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Preface

This document is based in large parts on the hand-written lecture notes of
Christian Schréder who gave this course on model reduction at the TU Berlin in
the winter term 2016/17. Special thanks go to Martijn Nagtegaal, Nora Heinrich,
and Ines Ahrens for finding so many typos in the initial version of these lecture
notes from winter term 2017/18. | believe that there are more errors and typos
in this document, please send an email to matthias.voigt@uni-hamburg.de
if you find any.

There are not many textbooks on model reduction, the most commonly known
one has been written by A. C. Antoulas:

A. C. Antoulas. Approximation of Large-Scale Dynamical Systems, vol-
ume 6 of Adv. Des. Control. SIAM Publications, Philadelphia, PA, 2005.
doi:10.1137/1.9780898718713.

Most aspects discussed in this course have also been covered by Peter Ben-
ner on the Gene Golub SIAM Summer School 2013 at Fudan University in
Shanghai, China. Some more applications and illustrative examples on model
reduction can be found in his slides that you can download from the summer
school’'s website'. Since this course is strongly based on control-theoretic ba-
sics, | recommend to read Chapters 3 and 4 of

K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control, Prentice-
Hall, Englewood Cliffs, NJ, 1996.

to look up these concepts. Further, more recent results discussed here will be
cited throughout the lecture notes, so that you can read the original sources.

"http://g2s3.cs.ucdavis.edu/lecturers/Benner/Benner-1lectures-online.pdf


http://g2s3.cs.ucdavis.edu/lecturers/Benner/Benner-lectures-online.pdf
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CHAPTER 1

Introduction

1.1 What is Model Reduction?

Today, for the study of real-world processes, one usually sets up mathematical
models usually consisting of differential (or differential-algebraic) equations that
describe the behavior of the system under consideration. However, there is an
ever-increasing need for higher accuracy which means that these models get
more and more complex. The simulation, optimization, and control using such
models then often leads to a very high demand in computational resources,
both in terms of consumed time and memory — often even forbidding perform-
ing the desired task at all. Therefore, there is need for replacing the complex
mathematical model by a much simpler model, that approximately behaves like
the original model but which is computationally much less demanding. The
process of finding this simpler representation is called model reduction. The
typical set-up is depicted in Figure 1.1.

In this course we mainly consider control systems of the general form

z(t) = f(t,z(t),u(t)), x(to) = o

(1.1)
y(t) = g(t, (1), u(t)),

where I = [to, t¢] is a time interval of interest, = : I — R" is the state function
with initial value xg € R", v : T — R™ is the input function, y : T — RP is the
output function, and f : IxR" x R™ — R" and g : [ x R™ x R™ — RP. Usually,
the input is a function that can be used to control the state of the system to
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Figure 1.1: The broad setup of model reduction.

achieve a desired behavior. The output consists of “quantities of interest” that
can often be measured in the real physical process.

The goal of model reduction is to replace the functions f and g in (1.1) by a
reduced-order model

~

Ht) = F03(0),u(0). F(to) =3 12
y(t) = g(t, 2(t), u(t)),

where 7 : 1 - R" with r « n is the reduced state function with initial value
ToeR",and f: IxR"xR™ — R", g : [ x R" x R™ — RP. This model should
be constructed such that ||y — ]| is “small” for all admissible inputs u. This will

be made precise later. Note that we are only interested in the map from the
input to the output, not in the evolution of the state itself.

In this course we focus on linear time-invariant systems, which are of the sim-
pler form

x(t) = Az(t) + Bu(t),

y(t) = Cx(t) + Du(?),

for some matrices A € R"*", B e R™*™, C € RP*™, and D € RP*™. Normally,
we will also assume that z(tg) = x(0) = 0.

(1.3)

We will discuss a rigorous mathematical theory for model reduction. We will dis-
cuss efficient numerical algorithms as well as theorems on the approximation
quality, e. g., we state and prove error bounds. We will also touch on aspects
of structure-preservation. This means, that if the original model has a certain
structure, then also the reduced model should have this structure to account for
physical properties that are encoded in the model.
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1.2 Examples of Large-Scale Dynamical Systems

1.2.1 A Controlled Discretized Heat Equation

Consider the temperature distribution 7'(¢,&) of a one-dimensional beam of
length ¢ = 1. Here, £ € [0, 1] is the space variable and ¢t > 0 denotes the time.
On the right end of the beam we impose the boundary condition T'(¢,1) = 0 for
all t = 0. On the left end we have a heat source that results in a controllable

temperature flux
0

——=T(t = u(?).
5T (1:0) = u(t)
The heat diffusion inside the beam is described by the heat equation
0 02
QT(t,f) =k- @T(t,f) forall¢ e (0,1),t > 0.

Moreover, we are interested in the average beam temperature, i. €., our output
is
1

u(t) =f T(t, €)de.

0
Finally, we need an initial condition which is given by
T(0,§) =0 forall&e|0,1].

Now we discretize in space at n equidistant points and obtain

T(t,0)
(1) T (t,
l‘(t)z . — (7n)
zn (1) T (t,21)
Fori=2,3,...,n—1wefind
. 0 02
&i(t) = gT(le):k'a?gT(vn)
~ken® (T(52) - 20 (651 + T (4 )

=k -n? (- ()—2$i()+$z’+1(t))-
Analogously, we find
Tn(t) ~ k- n2(zp_1(t) — 2z,(1)),
since x,1(t) := T'(t, ¥) = 0. Moreover, we have
0 02

bi(t) = 5T (1,0) = k- 25T (1,0)
2

~k-n (;{ (t, 1) - a—gT(t 0))
~k-n(n(ze(t) —x1(t)) +ult)).
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For the output we take a piecewise constant approximation, i. e.,

1 n—1 n
y(t) = f T(t, €)dE ~ % STt 1) = %2 2i(8).

0 i=0 i=1

The zero initial conditions imply 2(0) = 0. Our final controlled discretized heat
equation now attains the form

(1.4)

y(t) = Cx(t),
where
ST -
1 -2 1 (1)
A = kn? eR™"™ B=kn|. |eR™,
_ : (1.5)
1 -2 1 0
L 1 _2_
1 1xn
C=—[1 ... 1]eR™™",
n

The larger n the better the solution of the PDE will be approximated, but the size
of the system of ODEs in (1.4) and (1.5) will also grow and thus its evaluation
will be more expensive.

Let £ = 1 and n = 1000. Using the method of balanced truncation (discussed
later), we can approximate the system by

() = Ca(t),
with
R —-2.256 1.775 —0.6057 N —1.074
A= —-1.775 —16.63 12.21 , B=1-0.4136],
—0.6057 —12.21 —40.66 —0.1442

C =[-1.074 04136 —0.1442].

Simulation with various inputs shows that the outputs y and ¥ are almost the
same.

1.2.2 Further Examples

Here will briefly mention a few more examples to illustrate the importance of
model reduction in practice.
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Electrical Circuits. Electrical circuits containing only inductors, capacitors,
and resistors can be modeled using modified modal analysis. This results in a
linear system of the form

(1.6)

where the state z(-) contains the node potentials and currents through induc-
tors and voltage sources. The input u(-) contains the currents of the current
sources as well as the voltages of the voltage sources. The output y(-) con-
tains the negative of the voltages of the current sources and the currents of the
voltage sources. Here the matrices E, A, and B have the form

[AcCAL 0 0 —ARGAL —Ar —Ay
E= 0 L 0|, A= Al 0 0 |,
0 0 0 Al 0 0
(1.7)
~Az 0
B=| 0 0],
| 0 I

where G, L, C are positive definite matrices containing the conductances, in-
ductances, and capacities of the resistors, inductors, and capacitors, respec-
tively. The matrices A¢, Ar, Az, Ay, and Az are incidence matrices that de-
scribe the network topology of the circuit. This model differs from (1.3), namely
an additional matrix £ is in front of x and moreover, E is singular. This means,
that not all of the equations in (1.6) are differential equations, but there are also
algebraic equations that result from Kirchhoff’s laws. Therefore, such a system
is called a differential-algebraic system. Moreover, the system (1.6) with (1.7)
has certain symmetries that account for the physical properties of the circuit.
For example, (1.6) with (1.7) is a passive system, meaning that

T
J y(t) Tu(t)dt = 0
0

for all T = 0 and all smooth solution trajectories with Ez(0) = 0. This prop-
erty must be reflected in the reduced-order model in order to get meaningful
simulation results. In other words, structure-preserving methods are of great
importance in applications.

Structural Mechanics. The goal of structural mechanics is the computation
of mechanical deformations and internal forces and stresses within mechanical
structures, such as buildings, bridges, machines, etc. Using the finite element
method, the mechanical structure is decomposed into masses that are stiffly
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connected. This leads to a large ordinary differential equation of second order
of the form

Mi(t) + Dz(t) + Kz(t) = Bu(t), (1.8)
y(t) = Crz(t) + Cai(t), '

where the state x(-) is the displacement of the masses from the equilibrium po-
sition and the input u(-) is an external force. Moreover, M and K are the pos-
itive definite mass and stiffness matrices and D is a positive definite damping
matrix. Using a linearization, one can in principal rewrite (1.8) as a first-order
system as in (1.3) and do model reduction on the first-order system. However,
often it is important to have a reduced-order model of the form (1.8). It is often
not possible to gain such a system when using methods for first-order systems.
There are methods that work directly on (1.8), but there are still many open
research problems.




CHAPTER 2

Basics of Systems and Control Theory

In this chapter we consider linear time-invariant (LTI) control systems

x(t) = Az(t) + Bu(t), z(to) = wo, 51

y(t) = Cx(t) + Du(t), 1)
where A € R™*" B € R™™ C € RP*" D e RP*™ gz : [to,tf] — R
is the state of the system, u : [to,tf] — R™ denotes a control input and
y : [to,ts] — RP is a measurable output. The set of LTI systems with state-
space dimension n, m inputs, and p outputs is denoted by %, ,,, , and we write
[A,B,C,D] € ¥, ,,,. The goal of this chapter is to give a basic analysis and
discussion of such systems in order to set the foundations for the model re-
duction methods we discuss later. Here we will rather skip the proofs or keep
them short since this will mainly be the topic of the course on control theory. A
more detailed introduction to the concepts presented here can be found in the
textbook | , Chapters 3 & 4].

2.1 Properties of LTI Systems

Next we discuss some fundamental properties of LTI dynamical systems. In
the next definition we assume for simplicity that ¢y = oo and that g =
PC([to, ts], R™) is the set of admissible inputs, i.e., the set of all piecewise
continuous functions mapping from [¢o, t¢] to R™, but in principal we could also
take Uaq = La([to, te], R™).
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Definition 2.1: The LTl system [A, B,C, D] € ¥, ., is called

a) asymptotically stable, if all solutions of the linear homogeneous ODE i(t) =
Ax(t) satisfy lim;_,o x(t) = 0 for all initial conditions x(ty) = xo.

b) controllable, if for all initial conditions x(ty) = xo and all z; € R", there
exists a t; > to and a control function u € U,q such that z(t1) = ;.

c) stabilizable, if for all initial conditions xz(tg) = x( there exists a control func-
tion u € U,q such that lim;_,, z(t) = 0.

d) observable, if for two solution trajectories (obtained with the same input v €
Uaq) x(+) and Z(+) it holds

Cz(t) = CE(t) Vt>to= a(t) = F(t) V= to.

e) detectable, if for any solution z(-) of z(t) = Ax(t) with Cz(t) = 0 it follows
that lim; o, z(t) = 0.

The following lemma characterizes these properties algebraically.

Lemma 2.2: The LTI system [A, B,C, D] € ¥, ., is
a) asymptotically stable < A(A) c C™ :={A e C: Re () < 0},

b) controllable < rank [Al, —A B]=n VAeC
< rank [B AB ... A”le] =n,

c) stabilizable < rank [AI, —A B]=n VYAeCT:={AeC:Re(}\) >0}
< JF € R™*" such that A(A + BF) < C™,

d) observable < rank )‘I”C_ A} —n YAeC
[ C
CA
< rank . =n,
_CAnfl
e) detectable < rank [M"C_ A} =n YreC+

< 3G € R"*P such that A(A+ GC) < C™.

Remark 2.3: a) Stabilizability weakens the concept of controllability in the
sense that not all possible states are reachable, but uncontrollable parts
tend to zero.
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b) Detectability weakens observability in the same sense as stabilizability
weakens controllability: not all of z can be observed but unobserved parts
are asymptotically stable, i. e., deviations vanish over time.

c) The above concepts are dual in the sense that an LTI system is observable
(detectable) if and only if the dual system

2(t) = AT2(t) + CTo(t)

is controllable (stabilizable).

The following considerations motivate the Gramians that we define next. First
we consider the input-to-state map

((t) = eMB,

which is motivated by the fact that for 2(0) = xy = 0 and impulsive inputs
u = ug - 6 (where ug € R and § denotes the Dirac delta distribution), we
obtain

t
z(t) = etz + f eA(t_T)BU(T)dT
0

¢
= f eA(t_T)Buoé(T)dT
0

= e By = C(t)up.

Note that the above is formally not correct, since § is not a function mapping
from R to R, but a distribution (often called generalized function) that is defined
by

§:C*(R,R") > R", f > f(0).

So actually we have more correctly

x(t):=0 (eA(t_')Buo) — e Buy.

Consider on the other hand the state-to-output map
n(t) = Ce™,
which is motivated by the fact that for z(0) = x¢ and u(¢) = 0, we obtain
t
y(t) = Cetag + CJ A7) Bu(r)dr
0
= CeMzg = n(t)xo.

For the analysis of LTI control systems we now make use of the following Grami-
ans.
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Definition 2.4: The matrix
T T
P(T) = f eA'BBTe tdt
0
is called the (0, T')-controllability Gramian of the system (2.1).
The matrix

T
Q(T) =J AT tCT Ot dt
0

is called the (0, T")-observability Gramian of the system (2.1).

Remark 2.5: For a system (2.1), P(7T") and Q(T') can be used to identify states
of the system that are easily reachable and easily observable in the interval
(0,T) in the following sense:

a) For a reachable state =, of the system (2.1), one can show that u(t) =
BTeA (t+=0) p(t, )12, where P(t,)! is the Moore-Penrose inverse of P(t.),
controls the system from z(0) = 0 to x(¢«) = z.. Moreover, among all such
controls, (t) is the one with minimal £-norm.

b) For any t, > 0 and g € R", we have

by
o3e Tt 0T Ceagdt = | [Cetaol] dt = fuzo ()12,
0

T i
Zg Q(t*)xo = f
0
Now we consider the above Gramians for T — 0.

Lemma 2.6: If A in (2.1) is asymptotically stable, then

a) the infinite controllability and observability Gramians

00]
P = lim P(T) =J e BBTeA tdt

T—0 0
and
e T
Q = lim Q(T) = J e teT et
T—0 0
exist,

b) they solve the two Lyapunov equations

AP + PAT = —BBT,
ATQ+QA=-CTC.
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c) If (A4, B) is controllable and (A, C) is observable, it moreover holds that
P=PT>0and Q = QT > 0. (Otherwise we just have P = PT > 0 and

Q=Q">0)

Proof. Exercise or lecture “Control Theory”. O

2.2 Laplace Transformation and Transfer Functions

In applications it is often useful to consider a dynamical system in the frequency
domain. When doing so, the system can be treated using tools from linear
algebra instead of from differential equations. A function f : [0,00) — R”
is called exponentially bounded, if there exist numbers M and « such that
If ()], < Me™ for all t > 0. The value « is called a bounding exponent.

