Optimization of Complex Systems - 1st Exercise Sheet.

Discussion of the solutions in the exercise on October 28, 2019.

Problem 1 (variational inequality): Let U_{ad} be convex, $f: U_{\mathrm{ad}} \rightarrow \mathbb{R}$ be continuously differentiable, and let \bar{u} be a local minimizer of the problem

$$
\min _{u \in U_{\text {ad }}} f(u) .
$$

Show that then the variational inequality

$$
f^{\prime}(\bar{u})(u-\bar{u}) \geq 0 \quad \forall u \in U_{\mathrm{ad}}
$$

is satisfied.
Hint: The set $U_{\text {ad }}$ is convex if and only if $u_{1}, u_{2} \in U_{\mathrm{ad}} \Rightarrow t u_{1}+(1-t) u_{2} \in U_{\text {ad }} \forall t \in[0,1]$.
Problem 2 (minimizers of convex functionals): Let $U_{\mathrm{ad}} \subseteq \mathbb{R}^{n}$ be convex and $f: U_{\mathrm{ad}} \rightarrow \mathbb{R}$ be strictly convex, that is,

$$
f\left(t u_{1}+(1-t) u_{2}\right)<t f\left(u_{1}\right)+(1-t) f\left(u_{2}\right)
$$

for all $t \in(0,1)$ and $u_{1} \neq u_{2}$. Let $\bar{u} \in U_{\text {ad }}$ be a local minimizer of the problem

$$
\begin{equation*}
\min _{u \in U_{\text {ad }}} f(u) \tag{1}
\end{equation*}
$$

a) Show that \bar{u} is a global minimizer of (1) and that this global minimizer is unique.
b) Let $y_{\mathrm{d}} \in \mathbb{R}^{n}, S \in \mathbb{R}^{n \times n}$ be invertible, and $\lambda>0$. Show that the functional

$$
f(u)=\frac{1}{2}\left\|S u-y_{\mathrm{d}}\right\|^{2}+\frac{\lambda}{2}\|u\|^{2}
$$

is strictly convex.
Problem 3 (linear-quadratic optimal control): Consider the optimal control problem

$$
\begin{gathered}
\min f(z, u):=\frac{1}{2} z_{N}^{\top} Q z_{N}+\sum_{i=0}^{N-1} f_{i}\left(z_{i}, u_{i}\right) \\
\text { subject to } z_{i+1}=A_{i} z_{i}+B_{i} u_{i}+c_{i}, \quad i=0, \ldots, N-1
\end{gathered}
$$

where $z_{0} \in \mathbb{R}^{n}$ is given and fixed, $Q \in \mathbb{R}^{n \times n}$ is symmetric, $A_{i} \in \mathbb{R}^{n \times n}, B_{i} \in \mathbb{R}^{n \times m}$, and $c_{i}, z_{i} \in \mathbb{R}^{n}$, $u_{i} \in \mathbb{R}^{m}$ for $i=0, \ldots, N-1$, and $f_{i}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ are given differentiable functions.
Formulate the Lagrangian of this problem and derive the KKT optimality system.
Problem 4 (classification of PDEs): Let $\Omega \in \mathbb{R}^{n}$ be a domain and consider a linear, second-order $P D E$ with the unknown $y: \Omega \rightarrow \mathbb{R}$ of the form

$$
-\sum_{i, k=1}^{n} a_{i k}(x) \frac{\partial^{2} y(x)}{\partial x_{i} \partial x_{k}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial y(x)}{\partial x_{i}}+c(x) y(x)=f(x) \quad \forall x \in \Omega
$$

where $a_{i k}, b_{i}, c, f: \Omega \rightarrow \mathbb{R}$ are given mappings for all $i, k=1, \ldots, n$. Assume that $\frac{\partial^{2} y(\cdot)}{\partial x_{i} \partial x_{k}}=\frac{\partial^{2} y(\cdot)}{\partial x_{k} \partial x_{i}}$ for all $i, k=1, \ldots, n$. Then we can choose w.l.o.g. $a_{k i}(\cdot)=a_{i k}(\cdot)$ for all $i, k=1, \ldots, n$. (Why?) Define the matrix $A(x):=\left[a_{i k}(x)\right]_{i, k=1}^{n}$. Then a linear, second-order PDE of the form above is called
i) elliptic in $x \in \Omega$ if $A(x)$ is definite, i. e., all eigenvalues of $A(x)$ are either strictly positive or strictly negative;
ii) hyperbolic in $x \in \Omega$ if $A(x)$ has one strictly negative eigenvalue and $n-1$ strictly positive eigenvalues (or vice versa);
iii) parabolic in $x \in \Omega$ if $A(x)$ has one eigenvalue equal to zero and $n-1$ strictly positive (or strictly negative) eigenvalues and $\operatorname{rank}\left(\left[\begin{array}{ll}A(x) & b(x)\end{array}\right]\right)=n$, where $b(x)=\left[b_{1}(x), \ldots, b_{n}(x)\right]^{\top}$.

We say that the PDE is elliptic/hyperbolic/parabolic if it is elliptic/hyperbolic/parabolic in all $x \in \Omega$. Decide of which type the following PDEs are and explain your decision:
a) the Poisson equation

$$
-\Delta y(x)=f(x) \quad \text { for } x \in \Omega,
$$

b) the heat equation

$$
\frac{\partial y(x, t)}{\partial t}-\Delta y(x, t)=f(x, t) \quad \text { for }(x, t) \in \Omega:=\Omega_{\text {space }} \times(0, T) \text {, }
$$

c) the wave equation

$$
\frac{\partial^{2} y(x, t)}{\partial t^{2}}-\Delta y(x, t)=f(x, t) \quad \text { for }(x, t) \in \Omega:=\Omega_{\text {space }} \times(0, T) .
$$

