Winter Term 2019/20

Mathematical Systems and Control Theory – 2nd Exercise Sheet.

Discussion of the solutions in the exercise on November 13, 2019.

Problem 1 (controllability Gramian): Show that the following statements are satisfied:

a) The (t_0, t_1) -controllability Gramian $P(t_0, t_1)$ of an LTV system with state equation $\dot{x}(t) = A(t)x(t) + B(t)u(t)$ is positive definite, if and only if

$$\widehat{P}(t_0, t_1) = \int_{t_0}^{t_1} \Phi(t_1, t) B(t) B(t)^{\mathsf{T}} \Phi(t_1, t)^{\mathsf{T}} \mathrm{d}t$$

is positive definite.

b) An symptotically stable LTI system (with $u \equiv 0$) with the state equation $\dot{x}(t) = Ax(t) + Bu(t)$ is controllable, if and only if the controllability Gramian

$$P = \int_0^\infty \mathrm{e}^{At} B B^\mathsf{T} \mathrm{e}^{A^\mathsf{T} t} \mathrm{d}t$$

is positive definite.

Problem 2 (properties of the matrix exponential function): show the following properties of the matrix exponential for two matrices $A, B \in \mathbb{R}^{n \times n}$:

- a) $\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{e}^{At} = A\mathrm{e}^{At} = \mathrm{e}^{At}A;$
- b) $e^{(A+B)t} = e^{At}e^{Bt} \quad \Leftrightarrow \quad AB = BA.$
- c) If A is skew-symmetric, then e^A is orthogonal.

Problem 3 (Laplace transformation and frequency domain): For a function $f : [0, \infty) \to \mathbb{R}$, its *Laplace transform* is defined by

$$F(s) := \mathcal{L}{f}(s) := \int_0^\infty e^{-st} f(t) dt$$

(assuming that the integral exists). Let now $f, g : [0, \infty) \to \mathbb{R}$ and $\alpha, \beta \in \mathbb{C}$. Under the assumption that all of the following Laplace transforms exist, show that:

a)
$$\mathcal{L}{\alpha f + \beta g}(s) = \alpha \mathcal{L}{f}(s) + \beta \mathcal{L}{g}(s);$$

b)
$$\mathcal{L}\{\dot{f}\}(s) = s\mathcal{L}\{f\}(s) - f(0);$$

c)
$$\mathcal{L}\left\{\int_0^{\bullet} f(\tau) \mathrm{d}\tau\right\}(s) = \frac{1}{s}\mathcal{L}\left\{f\right\}(s);$$

d)
$$\mathcal{L}{f^{(n)}}(s) = s^n \mathcal{L}{f}(s) - s^{n-1} f(0) - \dots - f^{n-1}(0);$$

e)
$$\mathcal{L}\{e^{a \cdot \bullet}\}(s) = \frac{1}{s-a}$$
 for $\operatorname{Re}(s) > a$;

f) $\mathcal{L}\{\bullet^n\}(s) = \frac{n!}{s^{n+1}}$ for $\operatorname{Re}(s) > 0$.

Consider now the LTI system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t),$$

with x(0) = 0 and assume that the Laplace transforms of \dot{x} , x, u, y all exist for $s \in \mathbb{C}$. Show that: g) $\mathcal{L}\{y\}(s) = \left(C(sI - A)^{-1}B + D\right)\mathcal{L}\{u\}(s).$