Definition 2.7: Let f : [0,00) — R”™ be exponentially bounded with bounding
exponent a. Then

£{1} (s) == f F(r)eTdr

for Re (s) > « is called the Laplace transform of f. The process of forming the
Laplace transform is called Laplace transformation.

It can be shown that the integral converges uniformly in a domain of the form
Re(s) = Sforall g > a.

Moreover, the following two fundamental properties hold.

Theorem 2.8: Let f, g, h : [0,00) — R”™ be given. Then the following two
statements hold true:

a) The Laplace transformation is linear, i.e., if f and g are exponentially
bounded, then h := v f + dg is also exponentially bounded and

L{hy =7L{f}+0L{g}
holds for all v, § € C.

b) If f € PC*([0,0),R") and f is exponentially bounded, then f is exponen-
tially bounded and ‘
L{f}(s) = sL{f}(s) — f(0).




12 Chapter 2. Basics of Systems and Control Theory

Now we apply the Laplace transformation to the system [A, B, C, D] € ¥, 1, .
Assume that each of the Laplace transforms X (s) := L{x}(s), U(s) := L{u}(s),
and Y (s) := L{y}(s) exist. By using Theorem 2.8, we obtain the Laplace trans-
formed system

sX(s) —x(0) = AX(s) + BU(s),
Y (s) = CX(s) + DU(s).
Under the assumption that z(0) = 0, we obtain the relation
Y(s) = (C(sl, — A)"'B + D) U(s).
This leads to the following definition.
Definition 2.9: The function
G(s) := C(sl, — A)7'B + D e R(s)P*™

is called the transfer function of the system [A, B,C,D] € %, ,,,. Here,
R(s)P*™ denotes the set of all p x m matrices that have real-rational functions
as entries.

The following properties of rational functions will play an important role in the
characterization of transfer functions.

Definition 2.10 (Properness): Let G(s) € R(s)P*™ be given. We call G(s)
a) strictly proper, if lim, .« | G(iw)|, = 0;
b) proper, if lim,,_,« |G (iw)|, < o0;

c) improper, if lim,,_,« |G (iw)|, = o0.

Since lim,, o (iwl, — A)~! = 0, it easy to see that transfer function of systems
[A,B,C, D] € ¥, ,, are always proper, improper transfer functions can only
be realized by DAE systems. Furthermore, the transfer function of a system
[A,B,C, D] € ¥, is strictly proper if and only if D = 0. Now we define the
notions of poles and zeros of rational matrices. For this we need the following
terms.

Definition 2.11 (Unimodular matrix, monic/coprime polynomials): Let R[s] de-
note the set of polynomials with real coefficients.

a) A polynomial matrix U(s) € R[s]"*™ is called unimodular, if its determinant
is a nonzero constant in R.

b) A polynomial p(s) € R[s] is called monic, if its leading coefficient is one.
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c) Two polynomials p(s), ¢(s) € R[s] are called coprime, if their greatest com-
mon divisor is 1.

Matrices with rational entries can, via multiplication with suitable unimodular
matrices, be transformed to Smith-McMillan form, described in the next theo-
rem.

Theorem 2.12 (Smith-McMillan form): For G(s) € R(s)P*™ there exist unimod-
ular matrices U(s) € R[s]P*P and V (s) € R[s]™*™, such that

_ |G o] N (els) er(s)
U (s)G(s)V1(s) = [ 0 O] with  G(s) = diag (1/11(8)7'”71/%(5))
(2.2)
for some monic and coprime polynomials ¢;(s), 1;(s) € R[s] such that €;(s)

divides ¢;41(s) and ¢ 11 (s) divides ¢;(s) forj =1,...,7 — 1.

The Smith-McMillan form can now be utilized to define poles and zeros of ra-
tional matrices.

Definition 2.13 (Poles and zeros): Let G(s) € R(s)P*™ with Smith-McMillan
form (2.2) be given. Then A € C is called

a) a zero of G(s) if e,(\) = 0;
b) a pole of G(s) if 11 (\) = 0.

Roughly speaking, the poles of G(s) are the points A\g € C where we have
limy_,y, [G(A)| = oco. The zeros are the points Ao € C where a rank drop
occurs, i.e., those points where the rank of G()\) is strictly less than the rank
for all other matrices G(\), where ) is in some neighborhood of \y.

2.3 Realizations

It is also possible to assign a dynamical system [A, B,C,D| € %, t0 a
given proper transfer function G(s) € R(s)?*" which is, however, not unique.
This leads to the following definitions.

Definition 2.14: Assume that the system [A, B, C, D] € ¥,, ,,,, has the proper
transfer function G(s) € R(s)?*™. Thenwe say that [A, B, C, D] is a realization
of G(s). The smallest n» > 0 such that [A, B, C, D] € ¥, , , is a realization of
G(s) is called the McMillan degree of G(s). A realization [A, B,C, D] € ¥,, 1 p




14 Chapter 2. Basics of Systems and Control Theory

of G(s) is called minimal, if n is the McMillan degree of G(s).

Remark 2.15: a) Realizations are not unique. If [A,B,C,D] € %, ,, is a
realization of G(s), then for any nonsingular matrix 7" € R™*", the system

[T'AT,T7'B,CT, D] € Sy pnp

is also a realization of G(s). Transformations of the above kind are also
called state-space transformations.

b) A realization is minimal, if and only if it is both controllable and observable.

If a realization is not minimal, we can obtain a minimal realization by using
Kalman decompositions. There is a controllability Kalman decomposition, mean-
ing that for [A, B, C, D] € %, ., there exists an orthogonal matrix ) € R™*"
such that
A A B
T _ 11 12 Tp _ 1 _
Q AQ_|:0 A22:|’ Q B |:O:|7 CQ [Cl CQ]

where the system [A;;, By, C1, D] € %, ,,, is controllable. In the above de-
composition we have A(A) = A(A11) U A(A2). Here, the eigenvalues \ €
A(Ags) are called uncontrollable modes of the system [A, B, C, D] since BTv =

0 holds for all eigenvectors v € C™\{0} of AT associated with eigenvalues in
A(Ago).

On the other hand, there is the observability Kalman decomposition, i. e., there
exists an orthogonal matrix () € R™*™ such that

~

A 0 By

~

Q"B =
Ag1 Ag

; ; Céz[él 0];

374G - [

By

where the system [A;, By, Cy, D] € %5, is observable. Similarly as above,
eigenvalues \ € A(ﬁgg) are called unobservable modes, since it hoIdsNC’v =0
for all eigenvectors v € C™\{0} of A associated with eigenvalues in A(As2).

A minimal realization is then obtained by first computing a controllability Kalman
decomposition and applying an observability Kalman decomposition to the re-
sulting controllable subsystem.

2.4 Hardy Spaces

In this section we consider linear spaces of rational functions in R(s)P*™.
These spaces are normed spaces or even inner product spaces that allow for
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geometric concepts such as length of transfer functions or distances and angles
between them. Later this will be useful to measure the approximation quality of
reduced-order models in terms of distances between the transfer functions of
the original model and the reduced one.

2.4.1 The Hilbert Space H5*™
The space H5 ™™ is defined by
HE = {G :CT — CP*™ . Gis analyticin C* and
0
J |G (iw)|E dw < oo} .

—00

Since every G € HY*™ is analytic, there exists a unique continuation to the
imaginary axis. The space H5 ™ is a Hilbert space with the inner product

(F. Gy, = — JOO fr (F(iw)HG(iw)> dw.

2 J_ o

This inner product induces the Ho-norm

1/2 1 (* N 12
(G, = GO = (5 [ 1GGENRA)
—00

We are now interested in rational functions, i. e., in functions that are in RH, ™™ :=
HE™ A R(s)P*™. First we have the following.

Lemma 2.16: The following statements are equivalent:
a) The function G is an element of RHH™™.
b) The function G is strictly proper and all its poles are in C™.

c) The function G can be realized by a system [A, B, C, D] with A(A) < C~
and D = 0.

The Hs-norm of a transfer function can be utilized to bound the norm of the
output by the norm of the input as follows. For this we will make use of the
following result. It basically says that the £5-norm of a function on R is equal to
the Lo-norm of its Fourier transform on iR (scaled by a constant).

Theorem 2.17 (Plancherel’s Theorem): Let f € £1(R,R") n Lo(R,R™). Then
the Fourier transform of f, given by

F(iw) := F{f}(iw) := J_moo f(t)e wtdt
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exists, it satisfies F' € £5(iR, C™) and, moreover, it holds

I, = o [ " IFGw)2d
= — 1w w.
Lo 271_ w 2

When we consider functions f with f(¢) = 0 for all t < 0, then the Fourier trans-
form of f coincides with the Laplace transform of f restricted to the imaginary
axis.

In fact, it can even be shown that the Laplace transform of f € £4([0, ), C™)
will always give a result that is in H5. Conversely, applying the inverse Laplace
transform to F' € H4 will return a function in £2([0, c0), C™). Summarizing, we
can write

L{L5([0,0),C")} = H3.

Now we show that the Hy-norm bounds the L,,-norm of the output by the Lo-
norm of the input.

Theorem 2.18: Let [A, B,C, D] € ¥, ,,,, with a transfer function G € RH5 ™
be given. Then it holds

lyllc.,

u€ Lo ([0,00),RM) HU'H[:Q .
u#0

1Gll3, =

Proof. Since G € RH5™™, we have D = 0 and therefore, it holds
t
y(t) = f CeAt=) By(r)dr.
0

Set

u(t) :=

Cet'B, t>0,
g(t) =

u(t), t=0,
0, t<0.’

0, t <0.
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Taking norms, we obtain

2

O

< f_w lg(t = ) (7 dr

([ toe-par) ([ ezar)”
([ o) ([ menar) .

where the last inequality follows from the Cauchy-Schwarz inequality. It can be
shown that (exercise!)

Flg} (iw) = C(iwI, — A)~'B.
Using Plancherel’s Theorem we obtain
* 2 1 * . -1 2 2
» lg(t —7)|pdr = o = HC(lwfn —A) BHFdw = HGHH2 .

Therefore, we obtain [y(t)|, < ||Glly, |ul,- Since this inequality holds for
all t = 0, we can take the supremum on the left-hand side and obtain the
result. O

For SISO (single-input single-output) systems, it even holds

Iyl
IGlly, = sup =
u€Ly([0,00),RM) HUHEQ
u#0

i.e., the Ho-norm is the Lo—L-induced norm of the system. For general MIMO
(multi-input multi-output) systems, the interpretation of the Hs-norm is more in-
volved. The Hy-norm can be computed by using Plancherel’s Theorem noticing

that
1 0 ) 1/2
6, = (55 | 16015 00)

0 9 1/2

- ([ e sliar)
0
oY) 1/2

- ( J tr (Cet*BBTACT) dt>

0
—tr (CPCT) v

where P is the controllability Gramian of the system. A similar expression can
be obtained using the observability Gramian.
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2.4.2 The Banach Space H% ™"

The space H5% ™ is defined by
HE™ = {G’ :CH — CP*™ . Gis analyticin C* and sup |G(iw)|, < oo} .
weR

Again, since every G € HE™ is analytic, there exists a unique continuation
to the imaginary axis. The space H5™ is a Banach space equipped with the
Hoo-norm

|Gy, == sup |G(iw)], -
weR

Again, we focus on rational functions, i. e., in functions that are in RHL ™ :=
HE™ A R(s)P*™, First we have the following.

Lemma 2.19: The following statements are equivalent:
a) The function G is an element of RH5 ™.
b) The function G is proper and all its poles are in C.

c¢) The function G can be realized by a system [A, B, C, D] with A(A) c C~.
Now we show that the H,-norm bounds the £5-norm of the output by the Lo-
norm of the input..

Theorem 2.20: Let [A, B, C, D] € %, ., With a transfer function G € RHE™
be given. Then it holds

Iyl
IGly, > sup =,
we Lo ([0,00),RM) ||uH£2
u#0

Proof. It can be shown that an asymptotically stable system with an input u €
L2([0,00),R™) results in an output y € L2([0,0),RP). (This can be proven
using Young’s convolution inequality [ , Theorem 3.9.4].)

With U(s) := L{u}(s) and Y (s) := L{y}(s) and using Plancherel’s Theorem
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we obtain
2 1 @ 2
= | Ivaw)id
ik, = 5 | IVl de

1 0 9

-5 | 1GGUa B

< fo 1G(i)|2 |U ()2 d

x — 1w 1w w
o ) ., 2 2

. I .
<sup |Gl -5 [ 103w
weR T J—m

. 2 2
= sup |G(iw)|3 - [ulZ, -
weR

It can also be shown that

Iyl
IGlly,, = sup X
we Lo ([0,00),RM) HUHLQ
uF*

i. e., the bound is tight. The proof of this is more lengthy, and therefore, it is omit-
ted. There are also several algorithms for computing the #,,-norm. The most
established ones are based on an iteration on structured matrices or pencils.
They are too involved to be discussed at this point.
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CHAPTER 3

Eigenvalue-Based Approaches

Consider a linear system [A, B,C, D] € X, ,, with transfer function G(s) €
R(s)P*™. Assume that we have a partition of the system as

A A By
A= . B=|"Y, c=[a @,
[A21 A22] {32] [ &)

where A;; € R"*", B; € R™*™ and C; € RP*™ for 4, j = 1, 2. Then the
system [A11, B1,C1,D] € X, mp is called a truncation of the original sys-
tem [A, B,C, D] € ¥,,,,. Assume that it has the transfer function G (s) €
R(s)P*™. The goal is to find a good truncation in the following sense:

a) The state-space dimension n; is small compared to n.

b) The output y; of [A11, B1, C1, D] is similar to output y of [A, B, C, D] for the
same input u, i.e., |y — y1|| is small in some suitable norm. This norm can
be often estimated using the norm of G(s) — G1(s) such as the H2-norm or
Hoo-norm.

c) If the original model is asymptotically stable, then also the reduced one
should be asymptotically stable. In particular, both transfer functions should
be in RHE™.

It is important to note that without any further assumptions, nothing can be
said about asymptotic stability, controllability, or observability of the reduced-
order system, even if the original system is asymptotically stable, controllable,
or observable.

21
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Example: Consider the system [A, B, C, D] € 311 with

a1l 4 B=| c=[0 1], D=5
_% —9° 1|’ ) .

Then we have A(4) = {—1,—3}, i.e., the system is asymptotically stable.
Moreover, we have

5
rank [B AB] = rank [? _42] =2

C 0 1
rank [CA] = rank [_Z _2] =2

this means that the system is controllable and observable.

Taking the truncation for ny = 1, we obtain the reduced-order model
[1,0,0,5] € £;,1,1 which is unstable, uncontrollable, and unobservable.

Most often, good truncations are achieved by performing a state-space trans-
formation (Note that this does not change the transfer function!). Let T' =
[Ty T3] € R™" be an invertible matrix with 7; € R™*"* and T, € R"*"2
be given and define 7! := [W} WQ]T with W, € R™*™ and W, € R"*"2,
Then we consider the transformed system [T'AT, T-'B,CT, D] € £, m,
and obtain the truncation (keeping the first n; rows and columns) by setting
[A11, B1,C1, D] = [W{T ATy, W' B,CTy, D] € Sy, jmp-

Note that the above is “model reduction by projection”. We assume that the
state x(-) lives approximately in low-dimensional subspace im 7;. With z(t) ~
Tyz1(t) we obtain

Ty (t) ~ ATyx(t) + Bu(t),
y1(t) = CTix1(t) + Du(t).
Next we “make the state equation square” again by imposing a Petrov-Galerkin

condition
imW; L (Tli‘l(t) — (ATlfL‘l(t) + Bu(t))) .

