Mathematical Systems and Control Theory - 4th Exercise Sheet.

Discussion of the solutions in the exercise on December 11, 2019.

Problem 1 (Kronecker product): Let $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{p \times q}$ and define the Kronecker product

$$
\otimes: \mathbb{R}^{n \times m} \times \mathbb{R}^{p \times q} \rightarrow \mathbb{R}^{n p \times m q}, \quad A \otimes B=\left[\begin{array}{ccc}
a_{11} B & \ldots & a_{1 m} B \\
\vdots & & \vdots \\
a_{n 1} B & \ldots & a_{n m} B
\end{array}\right] \in \mathbb{R}^{n p \times m q}
$$

Show the following properties for matrices A, B, C, D of conforming dimensions:
a) $(A \otimes B)(C \otimes D)=A C \otimes B D$;
b) $(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}$, if A and B are both invertible;
c) $\Lambda(A \otimes B)=\{\lambda \mu \mid \lambda \in \Lambda(A), \mu \in \Lambda(B)\}$.

Problem 2 (Sylvester equations): Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}$, and $W \in \mathbb{R}^{n \times m}$ be given matrices and consider the Sylvester equation

$$
\begin{equation*}
A X+X B=W \quad \text { for } X \in \mathbb{R}^{n \times m} \tag{1}
\end{equation*}
$$

Consider the vectorization operator

$$
\operatorname{vec}: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}^{n m}, \quad X=\left[\begin{array}{lll}
x_{1} & \ldots & x_{m}
\end{array}\right] \mapsto\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right]
$$

Show that for $T \in \mathbb{R}^{n \times m}, O \in \mathbb{R}^{m \times p}$, and $R \in \mathbb{R}^{p \times r}$ it holds that

$$
\operatorname{vec}(T O R)=\left(R^{\top} \otimes T\right) \operatorname{vec}(O)
$$

and conclude that (1) can be equivalently written as a linear system of the form

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{\top} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

Problem 3 (Theorem of Stephanos):
a) Prove the Theorem of Stephanos: Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m}$ be given. For a bivariate polynomial $p(x, y)=\sum_{i, j=0}^{k} c_{i j} x^{i} y^{j}$ we define by

$$
p(A, B):=\sum_{i, j=0}^{k} c_{i j}\left(A^{i} \otimes B^{j}\right)
$$

a polynomial of the two matrices. Then the spectrum of $p(A, B)$ is given by

$$
\Lambda(p(A, B))=\{p(\lambda, \mu) \mid \lambda \in \Lambda(A), \mu \in \Lambda(B)\}
$$

b) Use the Theorem of Stephanos to show that the Sylvester equation (1) is uniquely solvable for all $W \in \mathbb{R}^{n \times m}$, if and only if $\Lambda(A) \cap \Lambda(-B)=\emptyset$.

Problem 4 (numerical solution of Lyapunov equations): Let $A \in \mathbb{C}^{n \times n}, W=W^{\mathrm{H}} \in \mathbb{C}^{n \times n}$ and consider the Lyapunov equation

$$
A X+X A^{\mathrm{H}}=W
$$

which is assumed to be uniquely solvable. Devise a numerical algorithm that uses at most $\mathcal{O}\left(n^{3}\right)$ floating point operations for computing the solution matrix $X \in \mathbb{C}^{n \times n}$.
Hint: Use the Schur decomposition of A, that is, there exists a unitary matrix $Q \in \mathbb{C}^{n \times n}$ (which can be numerically computed in $\mathcal{O}\left(n^{3}\right)$ floating point operations) such that

$$
Q^{\mathrm{H}} A Q=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
& \ddots & \vdots \\
& & a_{n n}
\end{array}\right] .
$$

