Mathematical Systems and Control Theory – 3rd Exercise Sheet.

Discussion of the solutions in the exercise on November 27, 2019.

Problem 1 (controllability): Check the following systems for controllability:

a)
$$\dot{x}(t) = x(t) + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u(t);$$

b) $\dot{x}(t) = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ -\alpha_0 & -\alpha_1 & \dots & -\alpha_{n-1} \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ \vdots \\ \vdots \\ 0 \\ 1 \end{bmatrix} u(t).$

Problem 2 (Hautus-Popov test for stabilizable systems): Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$ be given matrices. Show that the following statements are equivalent:

- a) The pair (A, B) is stabilizable.
- b) In the Kalman decomposition

$$(V^{\mathsf{T}}AV, V^{\mathsf{T}}B) = \left(\begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ 0 \end{bmatrix} \right) \text{ with orthogonal } V \in \mathbb{R}^{n \times n},$$

it holds that $\Lambda(A_{22}) \subset \mathbb{C}^-$.

- c) If $v \neq 0$ is a left eigenvector of A associated with the eigenvalue λ with $\operatorname{Re}(\lambda) \geq 0$, then $v^{\mathsf{H}}B \neq 0$.
- d) It holds rank $\begin{bmatrix} A \lambda I & B \end{bmatrix} = n$ for all $\lambda \in \mathbb{C}$ with $\operatorname{Re}(\lambda) \ge 0$.

Problem 3 (state and feedback transformations): Let $(A_1, B_1), (A_2, B_2) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$. We say that

• (A_1, B_1) and (A_2, B_2) are system equivalent, if there exists a nonsingular matrix $T \in \mathbb{R}^{n \times n}$ such that

$$(A_2, B_2) = (T^{-1}A_1T, T^{-1}B_1),$$

and we write $(A_1, B_1) \sim_{s} (A_2, B_2);$

• (A_1, B_1) and (A_2, B_2) are *feedback equivalent*, if there exists a nonsingular matrix $T \in \mathbb{R}^{n \times n}$ and a matrix $F \in \mathbb{R}^{m \times n}$ such that

$$(A_2, B_2) = (T^{-1}(A_1 + B_1 F)T, T^{-1}B_1),$$

and we write $(A_1, B_1) \sim_{f} (A_2, B_2)$.

a) Show that system and feedback equivalence are indeed equivalence relations.

b) Show that if $(A_1, B_1) \sim_f (A_2, B_2)$, then

 (A_1, B_1) is controllable \Leftrightarrow (A_2, B_2) is controllable, (A_1, B_1) is stabilizable \Leftrightarrow (A_2, B_2) is stabilizable.

Problem 4 (stabilization): Consider the control problem

$$\begin{split} \dot{\varphi}(t) &= \omega(t), \\ j \dot{\omega}(t) &= -r \omega(t) + k u(t), \end{split}$$

with k, j, r > 0. Compute all stabilizing feedback matrices $F \in \mathbb{R}^{1 \times 2}$ of this system.