This results in
W T iy (t) = W ATy (t) + W, Bu(t).

By choosing 77 and W3 bi-orthogonal, i.e., WlTTl = I,,, we obtain an ODE
as state equation. This bi-orthogonality is automatically fulfilled by the above
construction of the truncation. It remains to choose good projection matrices
Ty and W;. This principle can also be generalized to non-linear systems.
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3.1 Modal Truncation

In this chapter we discuss eigenvalue-based methods for model reduction. As-
sume that we have given a system [A, B,C, D] € %, ,,,. Assume that we
have given a state-space transformation 7' € R™*" such that

_ A 0 _ B C
TlATz[O11 AQJ, Tle[B;], C’Tz[cé]. (3.1)

Then for the transfer function we obtain

G(s) = C(sl, — A)'B+ D = (Cy(sI,, — A11) "By + D)
+ (CQ(SInQ — A22)_1B2) =: Gl(S) + GQ(S).

If we can determine the above decomposition such that n; « n and ||Gs|| is
small, we get
|G = G| = |G|

and therefore, [A11, B1,C1, D] € ¥, m p is @ good reduced-order model. This
process is called modal truncation (or modal approximation, modal reduction).
Here we discuss the computation of such reduced-order models.

Theorem 3.1: Assume that the system [A, B, C, D] € ¥, ,,, ,, is asymptotically
stable (controllable, stabilizable, observable, detectable). Then the reduced-
order model [A11, Bi,C1, D] € ¥, mp in (3.1) is asymptotically stable (con-
trollable, stabilizable, observable, detectable).

Proof. Exercise. ]

Theorem 3.2: Let the system [A, B,C, D] € %, ,,, be asymptotically stable
with transfer function G € RHE™ and assume that A is diagonalizable. As-
sume that there is an invertible matrix 1" € C**" such that

A1 by
T AT = , T7'B=|:|, CT=[a ... &
An BT

A bl
A= , B=|:|, C=[a ... &], D=p,
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and with the transfer function G € RHEX™. Then it holds

n

I8l - sl
G=c < .
H HH 7 Z1”;r1 |Re |

Proof. We have

and

Therefore, we have

n
|G =Gl = D 3 Cibs < ) |—= 3 b
j=r+1 J H j=r+1 J Hoo
Moreover, it holds
1 1 7
H'_)"Cjbj = sup iw—XCjbj
7 Heo weR ] 2
~ 1
= 'c\-bTH - sup |-
H 77 o MJRE iw— A

~ 1

&b —

5t il |t

where the latter equality follows from the fact that iw — A; is minimized for
w = Im(Aj). O

)

Remark 3.3: a) In classical modal truncation, the eigenvalues are ordered with
respect to distance to the imaginary axis, i.e.,

0> Re (A1) = Re(A2) = ... = Re(A\p).

There a good numerical algorithms for approximating eigenvalues closest to
the imaginary axis. However, the error bound suggests to order the eigen-
values such that

[l - [ouly Vel [y Vale - [Bl
|Re (A1) |Re (X2)] | Re (An))|

There are also algorithms that handle this sorting of the eigenvalues (see
Section 3.2).
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b) Modal truncation generates good local approximations of the transfer func-
tion. This means that the reduced-order model has a good approximation
quality near those values on the imaginary axis that are close to some
A € A(A11) and can have a worse approximation quality near an eigenvalue
A e A(A), if X is close to the imaginary axis, but A ¢ A(Aq7).

c) There are problems if A is non-diagonalizable or if 7" is ill-conditioned, i. e.,
the condition number «(T) := |T|, - ||, is large. Then |b;], and [&;],
can be large, even if B and C' are of moderate norm. In this case, the state-
space dimension of the reduced-order model often has to be increased to
achieve a good approximation error.

d) The transformation matrix 7" can be chosen to be real by treating complex
conjugate eigenvalues as pairs. This results in a real reduced-order model.

3.2 The Dominant Pole Algorithm

As mentioned above it is desirable to order the eigenvalues such that

iy [l Vol [l ol ol
‘Re ()\1)‘ ‘Re ()\2)‘ ’Re ()\n)’

The dominant pole algorithm that we will discuss now is doing exactly this. First
we show that the vectors b; and ¢; have a special structure.

Lemma 3.4: Let [A, B,C, D] € ¥, ,, , be an asymptotically stable system with
transfer function G € RH%, ™. Assume that A is diagonalizable. Then it holds

G(s) = J D
(8) Z S — /\j *

7j=1
with the residues R; = (Czj)(v}*B), where z;, v; € C" denote the right and
left eigenvectors of A associated with the eigenvalue A\; for j = 1, ..., n. More-
over, here we assume the normalization condition v;'xj =1forj=1,..., n.

Proof. Let T € C"*" be such that T~ AT = diag (A1, ..., \,). Then we have

that

H
Uy

T=[ac1 xn], T =

vn
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Using the notation of Theorem 3.2, we obtain

bl ’UIHB
=T'B=| : |, [& ... &]:=0T=[Cax1 ... Czy],
En v;'B
which gives the result. O
We now derive the dominant pole algorithm for SISO systems [ ]. The

case of MIMO systems is conceptually slightly different, see also Remark 3.5.
So, assume that we have given an asymptotically stable system [A, b, 0] €
¥,,1,1 with the transfer function G(s) € R(s). Here we set the feedthrough term

= 0 to simplify the presentation, but it is no problem to include it as well.
Then we have

G(s) = =cT(sI, — A)~'b,

GH(s) = == =b"(sI, — A) "¢,

where U(s) and Y (s) are the Laplace transforms of v and y, respectively. This

can be reformulated
et 0] vl
)
)

(
(

(sI,, — A)H V(is)] [ o
] - )
with auxiliary vectors X (s) and V (s) (where X (s) is the Laplace transform of
the state of [A4,b,c",0] € £,,1,1). If A € Cis apole of G(s), then lim,_, » |G(s)| =
oo and one can choose lim,_,) U(s) = 0, while Y(s) = 1. This yields that
lim, ., X(s) = x and lim,_,» V(s) = v are right and left eigenvectors of A

associated with the eigenvalue \ and the normalization conditions ¢"z = 1 and
by =1.

(3.2)

We want to determine the most dominant poles of G(s), i.e., those \; € A(A),
where |R;|/| Re ()\;)| is the largest. We do this iteratively in a search in possibly
growing subspaces. Assume that we have subspaces spanned by X e Cnxk
and V e C"** for some k « n. Then we can project the eigenvalue problem
for the matrix pencil sI,, — A € R[s]"*™ to a small eigenvalue problem for the
matrix pencil

sVHX — VHAX e C[s]F7".

Assume that this pencil has only semi-simple eigenvalues and that VHX is
invertible. Then one could alternatively consider the eigenvalue problem for the
projected matrix (VHX)"1VHAX e C***. For this matrix pencil, we can easily
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determine all eigenvalues Xj € C and the associated right and left eigenvectors
T; € C*and ¥ € C*for j = 1,..., k. Then we obtain the eigenvalue and
eigenvector approximations for the original problem as

Aj =X, z;=X2;, v;=Vv;, j=1,... k.

These approximations can now be sorted according to our dominance mea-
sure, i. e., we sort the eigenvalues such that

L B I G

[Re ()] ™ [Re ()] ~ 7 [Re ()]

So \; is our current approximation for the most dominant pole. If |AZ, —
Mz, < e (or [o1'A — Mat|, < e) for some small tolerance £ > 0, then

we assume that the eigenvalue A\, and the corresponding eigenvectors have
converged.

~

If this is not the case, we expand the matrices X and V in order to enrich
the spaces im X and im V' in which we search for the eigenvectors. This is
done by plugging in our current dominant pole approximation Xl into (3.2) and
compute Z := X (\;) and ¥ := V(Xl) (with Y (s) := 1). Then the expanded
projection matrices are [)A( ;%] and [17 6] For numerical stability, it advised
to orthogonalize their columns afterwards.

On the other hand, if 3\1 has converged to an eigenvalue \; with right and
left eigenvectors x1, v1 € C”, then we want to ensure that we do not not find
it again in the next iterations. So we want to deflate this eigenvalue and its
eigenvectors. This is done by projecting the system [A,b,cT,0], namely we
replace it by [A,b, 2", 0] with

H H

~ xr1v < Ir1v
b:= In—Tl b, ol =cT I, — Hl .

Ul.fcl lel

w1v?

First of all, note that the matrix I,, — =5+ is a projector. Projecting the sys-
vy T1

tem like this has the effect that the residue of the deflated eigenvalue is zero,
since ¢'z; = 0 and leE = 0 and the residues of the other eigenvalues remain
unchanged (exercise!). Therefore, the already converged eigenvalues are not
found again, since there dominance value is set to zero. To summarize this
section we formulate the above results as Algorithm 3.1.
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Algorithm 3.1 Dominant pole algorithm

Input: Asymptotically stable system [A,b,cT,0] € %, 11 with transfer function
G(s) € R(s); an initial pole estimate A\ € C, tolerance € > 0, number of
desired dominant poles k.

Output: k£ dominant poles A = {1, ..., A\x} < C of G(s) with the associated
right and left eigenvectors of A stored in R, L eAC”X"?. R

1: Initialize kfoung ;== 0, A={}, R=[],L=[], X =[],V =]
2: while k > k¢unqg do
3:  Solve the linear system

M, —-A =b||z| |0
e’ 0| lul |1
for z € C".

4:  Solve the linear system

=L
forv e C".

5.  Expand the search spaces: Set X = [)A( :?] and V := [f/ 17] and
orthogonalize.

6: Compute the eigenvalues and eigenvectors of the matrix pencil sVHX —
VHAX e C[s]*¢ and compute eigenvalue and eigenvector approxima-
tions, sort them according to the dominance measure and store them as

A= {3\1, ...,}g}, X = [%1 @], V= [ﬁl ﬁg].
: while [AZ; — \1Z1| < e do
8: Deflate the found eigenvalue: Set

kfound = kfound + 1a )\k‘found = /)\\17
Ai=AU{Na)s R:=[R @], L:=[L 1],

I1v I1v
b:= InfiAHA1 b, cli=c' I, — AHAl .
vy '

10:  end while R
11:  Set the new pole estimate A = A;.
12: end while
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Remark 3.5: a) The dominant pole algorithm presented here is a subspace ac-

celerated version of an algorithm that was originally designed as a Newton
method to find roots of G~1(s).

It is not guaranteed that the method finds the most dominant poles, but it of-
ten works well in practice (in particular, if there are only a few very dominant
poles). Convergence of poles can be enhanced by using a Newton scheme
or a Rayleigh quotient iteration to update the pole estimates.

The projections in (3.2) should not be constructed explicitly. It is rather ad-
vised to compute the action of the projection on a vector z € C" if needed.
This means that we we compute

I ot wHz
— = |z=z2——"z
" pHg vHz

using two inner products and one scaled vector addition.

The algorithm can be modified to deal with MIMO systems [ ]. The
most drastic changes are in lines 3 and 4 of Algorithm 3.1, where we replace
the linear systems by

(M, — A)Z = Bu, (A, — A% = Cw,
where u € C™ and w € CP are chosen to be the right and left singular
vectors of G(\) corresponding to its largest singular value.

The algorithm can also be modified to output real R and L in order to obtain
a real reduced-order model. For this, pairs of complex conjugate eigenval-
ues have to be deflated together.
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CHAPTER 4

Balancing-Based Approaches

In this chapter we discuss another kind of transformation that simultaneously
transforms the controllability and observability Gramians to diagonal form. Then
we can sort the transformed states according to their input or output energy and
truncate those which are hard to control or hard to observe.

4.1 Input and Output Energy

Consider a system [A,B,C, D] € %, ,,,. Here we consider the system for
t € R and assume that z(—w) = 0. Assume that we have an input u €
L2((—00,0],R™) steering the state to z(0) = xp € R™. Then

0 1/2
D T R M
—00

is called the input energy and if y € L2([0, ), RP), then

- ) 1/2
B, = (L y(7)|2d7> = 19lzago,00) )

is called the output energy. In many applications these can be interpreted as
actual physical energies of the system.

For the initial state x(0) = zp € R™ we define

Ey(xg) := inf Il 2y ((—oo,01,mm) 5 (4.1)

u€ Ly ((—00,0],R")
z(—00)=0, z(0)=xz0

31
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which is the minimal energy needed to steer the system from the state zero
state to the state z in an arbitrary time. If E,(xo) is small, then the state xg
is easy to reach, otherwise it is hard to reach. Note that £, (z9) = o is also
possible. Then the state z is unreachable and the system is uncontrollable.

Now assume that z(0) = o and that u|jp,) = 0. Then we have y(t) =
Cettz,. We define
A
Ey(@0) = 19 £a(10,0,20) = 1€ 0] £, 10.00) 20

which is the output energy gained from the state x. If E,(x0) is large, then zg
is easy to observe, otherwise it is hard to observe. If E,(zg) = 0, the the state
xo is unobservable, and therefore the system is unobservable.

The next theorem shows that the E,(x¢) and E,(zo) can be expressed by
the controllability and observability Gramians, respectively, which make them
feasible for numerical computations.

Theorem 4.1: Let [A, B,C, D] € %, ,,,, be asymptotically stable and control-
lable. Then the following two statements are satisfied:

a) It holds
Eu($0)2 = .%'E)I—P_l.%'o,

where P is the controllability Gramian of the system. Moreover, u.(t) :=
BTe=A"t P~y is a trajectory for which the infimum in (4.1) is attained.

b) It holds
Ey(m0)? = z§ Qo,

where @ is the observability Gramian of the system.

Proof. a) Let (z,u) be an arbitrary solution trajectory with z(—o0) = 0, 2(0) =
x9, and E,, < co. Then we have

0
z(0) = foo e A7 Bu(r)dr.

We show that £, > E,,, for the above defined u. Define v := u—u,. Then
we have

f_ooo uy (1) To(r)dr = 2l P71 < foo e~ A" Bu(r)dr

0
— f A" BBTe=A T dr P_lyc())
—0
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Hence we obtain

0
E? = LO u(r) Tu(r)dr

2
> E2.

Moreover, we have

0
E2 =al P! J e A" BBTe A drPay = 2 P71 PP g
-0
= zd P x.
b) We have
2 oo T T~ ATr ~T ~ AT T
Ey(x0)” = y(7) y(r)dr = = . e™ TC' Ce™drag = x5 Q0.
0

This completes the proof.

O

Now consider an eigendecomposition of P, i.e., P = UXUT with orthogonal
U = [ul un] and ¥ = diag(oy, ..., 0n), Where o1 = 09 = ... = o,.
Then the energy needed to reach the state xy = w; from z(—o0) = 0 is given
by E,(ui)? = u] P~'u; = 1/0;. Thus eigenvectors of P corresponding to
large eigenvalues are easy to reach and eigenvectors of P corresponding to
small eigenvalues are hard to reach. The eigenvectors corresponding to zero
eigenvalues are unreachable. Analogously, the eigenvectors corresponding to
large eigenvalues of ) are easy to observe, the ones corresponding to small
eigenvalues are hard to observe and those corresponding to zero eigenvalues
are unobservable.

