Optimization of Complex Systems - 9th Exercise Sheet.

Discussion of the solutions in the exercise on January 20, 2020.

Problem 1 (discretized box constraints): Let $\Omega \subset \mathbb{R}^{N}$ be a polygonally bounded domain and $U_{h}=$ $U_{h}^{(0)}$ or $U_{h}=U_{h}^{(1)}$ be the spaces of piecewise constant or piecewise linear finite element ansatz functions with basis $\left\{\xi_{1}, \ldots, \xi_{m}\right\}$, respectively. Let

$$
u_{h}=\sum_{i=1}^{m} u_{i} \xi_{i}
$$

Show that

$$
u_{a} \leq u_{h}(x) \leq u_{b} \text { a.e. in } \Omega \quad \Leftrightarrow \quad u_{a} \leq u_{i} \leq u_{b} \quad \forall i \in\{1, \ldots, m\} .
$$

Problem 2 (energy norm): Let $\Omega \subset \mathbb{R}^{N}$ for $N=1,2$ be a bounded domain. A norm on $H_{0}^{1}(\Omega)$ is the energy norm, defined by

$$
\|y\|_{H_{0}^{1}(\Omega)}=\|\nabla y\|_{L^{2}(\Omega)^{N}}
$$

a) Show that the energy norm is indeed a norm on $H_{0}^{1}(\Omega)$.
b) Consider now the Poisson equation

$$
\begin{aligned}
\Delta y=f & \text { in } \Omega \\
y=0 & \text { on } \Gamma=\partial \Omega
\end{aligned}
$$

Let y_{h} be the approximate solution obtain from a finite element discretization and \widehat{y}_{h} be the computed solution (containing the numerical errors from solving the linear system). We obtain

- the approximation error $\left\|y-y_{h}\right\|_{H_{0}^{1}(\Omega)}$,
- the algebraic error $\left\|y_{h}-\widehat{y}_{h}\right\|_{H_{0}^{1}(\Omega)}$.

Show that the total error satisfies

$$
\left\|y-\widehat{y}_{h}\right\|_{H_{0}^{1}(\Omega)}^{2}=\left\|y-y_{h}\right\|_{H_{0}^{1}(\Omega)}^{2}+\left\|y_{h}-\widehat{y}_{h}\right\|_{H_{0}^{1}(\Omega)}^{2} .
$$

Problem 3 (optimization in MATLAB): Let $\Omega=(0,1)^{2}$. Consider the minimization problem

$$
\min J(y, u)=\frac{1}{2}\left\|y-y_{\mathrm{d}}\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\|u\|_{L^{2}(\Omega)}^{2}
$$

subject to

$$
\begin{aligned}
\Delta y & =u \quad \text { in } \Omega \\
y & =0 \quad \text { on } \Gamma=\partial \Omega \\
u & \in\left\{u \in L^{2}(\Omega): u_{a} \leq u(x) \leq u_{b}\right\}
\end{aligned}
$$

Here, $y_{\mathrm{d}}\left(x_{1}, x_{2}\right)=1+\cos \left(x_{1}\right) \cos \left(x_{2}\right), u_{a}=-1$, and $u_{b}=1$.
a) Write a function to perform a full discretization of the problem in MATLAB using the discretization for the solution y from homework sheet 8 and piecewise constant functions to discretize u. You can make use of the code provided on the course website. As input, the function should take the number n of inner nodes per dimension and return the matrices M, N, A, R, Q, G, and H (see lecture) defining the finite-dimensional QP.
b) Write a function to solve the problem using the MATLAB command fmincon. This function should take n and should return the coordinate vectors uopt and yopt of the discrete optimal control \bar{u}_{h} and the the corresponding optimal state \bar{y}_{h}. Visualize the optimal control and the optimal state for various mesh sizes.

