Mathematical Systems and Control Theory - 6th Exercise Sheet.

Discussion of the solutions in the exercise on January 29, 2020.

Problem 1 (Hamiltonian matrices): Let $\mathcal{H} \in \mathbb{R}^{2 n \times 2 n}$ and $J=\left[\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right]$.
a) Show that the following statements are equivalent:
i) The matrix \mathcal{H} is Hamiltonian, i. e., $\mathcal{H}^{\top} J+J \mathcal{H}=0$.
ii) The matrix $J \mathcal{H}$ is symmetric.
iii) There exist $F, G, H \in \mathbb{R}^{n \times n}$ with $G=G^{\top}$ and $H=H^{\top}$ such that

$$
\mathcal{H}=\left[\begin{array}{cc}
F & G \\
H & -F^{\top}
\end{array}\right]
$$

iv) The matrix \mathcal{H} is skew-adjoint with respect to the J-inner product

$$
\langle x, y\rangle_{J}:=y^{\top} J x
$$

i. e., for all $x, y \in \mathbb{R}^{2 n}$ it holds that $\langle\mathcal{H} x, y\rangle_{J}=-\langle x, \mathcal{H} y\rangle_{J}$.
b) Show that

$$
\lambda \in \Lambda(\mathcal{H}) \quad \Rightarrow \quad \bar{\lambda},-\lambda,-\bar{\lambda} \in \Lambda(\mathcal{H})
$$

Problem 2 (Isotropic invariant subspaces): Let $\mathcal{H} \in \mathbb{R}^{2 n \times 2 n}$ be Hamiltonian and let

$$
X=\left[\begin{array}{l}
X_{1} \tag{1}\\
X_{2}
\end{array}\right]
$$

with $X_{1}, X_{2} \in \mathbb{R}^{n \times r}$ such that the columns of X span an \mathcal{H}-invariant subspace \mathcal{X}, i. e.,

$$
\mathcal{H} X=X Z
$$

for some $Z \in \mathbb{R}^{r \times r}$. Show that if $\Lambda(Z) \subset \mathbb{C}^{-}$, then \mathcal{X} is isotropic, meaning that $\langle x, y\rangle_{J}=0$ for all $x, y \in \mathcal{X}$.

Problem 3 (Hamiltonian and symplectic matrices): Let $\mathbb{H}_{2 n}$ and $\mathbb{S}_{2 n}$ denote the sets of Hamiltonian and symplectic matrices in $\mathbb{R}^{2 n \times 2 n}$, respectively. A matrix $\mathcal{S} \in \mathbb{R}^{2 n \times 2 n}$ is called symplectic, if \mathcal{S} is orthogonal with respect to the J-inner product, i. e., $\langle\mathcal{S} x, \mathcal{S} y\rangle_{J}=\langle x, y\rangle_{J}$ for all $x, y \in \mathbb{R}^{2 n}$. Show the following statements:
a) The matrix \mathcal{S} is symplectic, if and only if $\mathcal{S}^{\top} J \mathcal{S}=J$.
b) It holds that $\operatorname{det}(\mathcal{S}) \in\{-1,1\}$.
c) The set $\mathbb{S}_{2 n}$ equipped with the matrix multiplication forms a group.
d) Each $\mathcal{H} \in \mathbb{H}_{2 n}$ solves

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left\langle\left(I_{2 n}+t \mathcal{H}\right) x,\left(I_{2 n}+t \mathcal{H}\right) y\right\rangle_{J}\right)\right|_{t=0}=0 \quad \text { for all } x, y \in \mathbb{R}^{2 n}
$$

e) The set $\mathbb{H}_{2 n}$ is a Lie algebra with respect to the Lie bracket $[\cdot, \cdot]: \mathbb{H}_{2 n} \times \mathbb{H}_{2 n} \rightarrow \mathbb{R}^{2 n \times 2 n}$ with

$$
\left[\mathcal{H}_{1}, \mathcal{H}_{2}\right]:=\mathcal{H}_{1} \mathcal{H}_{2}-\mathcal{H}_{2} \mathcal{H}_{1},
$$

that is, the following properties are satsified:
i) $\left[\mathcal{H}_{1}, \mathcal{H}_{2}\right] \in \mathbb{H}_{2 n}$ for all $\mathcal{H}_{1}, \mathcal{H}_{2} \in \mathbb{H}_{2 n}$;
ii) $[\mathcal{H}, \mathcal{H}]=0$ for all $\mathcal{H} \in \mathbb{H}_{2 n}$;
iii) $\left[\mathcal{H}_{1}+\mathcal{H}_{2}, \mathcal{H}_{3}\right]=\left[\mathcal{H}_{1}, \mathcal{H}_{3}\right]+\left[\mathcal{H}_{2}, \mathcal{H}_{3}\right]$ for all $\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{H}_{3} \in \mathbb{H}_{2 n}$;
iv) $\left[\left[\mathcal{H}_{1}, \mathcal{H}_{2}\right], \mathcal{H}_{3}\right]+\left[\left[\mathcal{H}_{2}, \mathcal{H}_{3}\right], \mathcal{H}_{1}\right]+\left[\left[\mathcal{H}_{3}, \mathcal{H}_{1}\right], \mathcal{H}_{2}\right]=0$ for all $\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{H}_{3} \in \mathbb{H}_{2 n}$ (Jacobi identity).
f) It holds that $\mathcal{S}^{-1} \mathcal{H} \mathcal{S} \in \mathbb{H}_{2 n}$ for all $\mathcal{H} \in \mathbb{H}_{2 n}$ and $\mathcal{S} \in \mathbb{S}_{2 n}$.