4.2 Balancing Transformations and Balanced Trunca-
tion

We motivate the concept of balancing transformations by means of an example.
The application of theses transformations then leads to the method of balanced
truncation that was discussed first in [ ]
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Example: Consider the parameter-dependent system [A(«), B(«a), C(«), D] €
227171 with

A(a)—[;; :g] B(a)—[zla], Cla)=[-1 2], D=0

for a > 0. This system is asymptotically stable, controllable, and observable.
Thus the controllability and observability Gramians P(«) and Q(«) are sym-
metric positive definite, where

3 0 3 0
Pa- 2 5 ew-[z 9.
The eigenvectors of P and Q are e; = [}] and ez = [9].
Assume that the state function z(-) = [28] is expressed as a (time-
dependent) linear combination of the eigenvectors of P(«), in our case we

get
z(t) = Bi(o, t)er + oo, t)es.

Intuitively, if a state e; is hard to reach, then its coefficient 3; is negligible, so
truncating it should not change the system’s dynamics drastically. In our exam-
ple we have two cases:

a) a « 1: In this case, es is much harder to reach than e;. Thus we truncate
x and obtain the reduced-order model [—1,1, —1,0] € X7 1 1.

b) a » 1: In this case, e; is much harder to reach than es. Thus we truncate
1 and obtain the reduced-order model [ — 2,2a, 2,0] € £y 1 5.

s
Alternatively, we could express z(-) as a (time-dependent) linear combination
of the eigenvectors of Q(«), in our case we get

z(t) = 71(a, t)er + ya(e, t)ea.

Similarly as above, if a state e; is hard to observe, then its coefficient ; is
negligible, so truncating it should not change the system’s dynamics too much.
Again we have two cases in our example:

a) a « 1: In this case, e; is much harder to observe than e;. Thus we truncate
1 and obtain the reduced-order model [ — 2, 2a, %, 0] € 11,1

b) a » 1: In this case, es is much harder to observe than e;. Thus we truncate
x2 and obtain the reduced-order model [—1,1,—1,0] € £y 1 1.
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Remark 4.2: a) Both approaches lead to different reduced-order models. In
general, this would be OK, but in the above example this leads to contradic-
tory reduced-order models.

b) The behavior in the example can be explained as follows: If a « 1, then ey
is very hard to reach, but at the same time it is also very easy to observe
and thus has a considerable influence on the output function.

c) The transfer function of the system is G(s) = %, but the reduced-

order model depends on «, which should not be the case.

The solution of the above problems is to truncate states that are simultaneously
hard to reach and hard to oberserve. In general, finding these states is difficult,
butitis easy if P = Q.

Definition 4.3: An asymptotically stable system [A, B,C,D] € %, ,,, with
controllability Gramian P and observability Gramian @ is called balanced, if
P = Q = diag(o1, 02, ..., op).

If a system is not balanced, then we can find a state-space transformation that
balances the system. Before, we have to check how state-space transforma-
tions affect the Gramians.

Lemma 4.4: Let [A, B,C, D] € ¥, », be asymptotically stable. Let 7" € R"*"
be invertible and define [A4, B, C, D] := [T'AT,T~'B,CT, D]. Then

a) P isthe controllability Gramian of LA ,B,C, D], ifand only if P:=T7-1p7T
is the controllability Gramian of [A, B,C, D];

~

b) Q is the observability Gramian of [A, B, C, D], if and only if Q := TTQT is
the observability Gramian of [4, B, C, ]

Proof. Exercise. O

Now we show how to balance a system using so-called balancing transforma-
tions.

Theorem 4.5: Let [A, B,C, D] € ¥, , , be asymptotically stable, controllable,
and observable. Then there exists an invertible matrix 7' € R™*" such that
[T~YAT, T-'B,CT, D] is balanced.

Proof. By assumption, for the Gramians P and ) we have P > 0 and Q >
0. Thus, there exist Cholesky decompositions P = RR' and Q = LLT,
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where R and L are lower triangular and invertible. Now consider the singu-
lar value decomposition LTR = UXVT with orthogonal U, V' e R™*" and
Y = diag(o1, 02, ..., 0p), 01 = 02 = ... = o, = 0. Since L and R are
invertible, so is LT R and therefore, we have o,, > 0.

SetT := RVX" . Since I, = B :UTLTRVE 2 wefind 7! = £~ 2UTLT.
For the controllability Gramian P of the transformed system we have

P=T17'pT T
=S 2UTLTRRTLUY 2
=3 2UTUSVTVRUTUS 2 = X,
Analogously, for the transformed observability Gramian @ we obtain
Q=T"'QT
=2 2VTRTLLTRVY 2
=22 VTVSUTUSVTVE 2 =% = P

i. e., the transformed system is balanced. O

Example: We revisit the above example. We have

L 1

v R D bR
Moreover, it holds

19 [0 1][1 o]0 1
Tp _ |2 _
o [0 1] 10”0 ;Hlo‘

The balancing transformation is given by
offo 1][1 o] Jo 1
al 1l 0|0 v2| o 0]
Now the balanced system [ 4, B, C, 5] € Xy1.1 is given by

|

S ] | R A
I
2] 0

R =

T =RVY 7 =

=&k

17T17—

(6%

014

1

0 L1[1]_[2
0|2« 11’
1 2

22 o] -2 -,




4.3. Hankel Operator and Hankel Singular Values 37

The transformed system does not depend on «. The eigenvector e, of P= @
(e1 in the old coordinates) is harder to to reach and harder to observe than e;.

This leads to Algorithm 4.1 for model reduction that is called balanced trunca-
tion.

Algorithm 4.1 Balanced truncation (basic version)
Input: Asymptotically stable and minimal system [A, B,C, D] € %, ,,p, de-
sired reduced order r.
Output: Reduced-order model [A11, By, C1, D] € Epyp-
1: Solve the Lyapunov equations

AP+ PA"T = —-BBT, ATQ+QA=-C"C

for P> 0and @ > 0.

Compute Cholesky factorization P = RR" and Q = LL".
Compute the singular value decomposition LTR = UXV T,
SetT:= RVY =2 (and T~! = X~3UTLT).

Do the balancing transformation

—1 1 A1 A |B
|T~'AT, T B,CT,D]_HA21 AQJ’[Bz]’[Cl @],D]

and set the reduced-order model as [A11, B, C1, D] € Zy i p-

4.3 Hankel Operator and Hankel Singular Values

In this section we want to discuss the foundation for the analysis of the balanced
truncation algorithm introduced above. For this, we need the Hankel operator
and the Hankel singular values [ , Sec. 5.4]. Consider the state equation
z(t) = Az(t) + Bu(t) with z(—o0) = 0 and an input u € L5((—0, 0], R™) that
acts on the negative time-horizon leading to z(0) = x¢. By switching off the
input at ¢t = 0, the output equation y(t) = Cz(t) + Du(t) gives an output signal
y € L2([0,00),RP) on the positive time-horizon. This defines an operator

H : Lo((—00,0],R™) — Lo([0,0),RP), >y,

which is called the Hankel operator of the system [A, B,C, D] € ¥, ;,, ,. We
have

0
xy = J e A" Bu(r)dr, y(t) = Cetay,
—0o0
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and thus we obtain

0
(Hu)(t) = y(t) = f CeAt) Bu(r)dr.
—0
Lemma 4.6: If A is asymptotically stable, then # is a bounded linear operator.

Proof. Exercise. O

Definition 4.7: Let V, WV be two linear spaces with the inner products (-, -)y
and (-, )y, respectively. Furthermore, let £ : ¥V — W be a linear operator.
Then £* : W — V is called the adjoint of L, if

Lv,wiyy = (v, L )y, forallveV, we W.
For 1 as above and u € Lo((—00,0],R™), y € L2([0, o), RP) we obtain

0

Jw
0

Q0
= J U(T)TJ BTeAT(t_T)CTy(t)dth
—0 0

= (U, H*Y) £ ((— 00,01 Rm)

Hus o) = | " () () Ty (o)
0

f w(r)TBTeA =TTy () drdt

Therefore, we have

0
H* 2 Lo([0,00), RP) — Ly((—00,0],R™), y HL BTt 70Ty (1)t

Definition 4.8: Let V, WV be two linear spaces with the inner products (-, -)y
and (-, ), respectively. Let £ : V — W be a linear operator with adjoint
L*: W — V. Then o € R is called a singular value of L, if 72 is an eigenvalue
of L*L, i.e., there exists a v € V\{0} such that £L*Lv = o2v.

Note that, if L*Lv = A\v, then
Moll} = Mo, vy = (v, L*Loyy = (Lo, Loy = | L3y,

i.e., Ais real and nonnegative.
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Definition 4.9: Let [A, B, C, D] € ¥,, .., be asymptotically stable and let H be
its Hankel operator. Then the positive singular values of H are called Hankel
singular values.

We want to compute the Hankel singular values using the state-space matrices
A, B, C, D only. This will be the goal of the following considerations.

Theorem 4.10: Let [A, B,C, D] € ¥, ,, , be asymptotically stable. Let P and
@ its controllability and observability Gramians and # its Hankel operator. Then
the Hankel singular values are exactly the (positive) square-roots of the eigen-
values of PQ).

Proof. We have
0
y(t) = (Hu)(t) = f CeA=T) By(r)dr — et
—

for 0
z = f e~ A" Bu(r)dr. (4.2)
—00

Then we get

o0 o0
(H*y)(t) = J BTeAT(T_t)C’Ty(T)dT = BTe_ATtJ eATTC’Ty(T)dT.
0 0

This leads to

Q0
(H*Hu)(t) = (H*y)(t) = BTeATtJ AT CTCeA 2dr = BTe A7Qz.
0

Assume that ¢ > 0 is a singular value of . Then there exists an eigenfunction
u € La((—0,0],R™) of H*H corresponding to an eigenvalue o2 > 0, i.e.,

(H*Hu)(t) = BTe A1Qz = o2u(?).

This gives
1
u(t) = 5 BTe Q. (4.3)
g

With (4.2) we get
0 Arp L o1 AT 1
z = J e "B—B e " "Qzdr = 5 PQz,
. o o

i.e., 0% isan eigenvalue of PQ.




40 Chapter 4. Balancing-Based Approaches

Now assume that o2 is an eigenvalue of PQ with an eigenvector z € R™\{0}.
Define u € L2((—00,0],R™) as in (4.3). Then we have

0 0
(H*Hu)(t) = BTe_ATtJ A TCT f Ce 779 Bu(s)dsdr
—0

0

0 0
= BTe A f eATTCT J CeA(T_s)B%BTe_ATSdesdT
0 —o o

0 1 0
= BTeAth eATTCTCeATf e*ASBBTe*ATSdesdT
0 —o0

o2
— BTefATt f
0

o0
1
eATTCT AT —PQzdr
a

=z
= BTeAQz = o2u(t),

i.e., o is a singular value of H. O

Note that for a minimal system, there exist the Cholesky factorizations P =
RR" and Q = LLT. Thus, if o2 is an eigenvalue of PQ, then we have

PQz= (RR")(LL")z = 0%z
This is equivalent to
(LTR) (RTL) LTz = O'2LTZ,
which implies that o is a singular value of LT R. Therefore, we obtain the Hankel

singular values as a side product when computing the balancing transformation
in Algorithm 4.1.

4.4 Properties of Balanced Truncation

In this section we analyze properties of Algorithm 4.1, see also | , Sec.
7.2]. In particular, we will derive an error bound using the Hankel singular
values.

Theorem 4.11: Let [A, B,C, D] € %, ,,, be asymptotically stable and mini-
mal. Apply Algorithm 4.1 to obtain the reduced-order model [A411, B1,C1, D] €

Xrmp. Assume o, > o,y for the Hankel singular values o;, ¢ = 1, ..., n.
Then the reduced-order model [A;1, B1, C1, D] is asymptotically stable, mini-
mal, and balanced with the Gramians P; = Q1; = diag(oy, ..., 0,) =: X1.

Proof. Since the system [A, B, C, D] € ¥,, ,, , is minimal, the balancing trans-
formation with 7" leads to the transformed Gramians

P = Q = diag(oy, ..., 0,) =: diag(X1, %2) > 0.
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Then (in balanced coordinates), the Lyapunov equations

_AH A12_ _21 0_ _21 0_ AIl A—er_ _Bl] T T
4 = - BT B,
[ Ay As| |0 S| T |0 o |A4f, AL] | By B Bz
(4.4)
kAirl Ag_]_? 721 07 721 Oﬁ 7A11 A127 kCir:|
+ = - C, Cy| (4.5
AT, ALI[0 D2 "0 Zo| [An A Ccy (€1 @] (45)

are satisfied. If the reduced-order model is asymptotically stable, i.e., A(411) <
C—, then X1 > 0is the controllability and observability Gramian of the reduced-
order model, i. e., the reduced-order model is minimal and balanced. Now we
show that we indeed have A(A4;1) = C~. Let A € C be an eigenvalue of A];
with eigenvector v € C". Then we obtain

—| B[z = M A1 Si0 + o"Si Afjo = 2Re (A) oS50
—_—— ~——

<0 >0

This implies Re (A) < 0. It remains to show that A;; has no eigenvalues on the
imaginary axis. Therefore, assume that there exist imaginary eigenvalues. Let
iw € iR be an imaginary eigenvalue and {v1, ..., v4} < C" be an orthonormal
basis of ker(A;; — iwl,) and define V = [v; ... wv4]. Then we have

(A —iwL)V =0, VH(A], +iwl,) = 0.

Moreover, we have

(All - IWIT)El + 21 (A-lrl + IOJIr) = 7B1Bir, (46)
(Af} +iwl) 81 + 21 (A — iwl,) = —Cf Oy (4.7)

Multiplying (4.7) with V" from the left and with V from the right gives

VH(A] +iwl) 5V + VIS (A — wI)V = —VRCT v,

-0 -0

resulting in C1V = 0. Multiplying (4.7) with V' from the right yields

(AT, +iwl,) 1V + Si(An — iwl)V = —Cf GV,
~ R/O—’
=0 =

and thus (Af; + iwl,)X;V = 0. Now multiplying (4.6) with V1Y, from the left
and with X1V from the right results in

VA (A — )23V + VIS (AT +iwl )5V = VNS B BT SV,

>

Y g
=0 =0
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giving B 1V = 0. By multiplying (4.6) with 1V from the right, we obtain

(A1 — iwl) STV + 5 (Af; + 1wl )2,V = =By B{ £V,
——

=0 =0

so we have (A1 — iwI,,)E%V = 0. Since V spans ker(A;; — iwl,), we have
SV =VE forZe CT9with A(E) € A(ZY). (4.8)
Multiplying the (2,1) block of (4.4) by X1V from the right yields
AnX3V + ALV = —ByBI ¥V = 0.

On the other hand, multiplying the (2,1) block of (4.5) by V' from the right results
in
ALYV 4+ 5540V = —CIC1V = 0.

Using (4.8) and both of the last two equations we get
A VE = Ay X2V = —S ALYV = $2 45V,
hence
(A1 V)E — X2(As V) = 0.

This is a Sylvester matrix equation with the unknown A-;V. Since by (4.8),
A(Z) n A(X3) = &, it is uniquely solvable (see exercise!) and thus we have
A9V = 0. Now we have

g |4 . A11 A12 Vv i A11V —iw Vv
O_A21 A22 O_Aglv_ 01"
Thus, iw is an imaginary eigenvalue of A, contradicting its asymptotic stability.
O

In the next theorem we will move towards an error bound for balanced trunca-
tion.

