Mathematical Systems and Control Theory - 5th Exercise Sheet.

Discussion of the solutions in the exercise on January 08, 2020.

Problem 1 (Ackermann formula): Let $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times 1}$ be controllable with controller normal form

$$
T^{-1} A T=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
-\alpha_{0} & -\alpha_{1} & -\alpha_{2} & \ldots & -\alpha_{n-1}
\end{array}\right], \quad T^{-1} B=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

and let $\mathcal{L}:=\left\{\mu_{1}, \ldots, \mu_{n}\right\}$ be closed under complex conjugation. In the following, $e_{i} \in \mathbb{R}^{n}$ denotes the i-th unit vector for $i=1, \ldots, n$, and

$$
\Psi(x):=\left(x-\mu_{1}\right) \cdots\left(x-\mu_{n}\right)
$$

Show the following statements:
a) With the controllability matrix $\mathcal{K}(A, B)$ it holds that

$$
e_{1}^{\mathrm{T}} T^{-1} \mathcal{K}(A, B)=e_{n}^{\mathrm{\top}}
$$

b) It holds that

$$
e_{1}^{\top}\left(T^{-1} A T\right)^{k}= \begin{cases}e_{k+1}^{\top} & \text { for } k=0, \ldots, n-1 \\ {\left[-\alpha_{0}, \ldots,-\alpha_{n}\right]} & \text { for } k=n\end{cases}
$$

c) Let $\beta_{0}, \ldots, \beta_{n-1} \in \mathbb{C}$ be such that $\Psi(x)=x^{n}+\beta_{n-1} x^{n-1}+\cdots+\beta_{1} x+\beta_{0}$. Then it holds that

$$
e_{1}^{\top} \Psi\left(T^{-1} A T\right)=\left[\beta_{0}-\alpha_{0}, \ldots, \beta_{n-1}-\alpha_{n-1}\right]
$$

d) Let $F:=-e_{n}^{\top} \mathcal{K}(A, B)^{-1} \Psi(A)$. Then F solves the pole placement problem for (A, B) and \mathcal{L}, i. e., $\Lambda(A+B F)=\mathcal{L}$.

Problem 2 (eigenvalues, eigenvectors, and pole placement): Let $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times 1}$ be controllable and given in controller normal form. Furthermore, let $\mathcal{L}=\left\{\mu_{1}, \ldots, \mu_{n}\right\}$ be closed under complex conjugation and $F=\left[f_{1}, \ldots, f_{n}\right] \in \mathbb{R}^{1 \times n}$ such that $\Lambda(A+B F)=\mathcal{L}$. Show the following statements:
a) If $\lambda \in \mathcal{L} \cap \Lambda(A)$, then every eigenvector of A for the eigenvalue λ is also an eigenvector of $A+B F$ for the eigenvalue λ.
b) If holds that $v=\left[v_{1}, \ldots, v_{n}\right]^{\top} \in \mathbb{C}^{n}$ is an eigenvector of A for the eigenvalue λ, if and only if

$$
v_{k}=\lambda^{k-1} v_{1} \text { for } k=1, \ldots, n \text { and } \sum_{k=1}^{n}\left(-\alpha_{k-1}\right) v_{k}=\lambda v_{n}
$$

Find an analogous formula for the eigenvectors of $A+B F$.
c) Let $\lambda \in \mathcal{L} \backslash \Lambda(A)$ and $x:=\left(\lambda I_{n}-A\right)^{-1} B$. Then $F x=1$.

Hint: show that $x F$ has the eigenvalue 1 , if $A+B F$ has the eigenvalue λ.
d) If $\lambda \in \mathcal{L} \backslash \Lambda(A)$, then $\left(\lambda I_{n}-A\right)^{-1} B$ is an eigenvector of $A+B F$ for the eigenvalue λ.

Problem 3 (partial stabilization): Let $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$ be stabilizable. Often only a few eigenvalues of A are unstable, i.e., with non-negative real part. Therefore, it is not necessary to stabilize the entire system, but only to move the few unstable eigenvalues into the open left half-plane by state feedback. Assume that

$$
\Lambda(A)=\Lambda_{-} \cup \Lambda_{+}
$$

with $\Lambda_{-} \subset \mathbb{C}^{-}$and $\Lambda_{+} \subset \overline{\mathbb{C}^{+}}$.
Develop an algorithm for the partial stabilization based on the Schur form of A. The algorithm should compute $F \in \mathbb{R}^{m \times n}$ such that $\Lambda(A+B F)=\Lambda_{-} \cup\left\{\mu_{k+1}, \ldots, \mu_{n}\right\}$ for given $\mu_{k+1}, \ldots, \mu_{n} \in \mathbb{C}^{-}$.

