Mathematical Systems and Control Theory - 3rd Exercise Sheet.

Discussion of the solutions in the exercise on November 27, 2019.

Problem 1 (controllability): Check the following systems for controllability:
a) $\dot{x}(t)=x(t)+\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1\end{array}\right] u(t)$;
b) $\dot{x}(t)=\left[\begin{array}{ccccc}0 & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ -\alpha_{0} & -\alpha_{1} & \ldots & \ldots & -\alpha_{n-1}\end{array}\right] x(t)+\left[\begin{array}{c}0 \\ \vdots \\ \vdots \\ 0 \\ 1\end{array}\right] u(t)$.

Problem 2 (Hautus-Popov test for stabilizable systems): Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$ be given matrices. Show that the following statements are equivalent:
a) The pair (A, B) is stabilizable.
b) In the Kalman decomposition

$$
\left(V^{\top} A V, V^{\top} B\right)=\left(\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right],\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]\right) \quad \text { with orthogonal } V \in \mathbb{R}^{n \times n}
$$

it holds that $\Lambda\left(A_{22}\right) \subset \mathbb{C}^{-}$.
c) If $v \neq 0$ is a left eigenvector of A associated with the eigenvalue λ with $\operatorname{Re}(\lambda) \geq 0$, then $v^{\mathrm{H}} B \neq 0$.
d) It holds rank $\left[\begin{array}{ll}A-\lambda I & B\end{array}\right]=n$ for all $\lambda \in \mathbb{C}$ with $\operatorname{Re}(\lambda) \geq 0$.

Problem 3 (state and feedback transformations): Let $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$. We say that

- $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ are system equivalent, if there exists a nonsingular matrix $T \in \mathbb{R}^{n \times n}$ such that

$$
\left(A_{2}, B_{2}\right)=\left(T^{-1} A_{1} T, T^{-1} B_{1}\right)
$$

and we write $\left(A_{1}, B_{1}\right) \sim_{\mathrm{s}}\left(A_{2}, B_{2}\right) ;$

- $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ are feedback equivalent, if there exists a nonsingular matrix $T \in \mathbb{R}^{n \times n}$ and a matrix $F \in \mathbb{R}^{m \times n}$ such that

$$
\left(A_{2}, B_{2}\right)=\left(T^{-1}\left(A_{1}+B_{1} F\right) T, T^{-1} B_{1}\right)
$$

and we write $\left(A_{1}, B_{1}\right) \sim_{\mathrm{f}}\left(A_{2}, B_{2}\right)$.
a) Show that system and feedback equivalence are indeed equivalence relations.
b) Show that if $\left(A_{1}, B_{1}\right) \sim_{\mathrm{f}}\left(A_{2}, B_{2}\right)$, then

$$
\begin{aligned}
\left(A_{1}, B_{1}\right) \text { is controllable } & \Leftrightarrow\left(A_{2}, B_{2}\right) \text { is controllable, } \\
\left(A_{1}, B_{1}\right) \text { is stabilizable } & \Leftrightarrow\left(A_{2}, B_{2}\right) \text { is stabilizable. }
\end{aligned}
$$

Problem 4 (stabilization): Consider the control problem

$$
\begin{aligned}
\dot{\varphi}(t) & =\omega(t), \\
j \dot{\omega}(t) & =-r \omega(t)+k u(t),
\end{aligned}
$$

with $k, j, r>0$. Compute all stabilizing feedback matrices $F \in \mathbb{R}^{1 \times 2}$ of this system.

