Optimization of Complex Systems - 6th Exercise Sheet.

Discussion of the solutions in the exercise on December 9, 2019.

Problem 1 (projection formula): Let $u_{a}, u_{b}, p \in \mathbb{R}$ and $\lambda>0$. Solve the optimization problem

$$
\min _{v \in\left[u_{a}, u_{b}\right]}\left(p v+\frac{\lambda}{2} v^{2}\right)
$$

by deriving a projection formula.
Problem 2 (discontinuous trace operator): Assume that $\Omega \subset \mathbb{R}^{N}$ is a bounded Lipschitz domain with boundary Γ. Show that there exists no constant $c>0$ that only depends on Ω such that

$$
\|u\|_{L^{2}(\Gamma)} \leq c\|u\|_{L^{2}(\Omega)}
$$

for each $u \in C(\bar{\Omega})$.
Problem 3 (adjoint equation and necessary optimality conditions): Let $\Omega \subset \mathbb{R}^{N}$ be a bounded Lipschitz domain with boundary Γ. Let functions $a_{\Omega}, u \in L^{2}(\Omega), a_{\Gamma} \in L^{2}(\Gamma), \beta \in L^{\infty}(\Omega), \alpha \in L^{\infty}(\Gamma)$ with $\alpha \geq 0$ almost everywhere be given. Let y and p be the weak solutions of the elliptic boundary value problems

$$
\begin{aligned}
&-\Delta y=\beta u \text { in } \Omega \\
& \frac{\partial y}{\partial n}+\alpha y=0 \\
& \text { on } \Gamma
\end{aligned}
$$

and

$$
\begin{aligned}
-\Delta p=a_{\Omega} & \text { in } \Omega \\
\frac{\partial p}{\partial n}+\alpha p=a_{\Gamma} & \text { on } \Gamma
\end{aligned}
$$

respectively.
a) Show that

$$
\int_{\Omega} a_{\Omega} y \mathrm{~d} x+\int_{\Gamma} a_{\Gamma} y \mathrm{~d} s=\int_{\Omega} \beta p u \mathrm{~d} x
$$

b) Assume now further that $\lambda, \lambda_{\Omega}, \lambda_{\Gamma} \geq 0$ and $y_{\Omega} \in L^{2}(\Omega), y_{\Gamma} \in L^{2}(\Gamma)$. Consider the optimal control problem

$$
\min J(y, u):=\frac{\lambda_{\Omega}}{2}\left\|y-y_{\Omega}\right\|_{L^{2}(\Omega)}^{2}+\frac{\lambda_{\Gamma}}{2}\left\|y-y_{\Gamma}\right\|_{L^{2}(\Gamma)}^{2}+\frac{\lambda}{2}\|u\|_{L^{2}(\Omega)}^{2}
$$

subject to

$$
\begin{aligned}
-\Delta y & =\beta u \quad \text { in } \Omega \\
\frac{\partial y}{\partial n}+\alpha y & =0 \quad \text { on } \Gamma \\
u_{a}(x) & \leq u(x) \leq u_{b}(x) \quad \text { a.e. in } \Omega .
\end{aligned}
$$

Show that with $U_{\text {ad }}:=\left\{u \in L^{2}(\Omega): u_{a}(x) \leq u(x) \leq u_{b}(x)\right.$ a. e. in $\left.\Omega\right\}$ and for an optimal triple (\bar{u}, \bar{y}, p), the optimality conditions are given by

$$
\int_{\Omega}(\beta p+\lambda \bar{u})(u-\bar{u}) \mathrm{d} x \geq 0 \quad \forall u \in U_{\mathrm{ad}}
$$

where the adjoint state p is given by the weak solution of

$$
\begin{array}{rlrl}
-\Delta p & =\lambda_{\Omega}\left(\bar{y}-y_{\Omega}\right) & \text { in } \Omega, \\
\frac{\partial p}{\partial n}+\alpha p & =\lambda_{\Gamma}\left(\bar{y}-y_{\Gamma}\right) & & \text { on } \Gamma .
\end{array}
$$

