Optimization of Complex Systems - 4th Exercise Sheet.

Discussion of the solutions in the exercise on November 25, 2019.

Problem 1 (weak formulation of the Poisson equation): Let $\Omega \subset \mathbb{R}^{N}$ be a bounded Lipschitz domain. Consider the Poisson equation

$$
\begin{aligned}
-\Delta y=f & \text { in } \Omega \\
y=0 & \text { on } \Gamma_{1} \\
\frac{\partial y}{\partial n}=0 & \text { on } \Gamma_{2} \\
\frac{\partial y}{\partial n}+\sigma y=0 & \text { on } \Gamma_{3}
\end{aligned}
$$

(Dirichlet boundary conditions)
(Neumann boundary conditions)
(Robin boundary conditions)
where $\bar{\Gamma}_{1} \cup \bar{\Gamma}_{2} \cup \bar{\Gamma}_{3}=\Gamma:=\partial \Omega$ with $\Gamma_{1} \cap \Gamma_{2}=\emptyset, \Gamma_{1} \cap \Gamma_{3}=\emptyset$, and $\Gamma_{2} \cap \Gamma_{3}=\emptyset, \sigma>0$, and n denotes the outward normal vector. Note further that $\frac{\partial y}{\partial n}:=n \cdot \nabla y$.
Show that the weak formulation of this problem is to find a $y \in V_{0}:=\left\{v \in H^{1}(\Omega): v=0\right.$ on $\left.\Gamma_{1}\right\}$ such that

$$
\int_{\Omega} \nabla y \cdot \nabla v \mathrm{~d} x+\int_{\Gamma_{3}} \sigma y v \mathrm{~d} s=\int_{\Omega} f v \mathrm{~d} x \quad \forall v \in V_{0}
$$

Hint: Use the N-dimensional version of the product rule

$$
\operatorname{div}(v \nabla y)=\nabla y \cdot \nabla v+v \Delta y
$$

as well as the Theorem of Gauss which gives

$$
\int_{\Omega} \operatorname{div}(w) \mathrm{d} x=\int_{\Gamma} n \cdot w \mathrm{~d} s
$$

Problem 2 (Poincaré-Friedrichs inequality): Let $\Omega \subset \mathbb{R}$ be a bounded domain and $y \in H_{0}^{1}(\Omega)$. Prove the Poincaré-Friedrichs inequality

$$
\|y\|_{L^{2}(\Omega)}^{2} \leq C \cdot\left\|y^{\prime}\right\|_{L^{2}(\Omega)}^{2}
$$

Use the fact, that for $y \in H_{0}^{1}(\Omega)$ it holds that

$$
y(x)=\int_{0}^{x} y^{\prime}(z) \mathrm{d} z
$$

Problem 3 (coercivity): For finite-dimensional problems, the coercivity of the symmetric bilinear form $a: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ is equivalent to the condition $a(v, v)>0$ for all $v \in \mathcal{V} \backslash\{0\}$. (Why?). Let now

$$
\mathcal{V}=\ell_{2}:=\left\{u=\left(u_{n}\right)_{n \in \mathbb{N}}: \sum_{n=1}^{\infty} u_{n}^{2}<\infty\right\}
$$

with the norm

$$
\|u\|_{2}:=\left(\sum_{n=1}^{\infty} u_{n}^{2}\right)^{1 / 2}
$$

a) Construct a bilinear form $a: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ with $a(v, v)>0$ for all $v \in \mathcal{V} \backslash\{0\}$ which is not coercive.
b) With the bilinear form $a(\cdot, \cdot)$ from a), construct a linear functional $F \in \mathcal{V}^{*}$ such that the problem

$$
a(y, v)=F(v) \quad \forall v \in \mathcal{V}
$$

does not have a unique solution $y \in \mathcal{V}$.

Problem 4 (weak convergence): Let \mathcal{U} be a normed vector space and let $\left(u_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{U}$. Show the following statements:
a) If $u_{n} \rightharpoonup u \in \mathcal{U}$, then the weak limit u is unique.
b) Strong convergence $u_{n} \rightarrow u$ implies weak convergence $u_{n} \rightharpoonup u$ and the converse holds if \mathcal{U} is finite-dimensional.
c) In a Hilbert space \mathcal{H}, the weak convergence $u_{n} \rightharpoonup u$ is equivalent to

$$
\left(v, u_{n}\right)_{\mathcal{H}} \rightarrow(v, u)_{\mathcal{H}} \quad \forall v \in \mathcal{H} .
$$

d) In a Hilbert space \mathcal{H} we have:

$$
u_{n} \rightharpoonup u \text { and }\left\|u_{n}\right\|_{\mathcal{H}} \rightarrow\|u\|_{\mathcal{H}} \quad \Leftrightarrow \quad u_{n} \rightarrow u .
$$

