie algebra with respect to the *Lie bracket* $[\cdot, \cdot] : \mathbb{H}_{2n} \times \mathbb{H}_{2n} \to \mathbb{R}^{2n \times 2n}$ with

$$[\mathcal{H}_1, \mathcal{H}_2] := \mathcal{H}_1 \mathcal{H}_2 - \mathcal{H}_2 \mathcal{H}_1,$$

that is, the following properties are satsified:

- i) $[\mathcal{H}_1, \mathcal{H}_2] \in \mathbb{H}_{2n}$ for all $\mathcal{H}_1, \mathcal{H}_2 \in \mathbb{H}_{2n}$;
- ii) $[\mathcal{H}, \mathcal{H}] = 0$ for all $\mathcal{H} \in \mathbb{H}_{2n}$;
- iii) $[\mathcal{H}_1 + \mathcal{H}_2, \mathcal{H}_3] = [\mathcal{H}_1, \mathcal{H}_3] + [\mathcal{H}_2, \mathcal{H}_3]$ for all $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3 \in \mathbb{H}_{2n}$;
- iv) $[[\mathcal{H}_1, \mathcal{H}_2], \mathcal{H}_3] + [[\mathcal{H}_2, \mathcal{H}_3], \mathcal{H}_1] + [[\mathcal{H}_3, \mathcal{H}_1], \mathcal{H}_2] = 0$ for all $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3 \in \mathbb{H}_{2n}$ (Jacobi identity).

f) It holds that $\mathcal{S}^{-1}\mathcal{HS} \in \mathbb{H}_{2n}$ for all $\mathcal{H} \in \mathbb{H}_{2n}$ and $\mathcal{S} \in \mathbb{S}_{2n}$.