Theorem 4.12: Let [A4, B, C, D] € %, ,,, with transfer function G € RHE ™
be asymptotically stable and balanced with the controllability and observability
Gramians P = @ = diag(o1, 02, ..., 0p). Let o, > 0441 = ... = 0,. Let
[A11, B1,C1, D] € X, be the reduced-order model of order r obtained by
Algorithm 4.1 with transfer function Ge RHE™. Then it holds that

“G — é“Hoo < 20'r+1

(independently of the multiplicity of o, 1).
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Proof. Define
¥ :=diag(oy, 02, ..., o), 3o :=diag(or+1, Or42, -+, On),
and the error transfer function

E(s) = G(s) — G(s) = C(sI, — A)"'B+ D — (Ci(sI, — A1) "'By + D),

and consider its realization A E @ f) € Yptrm,p With
R AH 0
A= 0 An A12 , :—01 C1 02] D=0
0 Ay Axp

Using the state-space transformation

I, I, 0 L 0
T:=|I, -1, 0 with T‘1=§ I, -1, 0 |,
0 0 I, 0 0 2,

we obtain the alternative realization

[A1,B1,C1, D] = [T7*AT, T7'B,CT, D] € Snsrmp

with
R An 0 5 A1 R By
A= 0 Ay —3An|, Bi=|0|,
A1 —Ax A By
Ci=[0 —201 ], Di=o.
Now define
R By 0
AO Z=A1, BO = [Bl BQ] = 0 ar+12flClT 5
Bs -]
o |G _ 0 —20, Oy
7G| | -20,BfEY 0 —BJ

L 0 20T+1Ip
DO T |:20—r+11m 0 '

Then the transfer function of [Ag, By, Co, Do € Erinm+p,m+p iS given by

E()(S) = CO(SIT+n —A )_130 + D(]

C, (Sfr+n - Al) C, (SITJrn - ;11) By + 20’r+1f
Cy ($Ipsn — Al) "By + 20r+1f 02(81r+n - Al)
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Since A and A;; are both asymptotically stable, then also the matrices /T, 21,
and A, are asymptotically stable by construction. Moreover, [Ay, By, Co, Dy]
has the controllability Gramian Py = diag (1, 02,57 ", 2%5), because

0 A123

A1
o2 AnSTt AR,

AgPy + RyAy + BoBy = | 0
A2121 —072,+1A212I1 2142222
+| 0 AL~ DAY
YAl YAl 255 A,
BB 0 B1BJ
+1 0 oZ ooyt -0 EteTCy | =0, (4.9)
BoB]  —0,.11CJC1E7Y BeBJ +C7 0y
where the latter equality follows from combining (4.4) and (4.5). Moreover, we
have
0 2001181
BoD{ = | 202,27 CT 0 = —PRCy. (4.10)
_20—7’-&-10; 2011182
We have
. . CHy ) 2
sup | ()], = s11p (A (B (1) Bo()")
we

1Ell,, = sup | E(iw)]y <

weR weR
Define the conjugated transfer function Ej (s) := Eo(—3)" which is realized by
[ — AL, CJ,—BJ,D{] € Srinmipm+p. Then a realization of Eo(s)Eg (s) is
given by [KU, By, Co, f)o] € o (rtn),m+pm+p (568 homework!) with

Co=[Co —DoBJ],

+  [A0 —ByB] ~  [BoyD{
e P e
Do = DyDJ.
Using the state-space transformation
~ 1 —F ~ I P
T:=|"" 0] with 77" := [ rin 20 ]
|: 0 Ir+n 0 Ir+n
we obtain an equivalent realization by [ﬁo, By, C, f)o] € Lo(rtn)m+pmtp
~ ~ 1~ ~ [Ay —AgPy— PyAl — BoBl| 49 [A 0
el _ | 4o 0bo — PoAy 0By | 4.9) [Ao
~ ~ i~ BoD! + PyCJ ] @100 [ O
_ -1 _ [BoDy + FoCq | (a1
AN e ]
~ ~ ~ 4.10
Co:= CoT = [Co —CoPy— DB Y27 [y 0],
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Finally we obtain

Ey(s)Eq (s) = CAYO (312(r+n) - ﬁ0)71@0 + 150

-1
sly4n — Ao 0 0 T
= DyD,
[Co 0]{ 0 sIT+n+A0T] [COT ] +Hol
_ 0 20r+11p ) 0 200411m — 402 T
20 111m 0 20,411 0 r+limtp:

This implies

1/2
1Bl,, < 51D (Amax(Eolisr) Bo(ico)"))
weR

— sup (Amax (Bo(iw) Eq (iw)))/? = y/402,, = 20,41.

weR

O
Now we can conclude an H, error bound for the general case.

Corollary 4.13: Let [A4, B,C, D] € %, m, with transfer function G € RHE™
be asymptotically stable and balanced with the controllability and observability
Gramians P = @ = diag(o11ls,, 021s,, ..., orls, ), where op > o9 > ... >
o = 0. Let [A11, B1,C4, D] € X, be the reduced-order model of order r
obtained by Algorithm 4.1 with » = s1 + s2 + ... + s, for some ¢ < k and with
transfer function G € RHE ™. Then it holds that

k
|G -G, < > 20,

j=t+1

Proof. Denote by G;(s) the transfer function of the reduced-order model ob-
tained by Algorithm 4.1 by truncating only the Hankel singular values 011, ..., 0.

So we have G(s) = G(s) and G(s) = Gy(s). Now it holds that
G(S) — Gg(s) = (Gk(s) — Gk_l(s)) —+ (Gk_l(s) — Gk_Q(S)) + ...
+ (Gey1(s) — Ge(s)),
which implies

k k
|1G=Gl,.. < > 1Gi—Gial,, <2 ), o5

j=l+1 j=t+1
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There are also other error bounds for balanced truncation. An a-posteriori error
bound is given as follows: Let [A, B, C, D] € ¥, ,,,, With transfer function G €
RHY™ be asymptotically stable and balanced. Let [A11, By, C1, D] € %y
be the reduced-order model of order r obtained by Algorithm 4.1 with transfer
function G € RHE™. Moreover, assume that Y; € R™" and Y, € R(n—)x7
solve the Sylvester equation

Al An ][] [ T
+ A =-C'C;.

[AL AL Y2 " [Y2] M '
Then we have

HG - éHiLz < tr ((BQB;— + 2Y2A12)22) .

4.5 Numerical Solution of Large-Scale Lyapunov Equa-
tions

In this section, we discuss the numerical solution of large-scale Lyapunov equa-
tions. Since a Lyapunov equation is a special Sylvester equation, the same
conditions for unique solvability apply. This means, that a Lyapunov equation

AX + XAT = -W

has a unique solution, if and only if A(4) n A(—A) = . Since for balanced
truncation, A is assumed to be asymptotically stable, this condition is fulfilled a-
priori. In the following we will the derive the alternating directions implicit (ADI)
iteration, that was introduced to solve partial differential equations in [ I
We will see soon that this method is also suitable for large-scale Lyapunov
equations that appear in model reduction. There are many other methods, in
particular Krylov subspace methods | ], that are often equally good. For
sake of brevity, we will not discuss these here in detalil.

4.5.1 Derivation of the ADI Iteration

Consider the discrete-time Lyapunov equation
X =AXAT+W, AeR™" W=WTeR"™". (4.11)

The existence of a unique solution is ensured if |A\| < 1 forall A € A(A) (see
exercise). This motivates the basic iteration

X, = AX, AT+ W, k=1, XgeR™" (4.12)
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Let A be diagonalizable, i.e., there exists a nonsingular matrix Ve C"*™ such
that A = VAV ™!, Let p(A) := maxyep(a) |A| denote the spectral radius of A.
Since

| Xk — X2 = |A(Xp—1 — X)AT|, = ... = [A¥(Xo — X)(AT)F|,
< [A*31X0 = X2 < [VI3IV T Ep(A)F | Xo — X2 (4.13)
this iteration converges because p(A) < 1 (fixed point argumentation).

Continuous-time Lyapunov equations can be treated similarly, however, we
must first transform the data as pointed out in the next lemma.

Lemma 4.14: The continuous-times Lyapunov equation
AX + XAT = W, A(A)cC
is equivalent to the discrete-time Lyapunov equation

X =C()XCp)" + W(p), C(p):=(A—BL)(A+pl,)",

N (4.14)
W (p) := — 2Re (p)(A + pI,) "W (A + pI,) !

forpe C.

Proof. Exercise. O

Moreover, p(C(p)) < 1 (see exercise). Applying (4.12) to (4.14) gives the Smith
iteration

Xp = CO)Xem CM +W(p), k=1, XoeR™" (4.15)
Similarly as in (4.13), we have
| Xk = X2 < [VI3IVB(C )1 X0 — X2

This means that we obtain fast convergence by choosing p such that p(C(p)) <
1 is as small as possible. We will discuss this later in more detail.

By varying the shifts p in (4.15) in every step, we obtain the ADI iteration for
Lyapunov equations

Xi =Co) X1 Clp)" + W(pr), k=1, XoeR™™, p,eC. (4.16)
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4.5.2 The ADI Shift Parameter Problem

One can show, similarly to (4.13), that

| Xk — X[ < V]3|V~ 1H2 (Myp)?| Xo — X2, My —HC pi), (4.17)
=1

where V is a transformation matrix diagonalizing A (assuming it is diagonaliz-
able). The eigenvalues of the product of the Cayley transformations M, are

A— pz
A(A) .
Good shifts p}, ..., pj should make p(M}) < 1 as small as possible. This
motivates the ADI shift parameter problem

A—Di
418

H A+ i ( )
In general, this is very hard to solve. For instance, in general, p(C(p)) is not

differentiable and the problem is very expensive, if A is a large matrix. However,
there are some procedures that work well in practice:

£ £ .
[t 1] = avgming, ey mase

* Wachspress shifts [ ]: Embed A(A) in an elliptic function region
that depends on the the parameters max e (4) Re (1), minyep 4y Re (A),

and arctan maxyep(a)

%‘ (or approximations thereof). Then, (4.18)
can be solved by employing elliptic integral.

* Heuristic Penzl shifts [ ]: If Alis a large and sparse matrix, A(A)
is replaced by a small number of approximate eigenvalues (e.g., Ritz val-
ues). Then (4.18) is solved heuristically.

+ Self-generating shifts [ 1: If A is large and sparse, these shifts
are based on projections of A with the data obtained by previous itera-
tions. These shifts also make use of the right-hand side .

4.5.3 The Low-Rank Phenomenon

Now we consider
AX + XA" = —-BBT, (4.19)

where A € R"*™ and n is ’large’, but A is sparse, i.e., only a few entries in A
are non-zero. Therefore, multiplication with A can be performed in O(n) rather
than O(n?) FLOPS. Also solves with A or A + pI can be performed efficiently.
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However, X € R™*" is usually dense and thus X cannot be stored for large
n since we would need O(n?) memory. Thus the question arises whether it
is possible to store the solution X more efficiently. In practice we often have
B e R™™ where m « n, i.e., the right-hand side BB has a low rank. Recall
that if (A, B) is controllable then X = X T > 0 and rank(X) = n.

It is a very common observation in practice that the eigenvalues of X solving
(4.19) decay very rapidly towards zero, and fall early below the machine preci-
sion. The following theorem explains this eigenvalue decay [ ].

Theorem 4.15: Let A be diagonalizable, i. e., there exists an invertible matrix
V e C™" such that A = VAV L. Then the eigenvalues of X solving (4.19)
satisfy

)‘km-i-l (X)

2 [y —12 2

for any choice of shift parameters p used to construct M;. (in particular, the
optimal ones).

Remark 4.16: « If the eigenvalues of A cluster in the complex plane, only a
few py. in the clusters suffice to get a small p(M},) and thus \;(X) decay
fast.

« If A'is normal, then | V]|, [V ~!|, = 1 and the bound gives a good expla-
nation for the decay. The nonnormal case is much harder to understand.

» This bound (and most others) does not precisely incorporate the eigen-
vectors of A as well as the precise influence of B.

Consequence: If there is a fast decay of \;(X), then X can be well approxi-
matedas X = X' ~ ZZ", where Z € C"*" with r « n is a low-rank solution
factor. Hence, only nr memory is required. Thus, in the next subsection we
consider algorithms for computing the factor Z without explicitly forming X.

4.5.4 The Low-Rank Cholesky Factor ADI Iteration

The idea [ ] consists of considering one step of the dense ADI iteration
(4.16) and inserting X; = Z; Z}'. This leads to

Xj = C(p)X;—1C(p)" + W (p))
— (A=, L) (A + p; L) " Z; 1 Z% (A + p; L) (A = p; L)Y
— 2Re (p;)(A + p;I,) "BBT(A + p;I,) .
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Note that if p; € R_, then X; € R"*". Furthermore, if p; € C~ and p;4+1 = D,
then X1 € R"*". Obviously, we have X; = ZjZJH with

Zj = [+/—2Re(pj)(A+p;I,)'B (A— piIn)(A+ piln) ' Z;4].

With Zy = 0 we find a low rank variant the ADI iteration (4.16) forming Z;
successively (grows by m columns in each step).

The drawback is that all columns are processed in every step which leads to
quickly growing costs (in total jm linear systems have to be solved to get Z;).

However, there is a remedy to this problem. We have observed that
Si=(A+pil,) " and T; = (A —p;1y)
commute for all ¢, 5 with each other and themselves.
Now consider Z; being the iterate after iteration step j
Zj = |a;S;B (T;5;)aj—18;-1B ... (T;5;)---(T252)a151B]

with a; = 4/—2 Re (p;). Due to the commutativity, the order of application of the
shifts is not important, and we reverse their application to obtain the following
alternative iterate

2]' = [alSlB OéQ(T]_Sl)SQB aj(Tlsl)'-‘(Tj_lsj_l)SjB]
= [alSlB ()éQ(TlsQ)SlB e Otj (Tyjflsj)(j—‘jf2sjfl) cee (Tng)SlB]
= [Oqu OéQVQ e aj‘/}'] y

Vi=51B, Vi=T;15Vi1, i=1,...,].

We have X; = ZJZJH but in this formulation only the new columns are pro-
cessed. Even more structure is revealed by the Lyapunov residual.

Theorem 4.17: The residual at step j of (4.16), started with Xy = 0, is of rank
at most m and given by

R;:=AZ;Z8 + Z;Z8 AT + BBT = w;w},

Wj ZM]’B = C(pj)Wj_1 = Wj_l — 2Re (pj)vj7 Wy := B,

where M := H{:I C(p;). Moreover, it holds V; = (A + p;I,) ' W;_.

Proof. We have
R; = AX; + X;AT + BB = A(X; — X) + (X; — X)A"T (by (4.19))
= AM;(Xo — X)M! + M;(Xo — X)MAT
= —M;AXM! — M; X ATM!
= —M;(AX + XA")M}' = M;BBT M.
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Algorithm 4.2 Low-rank ADI (LRCF-ADI) iteration for Lyapunov equations

Input: A, B from (4.19), shifts P = {p1,..., Pmaxiter} < C~, residual toler-
ance tol.
Output: Zj such that X = Z,Z}! (approx.) solves (4.19).
1: Initialize j = 1, Wy := B, Zy := [ ].
2: while HWj_lHQ > tol do
Set V} = (A + pjfn)_le',l.
Set Wj = Wj_l —2Re (pjﬁ/}

3
4.
5:  SetZ;:=[Zj_-1 +/—Re(p;)Vj].
6:
7:

Setj:=j+1.
end while

Moreover, it holds
Vi=Tj-15;Vi1 = Tj-15iTj-25;-1Vi2 = ... =

j—1
=5; (H Tksk> B =8iMj 1B =(A+pl)" ' Wj1,  (420)
k=1

and

Wj = M;B = S;T;W; 1 = Wj_1 = 2Re (p;)SjWj—1 = Wj—1 — 2Re (pj) V.
O

Thanks to the above theorem, the norm of the Lyapunov residual can be cheaply

computed via ||R;[2 = HW]-WJH la = |W;|3. All this leads to Algorithm 4.2

which is also often referred to as low-rank Cholesky-factor ADI (LRCF-ADI) it-

eration. Algorithm 4.2 produces complex low-rank factors, if some of the shifts
are complex, which might be required for problems with nonsymmetric A.

