University of Hamburg Department of Mathematics Dr. Matthias Voigt

Optimization of Complex Systems – 9th Exercise Sheet.

Discussion of the solutions in the exercise on January 20, 2020.

Problem 1 (discretized box constraints): Let $\Omega \subset \mathbb{R}^N$ be a polygonally bounded domain and $U_h = U_h^{(0)}$ or $U_h = U_h^{(1)}$ be the spaces of piecewise constant or piecewise linear finite element ansatz functions with basis $\{\xi_1, \ldots, \xi_m\}$, respectively. Let

$$u_h = \sum_{i=1}^m u_i \xi_i.$$

Show that

 $u_a \leq u_h(x) \leq u_b$ a.e. in $\Omega \quad \Leftrightarrow \quad u_a \leq u_i \leq u_b \quad \forall i \in \{1, \ldots, m\}.$

Problem 2 (energy norm): Let $\Omega \subset \mathbb{R}^N$ for N = 1, 2 be a bounded domain. A norm on $H_0^1(\Omega)$ is the *energy norm*, defined by

$$\|y\|_{H^1_0(\Omega)} = \|\nabla y\|_{L^2(\Omega)^N}$$

a) Show that the energy norm is indeed a norm on $H_0^1(\Omega)$.

b) Consider now the Poisson equation

$$\begin{aligned} \Delta y &= f \quad \text{in } \Omega, \\ y &= 0 \quad \text{on } \Gamma &= \partial \Omega. \end{aligned}$$

Let y_h be the approximate solution obtain from a finite element discretization and \hat{y}_h be the computed solution (containing the numerical errors from solving the linear system). We obtain

- the approximation error $\|y y_h\|_{H^1_0(\Omega)}$,
- the algebraic error $\|y_h \hat{y}_h\|_{H^1_0(\Omega)}$.

Show that the *total error* satisfies

$$\left\|y - \hat{y}_h\right\|_{H_0^1(\Omega)}^2 = \left\|y - y_h\right\|_{H_0^1(\Omega)}^2 + \left\|y_h - \hat{y}_h\right\|_{H_0^1(\Omega)}^2.$$

Problem 3 (optimization in MATLAB): Let $\Omega = (0, 1)^2$. Consider the minimization problem

$$\min J(y, u) = \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{1}{2} \|u\|_{L^2(\Omega)}^2$$

subject to
$$\Delta y = u \quad \text{in } \Omega,$$
$$y = 0 \quad \text{on } \Gamma = \partial \Omega,$$
$$u \in \left\{ u \in L^2(\Omega) \ : \ u_a \le u(x) \le u_b \right\}.$$

Here, $y_d(x_1, x_2) = 1 + \cos(x_1)\cos(x_2)$, $u_a = -1$, and $u_b = 1$.

- a) Write a function to perform a full discretization of the problem in MATLAB using the discretization for the solution y from homework sheet 8 and piecewise constant functions to discretize u. You can make use of the code provided on the course website. As input, the function should take the number n of inner nodes per dimension and return the matrices M, N, A, R, Q, G, and H (see lecture) defining the finite-dimensional QP.
- b) Write a function to solve the problem using the MATLAB command fmincon. This function should take n and should return the coordinate vectors uopt and yopt of the discrete optimal control \overline{u}_h and the the corresponding optimal state \overline{y}_h . Visualize the optimal control and the optimal state for various mesh sizes.