University of Hamburg Department of Mathematics Dr. Matthias Voigt

Optimization of Complex Systems – 1st Exercise Sheet.

Discussion of the solutions in the exercise on October 28, 2019.

Problem 1 (variational inequality): Let U_{ad} be convex, $f : U_{ad} \to \mathbb{R}$ be continuously differentiable, and let \bar{u} be a local minimizer of the problem

 $\min_{u \in U_{\rm ad}} f(u).$

Show that then the variational inequality

 $f'(\bar{u})(u-\bar{u}) \ge 0 \quad \forall u \in U_{\mathrm{ad}}$

is satisfied.

Hint: The set U_{ad} is convex if and only if $u_1, u_2 \in U_{ad} \Rightarrow tu_1 + (1-t)u_2 \in U_{ad} \forall t \in [0,1]$.

Problem 2 (minimizers of convex functionals): Let $U_{ad} \subseteq \mathbb{R}^n$ be convex and $f: U_{ad} \to \mathbb{R}$ be strictly convex, that is,

 $f(tu_1 + (1-t)u_2) < tf(u_1) + (1-t)f(u_2)$

for all $t \in (0,1)$ and $u_1 \neq u_2$. Let $\bar{u} \in U_{ad}$ be a local minimizer of the problem

$$\min_{u \in U_{\rm ad}} f(u). \tag{1}$$

a) Show that \bar{u} is a global minimizer of (1) and that this global minimizer is unique.

b) Let $y_{d} \in \mathbb{R}^{n}$, $S \in \mathbb{R}^{n \times n}$ be invertible, and $\lambda > 0$. Show that the functional

$$f(u) = \frac{1}{2} \|Su - y_{\rm d}\|^2 + \frac{\lambda}{2} \|u\|^2$$

is strictly convex.

Problem 3 (linear-quadratic optimal control): Consider the optimal control problem

$$\min f(z, u) := \frac{1}{2} z_N^{\mathsf{T}} Q z_N + \sum_{i=0}^{N-1} f_i(z_i, u_i),$$

subject to $z_{i+1} = A_i z_i + B_i u_i + c_i, \quad i = 0, \dots, N-1,$

where $z_0 \in \mathbb{R}^n$ is given and fixed, $Q \in \mathbb{R}^{n \times n}$ is symmetric, $A_i \in \mathbb{R}^{n \times n}$, $B_i \in \mathbb{R}^{n \times m}$, and $c_i, z_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^m$ for $i = 0, \ldots, N-1$, and $f_i : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ are given differentiable functions.

Formulate the Lagrangian of this problem and derive the KKT optimality system.

Problem 4 (classification of PDEs): Let $\Omega \in \mathbb{R}^n$ be a domain and consider a *linear*, second-order *PDE* with the unknown $y: \Omega \to \mathbb{R}$ of the form

$$-\sum_{i,k=1}^{n} a_{ik}(x) \frac{\partial^2 y(x)}{\partial x_i \partial x_k} + \sum_{i=1}^{n} b_i(x) \frac{\partial y(x)}{\partial x_i} + c(x)y(x) = f(x) \quad \forall x \in \Omega,$$

where $a_{ik}, b_i, c, f: \Omega \to \mathbb{R}$ are given mappings for all $i, k = 1, \ldots, n$. Assume that $\frac{\partial^2 y(\cdot)}{\partial x_i \partial x_k} = \frac{\partial^2 y(\cdot)}{\partial x_k \partial x_i}$ for all $i, k = 1, \ldots, n$. Then we can choose w.l.o.g. $a_{ki}(\cdot) = a_{ik}(\cdot)$ for all $i, k = 1, \ldots, n$. (Why?) Define the matrix $A(x) := [a_{ik}(x)]_{i,k=1}^n$. Then a linear, second-order PDE of the form above is called

- i) *elliptic* in $x \in \Omega$ if A(x) is definite, i.e., all eigenvalues of A(x) are either strictly positive or strictly negative;
- ii) hyperbolic in $x \in \Omega$ if A(x) has one strictly negative eigenvalue and n-1 strictly positive eigenvalues (or vice versa);
- iii) parabolic in $x \in \Omega$ if A(x) has one eigenvalue equal to zero and n-1 strictly positive (or strictly negative) eigenvalues and rank $(\begin{bmatrix} A(x) & b(x) \end{bmatrix}) = n$, where $b(x) = \begin{bmatrix} b_1(x), \ldots, b_n(x) \end{bmatrix}^{\mathsf{T}}$.

We say that the PDE is elliptic/hyperbolic/parabolic if it is elliptic/hyperbolic/parabolic in all $x \in \Omega$. Decide of which type the following PDEs are and explain your decision:

a) the Poisson equation

$$-\Delta y(x) = f(x) \quad \text{for } x \in \Omega,$$

b) the *heat equation*

$$\frac{\partial y(x,t)}{\partial t} - \Delta y(x,t) = f(x,t) \quad \text{for } (x,t) \in \Omega := \Omega_{\text{space}} \times (0,T),$$

c) the wave equation

$$\frac{\partial^2 y(x,t)}{\partial t^2} - \Delta y(x,t) = f(x,t) \quad \text{for } (x,t) \in \Omega := \Omega_{\text{space}} \times (0,T).$$