However, it is still possible to ensure that Z; € R™"*"J, see [ 1
Definition 4.18: A set of shift parameters P is called proper if for all p € P, also

pe P.

Theorem 4.19: Assume P = {pi, ..., pi} to be a set of proper shifts and
assume w.l.o.g. that p; 11 = p; ¢ R. Then for V;, V;, it holds

Vit =Vj +28; Im (V)

Wit = Wj1 — 4Re (p;) (Re (V) + B Im (V) ,

with 8 = fe).
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Question: Why does that help? V;, V;,1 are still complex. Consider
Zin =[Zj oV Vil

This gives A
Xjy1 = ZinZy\ = Z; 128 | + a5 227,
with
Z=[V; Vin]=[Re(V;)+ilm(V;) Re(V;)+28;Tm(V;) —ilm (V})]

_ [Re (V;) Im (Vg)] [IIIZ (Qﬁjlini)fm} .

=N

This yields

22" = [Re(V;) Tm (V;)] NN" [Re(V;) Im(V;)]"

and

0< NNH = [ 2lm 26;Im ]

28ilm (467 + 1)1

| Lm0 ][2In 0 I BjIm
1 Bidm In] | 0 283+ D)In| |0 ILn |

" AN

~—

=:L =I>0

Therefore, we can alternatively choose the following Z instead of Z to obtain
the same Z; 1, namely

7 :=[Re(V;) Im(V;)] LT
V2 [Re (Vj) + B;Im (V;) /(82 + 1)Im (Vj)] e RMX2m

in other words, Z; 1 is constructed to be real. This leads to the real version of
the LRCF-ADI iteration.

4.5.5 Balanced Truncation Using the LRCF-ADI Method

Algorithm 4.1 can now be modified by including low-rank methods for solving
the Lyapunov equations. The result is Algorithm 4.3.

Remark 4.20: The H, error bound for balanced truncation does not necessar-
ily hold anymore. First of all, we do not compute all Hankel singular values.
Hence, the ones which have not been computed, can only be estimated using
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Algorithm 4.3 Balanced truncation (pro version)
Input: Asymptotically stable system [A, B, C, D] € %, p, desired maximum
reduced order r,.x, ADI residual tolerance tol.
Output: Reduced-order model [/Nl, é, 5’, 15] € Xrmp With 7 < rjax.
1: Solve the Lyapunov equations

AP+ PAT = -BBT, ATQ+QA=-C"C

using (the real version of) Algorithm 4.2 to determine two low-rank factors
R e R™"P and L € R"*"@ such that P ~ RR" and Q ~ LLT and with
residuals less than tol.

Set r := min{rmax, rp, rQ}-

Compute the SVD of L(:,1:7)TR(:,1:7) = USV .

SetT := RVS 2 and W := LUS 2.

Balance and truncate to obtain the reduced-order model

[A,B,C,D] := [WTAT,W'B,CT, D].

the smallest singular value of X in Step 3 of Algorithm 4.3. Moreover, the sin-
gular values contained in > may be corrupted by the approximation errors done
when computing R and L. Therefore, the reduction error can only be estimated
in practice.
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CHAPTER D

Passivity-Preserving Balancing-Based Model Reduction

In this chapter we will focus on some aspects of structure-preservation. In this
chapter we consider passive systems which often appear in the modeling of
electrical circuits, power network, mechanical systems, and many more. See
Chapter 1 for some examples. Thus, when doing model reduction, one would
like to obtain a passive reduced-order model in order to preserve the physical
properties in the model. In this chapter, we will first define passivity and show
that each passive system admits a positive real transfer function. Thereafter
we will discuss a passivity-preserving model reduction scheme using alterna-
tive energy functionals. This will lead to the method of positive real balanced
truncation which we will analyze afterwards. Since positive real balanced trun-
cation relies on algebraic Riccati equations rather than Lyapunov equations,
we will also treat the numerical solution of large-scale algebraic Riccati equa-
tions. Many of the results presented here can be found in the famous works by
Jan C. Willems [ , , 1.

5.1 Passivity and Positive Real Transfer Functions

First we define passivity for a LTI systems.

Definition 5.1: Let [A, B, C, D] € ¥, ,, » be given. Then the system is called

55
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passive, if

T
f y(r)Tu(r)dr =0 (5.1)
0

holds for all T > 0 and all solution trajectories (x, u,y) € Lo([0,T], R"*2™) of
the system with z(0) = 0.

The expression on the left-hand side of (5.1) can be understood as the energy
that is supplied to the system in the time interval [0, T]. Therefore, passivity
of a dynamical system is the property that for each solution, more energy has
to be supplied than energy that can be extracted from the system. So the
system cannot internally produce energy. Passivity is connected to two energy
functionals:

a) the (virtual) available storage V'~ : R™ — R with

(z,u,y) € Lo([0,00), RVT2m)

V™ (x0) := sup {— LOO 2y(7) Tu(r)dr

is a solution of [A, B, C, D] with z(0) = :):0} :

b) the required supply V* : R™ — R with

(z,u,y) € Lao((—00, 0],R"+2m)

V¥ (xg) := inf {JOOO 2y(7) Tu(r)dr

is a solution of [A, B, C, D] with z(0) = xo} .

The value of V*(x) is the least amount of energy that has to be supplied
to the system to reach the state zp. On the other hand, the value of V'~ (xg)
is the maximum amount of energy that can be extracted from the system by
stabilizing solution trajectories.

We will later see that under some conditions, the functionals V*, V'~ are so-
called storage functions. A storage function is a function V' : R” — R™ with
V(0) = 0 that fulfills the dissipation inequality

t1
V(z1) — V(zg) < f 2y(7) Tu(r)dr, (5.2)
to
where (z,u,y) € La([to, t1], R"*?™) is a solution trajectory of the system with
x(tp) = xo and z(t1) = x1. If V is differentiable, then the dissipation inequality
can be formulated in its differential form

V' (z(t)) - (1) < 2y(t) Tult), (5.3)
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where V' : R® — R1*" is the Jacobian of V.

Now we consider the special case of quadratic storage functions, i.e., V(z) =
x" Px for some symmetric positive semi-definite matrix P € R™*™. For such,
V'(z) = 22T P and (5.3) gives
V'(z(t)) - (t) = 2z(t) T Pi(t)
= z(t)"P(Ax(t) + Bu(t)) + (Az(t)

5 )

Bu(t)) T Pz(t)

< 2y(t)"u(t)
=(C x@)+1n4))u@)+u@ﬂkcx@y+pu@»

z(t)]' ct 1=
u(t) C D+ DT||u()|"
Therefore, each quadratic storage function can be expressed by a solution P >

0 of the linear matrix inequality (LMI)

[ATP +PA PB-CT

BTP_C —D—DT}“)’ pP="rT (5.4)

It can be shown that that if the system is controllable, then the LMI (5.4) has
two extremal solutions P* € R"*"™ and P~ € R"*" such that P~ < P < P*
for each solution P € R™*" of the LMI and with the properties

V7 (x0) = xOTPfxO, VH(zo) = a:OTP+x0.
We have the following theorem connecting all these concepts.

Theorem 5.2: Let [A, B,C, D] € X, ,,» be controllable. Then the following
statements are equivalent:

a) The system [A, B, C, D] is passive.
b) It holds that V* () = 0 for all zp € R™.

c) There exists a function V' : R® — R that satisfies the dissipation inequality
(5.2).

Moreover, whenever one of the above conditions is fulfilled, then we have

—0 < V7 (x0) < V*(x0) < 0.

Proof. We show “a) = b)”: Assume that b) is not satisfied, i. e., there exist an
¢ > 0 and a solution trajectory (z,u,y) € L2((—o0, 0], R**2™) with (0) = ¢
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(and lim;—,_ o, x(t) = 0) such that

0
J_ 2y(7) Tu(r)dr < —e.

It can be shown that for each ¢ > 0 there exist a’T" > 0 and a solution trajectory
(%,0,7) € Lo(—00,0],R*T2m) with compact support in the interval [T, 0]
and with Z(0) = x such that

UOOO 2(7)Tu(r)dr — JOOO 25 (r)Tai(r)dr| < g

This gives

0

J_OOO 25 Tai(r)dr — J 25(r) Tai(r)dr

=T

T £
= J 20(r — T)Vai(r — T)dr < —3
0

Therefore, condition a) is violated for the solution trajectory (z(- — T'), a(- —
T),5(- = T)) € L2([0,T], R"+2™).

The statement “b) = c)” follows from the fact that V' * is a storage function.

Now we show “c) = a)”: From the dissipation inequality with ¢y = 0, z(to) = 0,
t; = T, and the condition V(0) = 0 we obtain

T

0<V(xy) < L 2y(7’)Tu(7’)d7‘,

which gives the result.

The last inequality follows from b) since for all 7" > 0 and all solution trajectories
(w,u,y) € Lo((—00, T], R*2™) with z(0) = 2o we obtain

T 0
—J 2y(7')Tu(7')dT < f 2y(T)Tu(T)dT.
0 —0

With T' — oo, taking the supremum on the left-hand side 9+ and the infimum
on the right-hand side gives V ~(zg) < V*(z0) for all zp € R™. The finiteness
of both functionals then follows from controllability, since every point xy can be
reached by a solution trajectory. O

The passivity property is equivalent to a structural property of its transfer func-
tion, namely, they are positive real.
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Definition 5.3: Let [A, B,C, D] € %, ,»,.m be given with the transfer function
G(s) € R(s)™*™. Then G(s) is called positive real, if G(s) has no poles in C*
and

TN =GN +GM)P >0 viaeC. (5.5)

The following famous theorem (called the positive real lemma, sometimes also
the Kalman-Yakubovich-Popov(-Anderson) lemma) makes a connection between
solvability of the LMI (5.4) and positive realness.

Theorem 5.4: Let [A, B,C, D] € %, ,,m be given with the transfer function
G(s) € R(s)™*™ and let ¥ be as in (5.5). Then the following statements are
satisfied:

a) If the LMI (5.4) has a solution P > 0, then G(s) is positive real.

b) If the system [A, B, C, D] is minimal and G(s) is positive real, then there
exists a solution P > 0 of the LMI (5.4).

Proof. We prove statement a): Let P > 0 be a solution of the LMI (5.4). Let
v € C" be an eigenvector corresponding to an eigenvalue A € C of A. Then we
have

WHAT Py + 0" PAv = XM Po + 2Py = 2Re (V) M Py < 0.
——

>0

Therefore, we have Re (\) < 0 and thus, G(s) has no poles in C™.

Moreover, we have that

(A B {W" }:)_13] — A\, — A)'B+ B

= (A+ M, — A\, —A)~'B
= A\, — A)7'B.

With A € C* and using the above identity we obtain

{()\In - A)—lB] H [ATP +PA PB} [()\In - A)_lB}

I, BTP 0 I,
_ [(/\In _LnA)lBr ([POA POB} [211; SD [(/\In —17;4)13}

—A+NBT(\L, — A HPOr, — A B >o.
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Now we get
w(n = [ - ABI" o T [0\, —A)'B
- I, C D+DT I
_ [ = AT B] [-ATP— PA —PB+CT|[(\,— A)'B
- I, -B"P+C D+DT I

>0,

where the latter inequality follows from the fact, that P solves (5.4).

The proof of statement b) is quite complicated and technical and therefore, we
omit it here. The proof can be found in [ ]- O

Remark 5.5: There are many relaxations of the assumptions of the positive real
lemma. For instance, it can be shown that G(s) is already positive real, if there
exists a solution P > 0 of the LMI (5.4). However, the techniques for the proof
get more involved, see, e.g., [ ]

From the above theorem, the following corollary is immediate.

Corollary 5.6: The system [A, B,C, D] € %, is passive if and only if its
transfer function G(s) is positive real.

Proof. Let [A, B,C,D] € ,,, be a minimal realization of G(s). Then,
[A, B,C, D] is passive if and only if [ﬁjé,(j, 5] is passive, since both gen-
erate the same input/output pairs. From Theorem 5.2 and controllability, this is
equivalent to the existence of a matrix P > 0 such that the LMI

ATD L PA PR_AT

ANTP~+P:4 Plj’—(ZT <0, P=pT

B'P-C —-D-D

is satisfied. From Theorem 5.4 and Remark 5.5, this is equivalent to positive
realness of G(s). O

5.2 Positive Real Balanced Truncation

Now we want to derive a balancing-type algorithm for passivity-preserving model
reduction. Assume that P > 0 is a solution of the LMI (5.4). Then there exist
matrices K € R?*™ and L € R?*™ such that

ATP+PA PB-CT KT
{BTP—C —D—DT}:_[LT}[K L].
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Under the assumption that D + DT is invertible (then ¢ > m), we can apply the
Schur complement on both sides and obtain

ATP+PA+ (PB-CT)(D+DT) " (BTP-C)
- K'K+K'L(LTL)'L"K.
Let L = U[§] VT with orthogonal matrices U € R?*4, V € R™*™ and an

invertible diagonal matrix ¥ = diag(oy, ..., o) With oy > ... > 0, > 0 be
given. Then we have

- K'K+K'L(LTL)'LTK

=-K'K+K'U [a VT (V [z o]uTU [g] VT> B VIS 0JUTK

Iy O

T T
KK+KU[O 0

] UTK <0.
Therefore, each solution P of the LMI (5.4) satisfies the algebraic Riccati in-
equality

ATP+PA+ (PB-CT)(D+D") ' (BTP-C) <0, P=P".

It can be seen that the extremal elements of its solution set, P™ and P~, even
satisfy the algebraic Riccati equation (ARE)

ATP+ PA+ (PB-CT)(D+D") ' (BTP-C) =0, P=P". (56)

Recall that if the system [A, B, C, D] is controllable and passive, then the ex-
tremal solutions P* and P~ exist and Pt > 0. It can be shown (see | ,
Sect. 6]) that if the system is also observable, then we even have

0< P <P". (5.7)

Furthermore, it can be shown (exercise!) that if P > 0 is a solution of the ARE,
then Q@ = P~ ! is a solution of the dual ARE

AQ+ QAT+ (QCT - B)(D+ D) (cQ-BT) =0, Q=Q". (58

Therefore, if we have (5.7), then there exist a minimal solution @~ € R™*" and
a maximal solution Q* € R™*" with

0<Q <Q<Qt forall solutions Q of (5.8),

and with @~ = (P*)"tand Q™ = (P~)~!. The minimal solutions P~ and Q~
are called the positive real (observability and controllability) Gramians and they
are now subject to our balancing procedure. These will attain the role of the
controllability and observability Gramian from the previous chapter.
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Definition 5.7: Let [A, B, C, D] € ¥,, 1,.,» be minimal and passive with positive
real Gramians P~ > 0 and @~ > 0. Then the system is called positive real
balanced, if P~ = @~ = X. In this case, the eigenvalues of the matrix X are
called the positive real characteristic values.

