University of Hamburg Department of Mathematics Dr. Matthias Voigt

Optimization of Complex Systems – 6th Exercise Sheet.

Discussion of the solutions in the exercise on December 9, 2019.

Problem 1 (projection formula): Let u_a , u_b , $p \in \mathbb{R}$ and $\lambda > 0$. Solve the optimization problem

$$\min_{v \in [u_a, u_b]} \left(pv + \frac{\lambda}{2} v^2 \right)$$

by deriving a projection formula.

Problem 2 (discontinuous trace operator): Assume that $\Omega \subset \mathbb{R}^N$ is a bounded Lipschitz domain with boundary Γ . Show that there exists no constant c > 0 that only depends on Ω such that

$$||u||_{L^2(\Gamma)} \le c ||u||_{L^2(\Omega)}$$

for each $u \in C(\overline{\Omega})$.

Problem 3 (adjoint equation and necessary optimality conditions): Let $\Omega \subset \mathbb{R}^N$ be a bounded Lipschitz domain with boundary Γ . Let functions a_{Ω} , $u \in L^2(\Omega)$, $a_{\Gamma} \in L^2(\Gamma)$, $\beta \in L^{\infty}(\Omega)$, $\alpha \in L^{\infty}(\Gamma)$ with $\alpha \geq 0$ almost everywhere be given. Let y and p be the weak solutions of the elliptic boundary value problems

$$-\Delta y = \beta u \quad \text{in } \Omega,$$
$$\frac{\partial y}{\partial n} + \alpha y = 0 \quad \text{ on } \Gamma,$$

and

$$-\Delta p = a_{\Omega} \quad \text{in } \Omega,$$
$$\frac{\partial p}{\partial n} + \alpha p = a_{\Gamma} \quad \text{on } \Gamma,$$

respectively.

a) Show that

$$\int_{\Omega} a_{\Omega} y \mathrm{d}x + \int_{\Gamma} a_{\Gamma} y \mathrm{d}s = \int_{\Omega} \beta p u \mathrm{d}x.$$

b) Assume now further that λ , λ_{Ω} , $\lambda_{\Gamma} \geq 0$ and $y_{\Omega} \in L^{2}(\Omega)$, $y_{\Gamma} \in L^{2}(\Gamma)$. Consider the optimal control problem

$$\min J(y,u) := \frac{\lambda_{\Omega}}{2} \|y - y_{\Omega}\|_{L^{2}(\Omega)}^{2} + \frac{\lambda_{\Gamma}}{2} \|y - y_{\Gamma}\|_{L^{2}(\Gamma)}^{2} + \frac{\lambda}{2} \|u\|_{L^{2}(\Omega)}^{2}$$

subject to

$$\begin{split} &-\Delta y=\beta u\quad \text{in }\Omega,\\ &\frac{\partial y}{\partial n}+\alpha y=0\quad \text{on }\Gamma,\\ &u_a(x)\leq u(x)\leq u_b(x)\quad \text{a.e. in }\Omega \end{split}$$

Show that with $U_{ad} := \{ u \in L^2(\Omega) : u_a(x) \le u(x) \le u_b(x) \text{ a.e. in } \Omega \}$ and for an optimal triple (\bar{u}, \bar{y}, p) , the optimality conditions are given by

$$\int_{\Omega} (\beta p + \lambda \bar{u})(u - \bar{u}) \mathrm{d}x \ge 0 \quad \forall u \in U_{\mathrm{ad}},$$

where the adjoint state p is given by the weak solution of

$$-\Delta p = \lambda_{\Omega}(\bar{y} - y_{\Omega}) \quad \text{in } \Omega,$$
$$\frac{\partial p}{\partial n} + \alpha p = \lambda_{\Gamma}(\bar{y} - y_{\Gamma}) \quad \text{on } \Gamma.$$