Optimization of Complex Systems – 4th Exercise Sheet.

Discussion of the solutions in the exercise on November 25, 2019.

Problem 1 (weak formulation of the Poisson equation): Let $\Omega \subset \mathbb{R}^N$ be a bounded Lipschitz domain. Consider the Poisson equation

$$\begin{aligned} -\Delta y &= f & \text{in } \Omega, \\ y &= 0 & \text{on } \Gamma_1, \\ \frac{\partial y}{\partial n} &= 0 & \text{on } \Gamma_2 \end{aligned} \qquad (\text{Neumann boundary conditions}) \\ \frac{\partial y}{\partial n} &+ \sigma y &= 0 & \text{on } \Gamma_3, \end{aligned}$$
 (Robin boundary conditions)

where $\overline{\Gamma}_1 \cup \overline{\Gamma}_2 \cup \overline{\Gamma}_3 = \Gamma := \partial \Omega$ with $\Gamma_1 \cap \Gamma_2 = \emptyset$, $\Gamma_1 \cap \Gamma_3 = \emptyset$, and $\Gamma_2 \cap \Gamma_3 = \emptyset$, $\sigma > 0$, and n denotes the outward normal vector. Note further that $\frac{\partial y}{\partial n} := n \cdot \nabla y$. Show that the weak formulation of this problem is to find a $y \in V_0 := \{v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_1\}$ such that

$$\int_{\Omega} \nabla y \cdot \nabla v dx + \int_{\Gamma_3} \sigma y v ds = \int_{\Omega} f v dx \quad \forall v \in V_0.$$

Hint: Use the N-dimensional version of the product rule

 $\operatorname{div}(v\nabla y) = \nabla y \cdot \nabla v + v\Delta y,$

as well as the Theorem of Gauss which gives

$$\int_{\Omega} \operatorname{div}(w) \mathrm{d}x = \int_{\Gamma} n \cdot w \mathrm{d}s.$$

Problem 2 (Poincaré-Friedrichs inequality): Let $\Omega \subset \mathbb{R}$ be a bounded domain and $y \in H_0^1(\Omega)$. Prove the Poincaré-Friedrichs inequality

 $||y||_{L^2(\Omega)}^2 \le C \cdot ||y'||_{L^2(\Omega)}^2.$

Use the fact, that for $y \in H_0^1(\Omega)$ it holds that

$$y(x) = \int_0^x y'(z) \mathrm{d}z.$$

Problem 3 (coercivity): For finite-dimensional problems, the coercivity of the symmetric bilinear form $a: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ is equivalent to the condition a(v, v) > 0 for all $v \in \mathcal{V} \setminus \{0\}$. (Why?). Let now

$$\mathcal{V} = \ell_2 := \left\{ u = (u_n)_{n \in \mathbb{N}} : \sum_{n=1}^{\infty} u_n^2 < \infty \right\}$$

with the norm

$$\|u\|_2 := \left(\sum_{n=1}^{\infty} u_n^2\right)^{1/2}$$

- a) Construct a bilinear form $a: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ with a(v, v) > 0 for all $v \in \mathcal{V} \setminus \{0\}$ which is *not* coercive.
- b) With the bilinear form $a(\cdot, \cdot)$ from a), construct a linear functional $F \in \mathcal{V}^*$ such that the problem

 $a(y,v) = F(v) \quad \forall v \in \mathcal{V}$

does not have a unique solution $y \in \mathcal{V}$.

Problem 4 (weak convergence): Let \mathcal{U} be a normed vector space and let $(u_n)_{n \in \mathbb{N}} \subset \mathcal{U}$. Show the following statements:

- a) If $u_n \rightharpoonup u \in \mathcal{U}$, then the weak limit u is unique.
- b) Strong convergence $u_n \to u$ implies weak convergence $u_n \rightharpoonup u$ and the converse holds if \mathcal{U} is finite-dimensional.
- c) In a Hilbert space \mathcal{H} , the weak convergence $u_n \rightharpoonup u$ is equivalent to

 $(v, u_n)_{\mathcal{H}} \to (v, u)_{\mathcal{H}} \quad \forall v \in \mathcal{H}.$

d) In a Hilbert space \mathcal{H} we have:

 $u_n \rightharpoonup u$ and $||u_n||_{\mathcal{H}} \rightarrow ||u||_{\mathcal{H}} \Leftrightarrow u_n \rightarrow u.$