Now we discuss the associated balancing transformations.

Theorem 5.8: Let [A, B, C, D] € ¥, , » be minimal and passive with positive
real Gramians P~ > 0 and Q— > 0. Then there exists an invertible matrix
T e R**" such that [4, B, C, D] := [T~'AT, T~ B, CT, D] with the positive
real Gramians P~ > 0 and @* > ( is positive real balanced.

Proof. Since P~ > 0 and @~ > 0, there exist Cholesky decompositions
P~ =RR"and Q™ = LLT, where R and L are lower triangular and invertible.
Now consider the singular value decomposition LT R = USV T with orthogonal
U,V e R"™ and ¥ = diag(o1, 02, ..., 0p), 01 = 02 = ... = 0, = 0. Since
L and R are invertible, so is LT R and therefore, we have o, > 0.

It is easy to check that as for the case of standard balancing, we have that
P~=T7"P T, Q =T'QT".

Now the rest of the proof is similar to the proof of Theorem 4.5. With T" :=
LUY "3 we find T~! = £~3VTRT which make the system positive real bal-
anced (exercise!). O

This leads to Algorithm 5.1 for model reduction that is called positive real bal-
anced truncation and which has first been considered in [ , Sect. 6].

Remark 5.9: a) If the passive system [A, B,C, D] € %, , » is not minimal,
then the algebraic Riccati equations (5.6) and (5.8) may not have (minimal)
solutions. However, for many problems the existence of minimal solutions
can be derived from the structure of the models, such as for electrical circuit
models.

b) If the matrix D + DT is not invertible, then the algebraic Riccati equations
cannot be formed. In this case, one has to resort to Lur’e equations such as
ATP+PA=—-K'K, P=PT,
PB—CT = —-KTL, (5.9)
D+DT=L"L,
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Algorithm 5.1 Positive real balanced truncation (basic version)

Input: Minimal and passive system [A, B, C, D] € ¥, ,, »», With invertible D +

DT, desired reduced order r.

Output: Passive reduced-order model [A11, By, C1, D] € Xy -

1:

Compute the minimal (and positive definite) solutions P~ and @~ of the
algebraic Riccati equations

ATP+PA+ (PB-CT)(D+D") (BTP-0) =
AQ+ QAT +(QCT - B)(D+ D) (cQ - B)

pP=PT,
Q=Q".

0,
0,

Compute Cholesky factorization P~ = RR" and Q— = LLT.
Compute the singular value decomposition LTR = UXV T,
SetT := LUY 2 (and T~! = X2 VTRT).

Do the balancing transformation

—1 1 A1 A B
|T~'AT, T B,CT,D]_HA21 AQJ’[Bz]’[Cl @],D]

and set the reduced-order model as [A11, B, C1, D] € Zy 1y m.-

which has to be solved for the triple (P, K, L) € R™*" x R?*" x R7*" where
q is as small as possible among all such triples solving (5.9). This minimal
rank property is motivated by the fact, that the algebraic Riccati inequality
turns to an equation, if and only if L € R2*"™ is invertible, i.e., ¢ = m. This
is the smallest possible rank, since D + DT was assumed to be invertible
in this case. In the general case, the solutions of the LMI which have this
minimal rank property are called rank-minimizing solutions. 1t can be shown
that this minimal rank is

q = rankg(5)(G(s) + G~ (s)).

Extremal solutions of (5.9) are always rank-minimizing.

5.3 Analysis of the Method

In this section, we give a brief analysis of the properties of positive real bal-
anced truncation (mainly without the proofs). First of all, we see that the
reduced-order model is again passive.
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Theorem 5.10: Let [4, B, C, D] € 3, 1. With invertible D + DT be asymptot-
ically stable, minimal, and passive. Apply Algorithm 5.1 to obtain the reduced-
order model [Ai1,B1,C1,D] € ¥, ,m. Assume further, that for the posi-
tive real characteristic values o1, o9,..., 0, > 0 sorted in decreasing order,
it holds that o, > o,41. Then the reduced-order model [A11, B1,C4, D] is
asymptotically stable, minimal, passive, and positive real balanced with the
positive real Gramians P11 = Q11 = X1 := diag(oq, ..., 0,).

Proof. The preservation of passivity is easy to see, since it holds that ¥; > 0
solves the reduced ARE

AP+ PAy + (PB - CT)(D+ DY) (B[P~ Cy) =0, P=P".

Therefore, the corresponding LMI (5.4) has a positive definite solution and thus
by Theorem 5.4, the reduced transfer function G(s) = Cy(sI, — A1) By + D
is positive real. By Corollary 5.6, the reduced-order model is passive. The
proof of asymptotic stability and minimality is quite involved and therefore, it is
omitted here. ]

Next we want to address error bounds. In contrast to standard balancing,
there are no a priori error bounds in the H-norm, even if the original and
the reduced-order model both have transfer functions in RH:*™. Instead, one
has to resort to the so-called gap metric. The following has been taken from

[ 1

Definition 5.11: Let V; and V, be two closed subspaces (“closed” means that
any sequence of elements of the subspace has its limit in this subspace) of a
Hilbert space H with induced norm ||-|,,. Then the gap between V; and V; is
defined by

g(V1,V2) i= [Ty, — Ty | g 30 5

where II,, , 11, : H — H denote the orthogonal projections onto the spaces
V1, Vs (which exist by the closedness assumption).

It can be shown that ¢ makes the set of all closed subspaces of #H to a (com-
plete) metric space. Moreover, it can be shown that

g(V1, Vo) = max {g(V1,V2), d(V2, V1)},
where

g(Vl, V2) = H(I - HVQ)HVI H[,(H,H) = sup diSt(U, VQ)

veVr, v]y =1

is the directed gap. Now we apply these concepts to spaces related to linear
systems.
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Definition 5.12: Let ¥ := [A,B,C, D] € %, ,,, be a given asymptotically
stable system with transfer function G € RHY ™. Let u € L3([0,0),R™)
be given and define U € HY' by U(s) := L{u}(s). Furthermore, define the
multiplication operator

Mg : HY — HE, (MgU)(s) = G(s)U(s) VseC*.

The graph of the dynamical system X is then defined by

s [ oo vese) -]

which is a closed subspace of the Hilbert space ’HZQ’“”.

The gap metric between two asymptotically stable systems X1, 35 is defined
by
6(%1,22) == g(G(%1),G(22)).

The gap metric can be interpreted as the distance of the subspaces of in-
put/output trajectories generated by two dynamical systems in frequency do-
main. With the gap metric, we can now obtain the following error bounds.

Theorem 5.13: Let ¥ := [A,B,C,D]| € X,,m be an asymptotically sta-
ble, minimal, and passive system with transfer function G € RHJ}*™ and let
Y= [Ai11, B1,C4, D] € ¥, , m be the reduced-order model obtained by pos-
itive real balanced truncation with transfer function G ¢ RHZ*™. Assume
further, that for the positive real characteristic values o1, o9, ..., o, > 0 sorted
in decreasing order, it holds that o, > o,1+1. Then we have the (a priori) gap
metric error bound

5(Z,§)< i gj.

j=r—+1

Moreover, there is the (a posteriori) H, error bound
|G = &l < 2min{(1+1G13,) (1+ 16,

(1+161,) (1+16E.)} O o

j=r+1

Proof. Omitted. O
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Remark 5.14: a) The H, error bound is only an a posteriori error bound, since
it requires the knowledge of the reduced-order model. Therefore, its use in
practice is limited.

b) The gap metric can be expressed by the normalized coprime factorizations
of G(s) and G(s), see [ ]. A (right) normalized coprime factorization is

given by G(s) = N(s)M(s)™*, where [¥] € RHLT™*™ and there exist
Y e RH™*™, Z € RHy P such that the Bézout identity

Y(s)M(s)+ Z(s)N(s) = I,
with the normalization condition
M~ (s)M(s) + N~ (s)N(s) = In

is satisfied. If G(s) = N(s)M(s)~! and CNi(s) — N(s)M(s)~* are nor-
malized coprime factorizations of G(s) and G(s), respectively, then for the

directed gap we have
M| | M
MEHE
Hoo

From this, some bounds for the gap metric can be derived. Efficient meth-
ods for its computation however, seem to be widely unexplored, except for

[ 1

c) The gap metric error bound can also be expressed by the gap of subspaces
of L5([0, 00), RPT™) in the time domain. This analysis makes use of the be-
havior approach of systems theory which was developed by Jan C. Willems
in the early 90s.

g’(g(z),g(i)) —  inf

HeHZ*™

5.4 Numerical Solution of Large-Scale Algebraic Ric-
cati Equations

5.4.1 Newton’s Method for Solving Algebraic Riccati Equations

In this section we discuss the numerical solution of algebraic Riccati equations
of the form

ATP+PA+ (PB-CT)(D+D") ' (BTP-C)=0, P=P".
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This ARE can be rewritten as
R(P):=F+A"P+PA+PGP=0, P=P", where
A:=A-B(D+D")'c,
F=CT(D+D")'C>0,
G:=B(D+D") 'BT > 0.

(5.10)

Remember that we want to compute the minimal solution P~ of (5.10). Under
the assumption that the pair (4, B) is stabilizable (equivalently, the pair (A4, B)
is stabilizable), it can even be shown that P~ is the unique stabilizing solution
of (5.10), that is

AA+GPT)=A(A-B(D+DT) H(C-BTP7))cC .

We consider (5.10) as a nonlinear system of equations and apply Newton’s
method which has first been considered in [ ]. For this, we need to evalu-
ate the (Fréchet) derivative of R(P) with respect to P.

Definition 5.15 (Fréchet differentiability, Fréchet derivative): Let (X, |-| ) and
(Y, [[l)) be two normed linear spaces and let i/ = X’ be an open subset. An
operator F : U — ) is called Fréchet differentiable at X € U if there exists a
bounded linear operator 7'(X) : X — ) such that

. 1 ; _
i Ty X+ M) = FX) = (F )]y, = 0.

The operator F'(X) is called Fréchet derivative of F at X. The map F' : U —
L(X,Y) with X — F'(X) is called Fréchet derivative of F on U.

Let us see whether R(-) is Fréchet differentiable and (if yes) determine its
Fréchet derivative. If the Fréchet derivative exists it is given by

(R(P))(N) = im +(R(P + hN) ~ R(P))

1 ~ ~
=1lim~(F+A"(P+hN P+ hN)A
lim — (F+ AT(P + hN) + (P + hN)

+(P+hN)G(P +hN)— (F+ ATP+ PA+ PGP))
1, ~ ~
= lim (hATN + hNA + hPGN + hNGP + h*NGN)
= lim (ATN + NA+ PGN + NGP + hNGN)

= ATN + NA+ PGN + NGP
= (A+GP)'N + N(A+GP).
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Algorithm 5.2 Newton’s method for the algebraic Riccati equation

Input: A, F, G asin (5.10) and initial value P such that A(A + GPy)  C~.
Output: Stabilizing (and minimal) solution P~ solving (5.10).

1:forj=1,2 ... do

2: Set A\j = ﬁ + Gijl.

3: Solve A\;!—Nj_l + Nj_lA\j = —R(Pj_l) for Nj_l.
4: Set Pj = rj-1+ Njfl.

5: end for

6: Set P~ := P;.

In other words, the Fréchet derivative of a Riccati operator is a Lyapunov oper-
ator. Now the Newton iteration is given by

(R'(Pj-1))(Nj—1) = =R(Pj—1), Pj=Pia+Nj1, j=1,2, ...

and the iteration is summarized in Algorithm 5.2. This formulation of the algo-
rithm has the disadvantage that R(P;_;) is evaluated in every iteration. There-
fore, let us revisit the computation of the update N;_;. We know that

(A\ + Gijl)TNjfl + Nj,1 (A\ + Gijl)
— —F—-A"Pj - P, A— P 1GP;_,. (5.11)

Plugging in N;_; = P; — P;_; then gives

(A+GP1) (P = Poa) + (P = Pa) (A + GPyy)
— —F—-A"Pj_, - Pj ,A— P \GPj_;.

Some manipulations and rearrangements of the terms finally lead to
(A+GPj_1) Pj+ Pj(A+GPj_1) = —F + P;_1GP;_1. (5.12)

This leads to Kleinman’s formulation of the Newton iteration which is given in
Algorithm 5.3. The question arises whether Algorithm 5.3 converges to the right
solution. The following theorem makes this clear, see also [ ] for a proof.

Theorem 5.16: Consider the ARE (5.10) with stabilizable (A, B). Let P~ be
its unique stabilizing solution. Let further Fy € R™*" be stabilizing, i. e., it holds
that A(ﬁ + GPy) < C™. Then the iterates P;, j = 1, 2, ... fulfill the following
statements:

a) The matrix P; is stabilizing.

b) Itholdsthat P < --- < Pj < Pjy1 < --- < P~
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Algorithm 5.3 Newton-Kleinman iteration for the algebraic Riccati equation

Input: ﬁ, F, G asin (5.10) and initial value P, such that A(ﬁ + GPO) cC .
Output: Stabilizing (and minimal) solution P~ solving (5.10).

1: for j =1, 2, e do

2: Set Aj = A+ GPj,1 and Fj =—F+ f)jflGijl.
3:  Solve AJP; + PjA; = F}.

4: end for

5. Set P~ := Pj.

c) Itholds that lim; .., P; = P~.

d) The convergence is globally quadratic, i.e., there exists a constant v > 0
such that )
[P~ Bl <y|P =P, G=12, ...

Proof. The proof of this theorem needs a few technical results from the solution
theory of Lyapunov and Riccati equations. Therefore, we omit it here. O

Remark 5.17: a) If A is not asymptotically stable (otherwise Py = 0 is stabi-
lizing), then the computation of a stabilizing Fy usually costs as much as
another iteration step since this requires the solution of one additional Lya-
punov equation (e. g., in Bass’ algorithm).

b) It can be proven that if A(A + GP;_1) = C~, then it holds that A (A +
G(Pj—1 + tN;_1)) < C for all t € [0,2]. This motivates line search al-
gorithms to optimize the step length after computing the direction N;_; in
Algorithm 5.2. This means that we set P; := P;_1+tN;_1 where t is chosen
as

t = argmin, c(o,5) [R(Pj—1 + TN;_1)[ -

The computation of ¢ is usually much cheaper than the actual Newton step
which can drastically accelerate the iteration [ ]
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5.4.2 The Low-Rank Newton-Kleinman Method

We now aim at applying the Newton-Kleinman iteration for large-scale AREs
and derive a low-rank formulation. Recall that the ARE attains the form

R(P):=CT(D+D7)"'C+ (A ~B(D + DT)*C)T P
+P(A-B(D+DT)'C)+ PB(D+DT)'BTP -0,

where A € R™*" is large and sparse, B, CT e Rm*™ D+ DT > 0, and
m « n. Thus, the constant and the quadratic term admit low-rank factorizations
CT(D+D")"'C = CTC and B(D + D7) "'BT = BB". Inserting this into
(5.12) gives the iteration scheme

(4= B(D+DT)H(C- BTPH)>T P+

Py (A=B(D+ D) (C~BTP1)) = ~CTC+ P,y BBy (5.13)

" J

=ZA\J‘

Unfortunately, we cannot solve the Lyapunov equation (5.13) directly with the
low-rank ADI method, since its right-hand side may be indefinite. However, we
can split it into two Lyapunov equations

A\;!—PL]' + Pl’jA\j = —CN'Té,

A}—PQJ’ + PQJ‘AJ' = —Pj_lBBTPj_l,
where we start with the initial values P g = Py and P g = 0 [ ]. Then we
obtain the iterate P; = P, j — I j by linearity of the Lyapunov operator. This re-

sults in the low-rank Newton-Kleinman method for algebraic Riccati equations,
see also [ ]

One problem remains: even if A is sparse and B, CT are thin, the feedback

A;:=A-B(D+DT) ! (C-BTP) (5.14)
[ —
:ZK]'

is usually dense. This means that we should never explicitly form (5.14).

There are several ways to solve linear systems with the system matrix ﬁj —pily
efficiently in the low-rank ADI method:

a) Application of an iterative solver: This option only requires multiplications
with A;. Since B and K have only a few columns and rows, respectively,
these can be carried out efficiently. On the other hand, the convergence of
iterative solvers is often slow, as long as no good preconditioner is available.
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b) Application of the Sherman-Morrison-Woodbury identity: It holds that

(4-B(D+D")"K;) LA AT B(D DT KA B) KA

Then a linear system solve with ﬁj only requires two sparse (block) solves
with A and one small dense solve with the matrix D + DT — KjA_lB.
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CHAPTER O

Interpolatory Model Reduction

In this section we will discuss interpolatory methods for model reduction. Here
we take a more transfer function point of view and try to find reduced repre-
sentations of it. This reduction is then normally done by evaluating the original
transfer function (and its derivatives) in a number of points in the complex plane
and then to construct a rational interpolant that match this information. Mostly,
this rational interpolant has a realization of low order which will be our reduced-
order model.

6.1 Moment Matching

6.1.1 Moments

Consider the LTI system [A, B,C, D] € ¥, ,,, with transfer function G(s) €
R(s)P*™. Since G is rational and proper, its poles are contained in A(A).
Therefore, G is analytic in a neighborhood of all s5 € C\A(A). Hence it can
be locally expanded into a Taylor series at the expansion point sq. Thus, for
finite sg we obtain

G(s) = Z (s — s0)* My (s0)
k=0

73
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for some neighborhood of sy and some matrices My (so), Mi(so), Ma(so), - - ..
On the other hand, for s; = oo we obtain the Laurent series

0

G(s) = . s FMy(0).

k=0

The matrices Mj(so) are called the (k-th) moments of G at sy. For the case
so = oo they are also called the Markov parameters of the transfer function.
Now we want to determine the moments. For this we need the following lemma.

Lemma 6.1 (Neumann series): Let A € C™*™ with spectral radius p(A) < 1 be
given. Then I,, — A is invertible and it holds that

a0
k=0

For finite sy we have
G(s) = C((s — so) I, — A+ sol,) "B+ D
(s — s0)(soln — A)~? )_1 (soly —A)'B+D
(so — s)(soln — A) ) (soln — A)_lB +D

C(
C (I
Z (soln — A)"*"1B(sg — s)* + D,

where we have used, that by Lemma 6.1 and s sufficiently close to sg it holds
that

o0

(In — (80 — s)(soln — Z (so —s) SOI — A)fk.
k=0
Therefore, we have
C(sol, — A)'B+D,  ifk=0,
Mj(s0) = k —k—1 ;
(—1)*C(sol, — A) B, ifk>1

Moreover, for sy = oo and sulfficiently large s, we have

G(s) = C(sl, — A)"'B+D
lo(l,—14A)" B+ D
—_

1
=20 x A

0
= Z CA*'BL +D.
k=1
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Therefore, we have

D, if k =0,

M -
k() {CAk—lB, ith>1

Model reduction by moment matching consists of finding a reduced-order model
[A,B,C,D] € , mp with 7 « n such that for a given sp € (C U {0}) \A(A)
the corresponding moments My (sg), k = 1, 2, ... fulfill

Mk(s(]) :Mk(SO)v kzoa 11 >£

for ¢ as large as possible. The moment matching problem for so = 0 is also
called Padé approximation problem, for so = oo it is also called the partial
realization problem. Since for finite sy we have

0 l

G(s) = Y (s — s0)*My(s0) (s — 50)F My (s0) + O((s — s0)"™),
k=0 k=0

N 0 l

G(s) = Z(S — 50) Mk (so) = Z (s — s0) Mk (so) + (9((8 — 50)“1),
k=0 k=0

we obtain N
G(s) — G(s) = (9((8 - 80)€+1).

Similarly, for sy = oo we get

G(s) — G(s) = (’)(87(“1)).

6.1.2 One-Sided Moment Matching

For ease of notation we will now have a look at moment matching for SISO
systems. In particular we discuss efficient ways to generate the reduced-order
model without explicitly forming the moments.

Definition 6.2: Let [A, B,C, D] € %, ,,,, be given. The generalized controlla-
bility matrices of [A, B, C, D] for sg € (C u {o0})\A(A) are given by

Cr(s0) = [(soln — A)™'B (sol, — A)™2B ... (soln, — A)7"B],
k=1,..., n,

if sop € C\A(A), and by
Ci(w)=[B AB ... AF'B], k=1,...,n,

if Sp = 0.
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Note that C,,(c0) is the Kalman controllability matrix that can be used for check-
ing controllability of a linear system. We have the following lemma.

Lemma 6.3: Let sp € (Cu {o0})\A(A) be given. Then the pair (A, B) €
R™*" x R™*1 is controllable if and only if it holds that rank Cx(sg) = k for
alk=1,2,...,n.

Proof. Consider the case that sy = co. Then controllability of (A, B) is equiva-
lent to
rank C,(0) = rank [B AB ... A" 'B]=n.

This is furthermore equivalent to

rankCp(0) =k, k=1,...,n.

On the other hand, for sy € C\A(A), the result follows as above by noticing that
(A, B) is controllable, if and only if

C" =span{B, AB, ..., A" 'B}
= span {B, (soln — A)B, ..., (soln — A)"*lB}
= (sol, — A) " span {B, (solp, — A)B, ..., (soln — A)”_IB}
= span {(sol, — A)7'B, (sol, — A)7*B, ..., (sol, — A) "B} .

O

These matrices determine projection matrices that result in reduced-order mod-
els with matched moments. In particular, we have the following theorem.

Theorem 6.4: Let [A,B,C,D] € %, 11 be controllable with the moments
M (s0), k = 0,1, ... for some given so € (Cu {0})\A(A). Assume that
(e {1,2,...,n}and that T e C*** is invertible. Set T := Cy(so)T € C"*¢
and choose W e C"*‘ such that WHT = I,. Define [A,B,C,D] :=
[WHAT,WHB, CT, D] € $,,1 with the moments M(so), k = 0, 1, .... Then
the first £ moments are matched, i. e., it holds that

Mk(SO) ZMk(So), kZO, 1, ...,6—1.

Proof. We can assume w.l.o.g. that T = I,, because the moments Mk(so),
k =1, 2, ...areinvariant under state-space transformations. Since the system
is controllable, we have that rank 7 = ¢ and there exists a matrix W e C*¢
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such that WHT = I,. Here we will only do the proof for finite so. The proof for
sg = oo is similar, and therefore, we omit it here. We have that

soly — A = WH(sol,, — A)T

= WH(sol, — A) [(soln — A)7'B ... (sol, — A)~‘B|
= [WHB WH(sol, — A)~'B ... WH(sol, — A)~*"1B]
= |:_§ er ... 6[,1] .

Therefore, for k € {0, 1, ..., £ — 1} we have
(SQIg—g)k—H: [* ce. X E e ... eg_l_k],

which gives (soly — ﬁ)_(kﬂ)g’ = €yl
So, for the moments we have,
]\70(50) = é(S()Ig — /T)_IE +D
=CTe1 + D
= CCy(sp)er + D
= C(sol, — A)7'B + D = My(so),

andfork =1, ..., ¢ — 1 we obtain

Mj(s0)

(—1)*C(sol — A)~ VB
( 1)kCT€k+1
)k
)k

(=1)"CCy(s0)er+1
— (=1)*C(sol,, — A)~FTIB = My (so).

O

Remark 6.5: a) The assumption that [A, B, C, D] is controllable can be weak-
ened in the sense that it is only required that ¢ is small enough such that
rank Cy(sg) = /.

b) On the other hand, if £ = rank C,(sg), then the reduced system matches all
moments.

We are free to choose the matrix 7" in Theorem 6.4. The simplest choice T =1
unfortunately usually leads to very ill-conditioned projection matrices 7', imply-
ing that the numerical computation of 7' is very sensitive to round-off errors. It
is better to choose T" such that it has orthonormal columns. Since im C(s) is
a Krylov subspace, i. e., a space of the general form

K¢(F,v) := span {v, Fo, ..., Féflv} )
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T can be efficiently computed by the (shift-and-invert) Arnoldi method (see the
course on numerical linear algebra).

Since T  has orthonormal columns, we can choose W = T.. In the case sy = o0,
there are further simplifications. The Arnoldi iteration computes 7' € C™*¢ with
orthonormal columns and a matrix H € C**¢ in Hessenberg form such that

AT = TH + foi1e]
for some vector f,,1 € C* with TH f,,.1 = 0. Thus we obtain
A=WHAT = TY(TH + fri1¢]) = H.
Moreover, since B is the initial vector of the Krylov space (A, B), we have
B=WHB=T"B = |B|,e.

Thus, A and B are obtained at no extra cost, only the matrix C has to be
computed.

Note that stability and observability may be lost by moment matching as the
following example shows.

Example: Consider the system [A, B, C, D] € g1 with

A:[_Ol _52] B:m, cC=[1 -1]. (6.1)

It is easily checked that this system is stable and observable. For so = oo and
¢=1,weobtainT = LB = % [1] = W. This gives

V2

S| T HE

\}5 1 —1] m = 0.

Therefore, the reduced model is neither stable nor observable.

Qe
Il

Note that stability and observability can be shown for symmetric systems with
A=ATand B =CT.

By using the generalized observability matrices
C(So[n — A)fl
C(Sofn — A)_2
Ok(s0) = ) , k=1,...,n,

C(S(]In — A)_k
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if sop € C\A(A), and

C

CA
Ok(OO)Z . , k=1,...,n,

cak

if sy = oo, we obtain the following result which is completely analogous to
Theorem 6.4.

Theorem 6.6: Let [A,B,C,D] € X, 11 be observable with the moments
My (s0), k = 0,1, ... for some given so € (Cu {o0})\A(A). Assume that
(e{1,2, ..., n}andthat W e C**’is invertible. Set W := Oy(so)"W € C**
and choose T € C"*‘ such that WHT = I,. Define [4,B,C,D] :=
[WHAT, WHB, CT, D] € £, 1 with the moments M,,(s0), k=0, 1, .... Then
the first £ moments are matched, i. e., it holds that

Mk(SO) ZMk(SO), k‘=0, 1, ceey £—1.

The matrix W can be computed by the Arnoldi algorithm applied to the matrix
pair (AT, CT). There are also variants of moment matching for MIMO systems
which make use of the block Arnoldi method and for matching moments at
several interpolation points sq, s1, .. ..

6.1.3 Two-Sided Moment Matching

We have just seen that choosing the projection matrices 7" and W such that
WHT = I, and

i) imT = 1imCy(sp) or
i) im W = im Oy (sp)"

guarantees that £ moment at sy are matched. So what happens if we do both?
We will show soon that in this case we can match 2/ moments. However, this
is not always possible since a certain regularity condition is needed which we
will prove now.

Lemma 6.7: Let [A, B,C, D] € %,, 1,1 be given with the generalized controlla-
bility and observability matrices C;(so) and Oy(sp) for some ¢ € {1, 2, ..., n}.
Then there exist matrices T, W e C™*¢ with WHT = I,, imT = im Cy(so),
and im W = im Oy (so)", if and only if the matrix H(s0) := Op(s0)Ce(s0) is
invertible.
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Proof. First we show “<": So assume that H,(so) is invertible. By choosing
T := Cy(so) and W := Oy(s0)"H,(s0)~H, the conditions im T = im Cy(sg) and
im W = im Oy(s)" are obviously satisfied. Moreover, we have

wHT = 7—[4(80)_1 O¢(50)Ce(s0) = 1.
————

=He(s0)

Now we show “=": So let T, W e C™*! such that WHT = I,, imT =
im Cy(s0), and im W = im Oy(sp)". Then there exist two invertible matrices
Ke, Ko € C™*suchthat T = Cy(so)Kc and W = Oy(so)"KJ. Therefore, we
get

I; = WHT = KoOy(s0)Ce(s0) K = KoHa(so) Ke.

So He(so) = K K ' is invertible. O

Theorem 6.8: Let [A, B,C, D] € X, 11 be given with the moments M(so),
k = 0,1,... for some given sy € (Cu {o0})\A(A). Let T, W e Cr*¢
with WHT = I, and define the reduced-order model by [/T,E,CN*, f)] =
[WHAT,WHB,CT, D] € 3.1, with the moments My(so), k = 0, 1, .... If
im Cy, (s0) < im T and im Oy, (so)" < im W for some £1, 5 € Ny, then it holds
that

b+ 0y —1, ifsge (C\A(A),

Mk(S()) = Mk(SO), k= 0, 1, ey {61 n 62 it 0 = 65

Proof. Here we prove the theorem only for the case sy € C\A(A), the case
sg = oo is analogous. We show the statement in several steps:

Step 1: We show that for any F € C**™ with FT = I, we have TFv = v for
all v € im 7. Indeed, if v € im T, there exists a z € C’ such that v = T'z. This
givesTFv=TFTz=Tz=v.

Step 2: We show that (soI,, — A) "B = T'(sol; — ﬁ)_ké fork=1,..., /.
First note that with F := (soI, — A) " "W (soI, — A) we have FT = (soI; —
ﬁ)_le(SOIn — A)T = I;, so we can use Step 1 here.

Now we prove the statement via induction. First we show the case k = 1: It
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holds that
T(sol; — A)'B = T(sol, — A)'WHB
= T(soly — A) "' WH(sol, — A)(sol, — A)'B
=TF (sol, — A)™'B

= (sol, — A)7'B.

Now assume that (sol,, — A)™*B = T(sol; — ﬁ)_ké. Then we have

T(soly — A) """ VB = T(soI, — A) " WH T (501, — ) "B

:(SOIn_A)_kB
= T(soly — A)"WH(soL, — A)(sol, — A)"*+VB
—TF (sol, — A~ "B = (s, — A)~ VB,

€im Cpy (so)Sim T, if k+1<4q

Step 3: We show that C(sol,—A) % = 5(80]2_11)*ka fork=1,2,..., (5.
This statement can be analogously proven as in Step 2 by replacing Aby AT,
Aby A", Bby CT,Bby CH, T by W,and W by T.

Step 4: We show that My(sp) = Mk(so) fork =0,1,..., ¢, + ¢; — 1. For
k = 0 we obtain
]\70(80) = CN'(S()IK - g)ilé + D= CT(Solg — /Nl)ilé +D
=(So[n\—(A)7lB
= C(soly — A)7'B + D = My(so),

where we have used Step 2. Now for k € {1,2, ..., 01 + {5 — 1} let ky €
{1,2,..., 1} and ke € {1, 2, ..., {2} be such that ky + k2 = k + 1. Then we
have

M (s0) = (=1)*C (sols — A)"*V B

= (=1)*C(sole — A) *WHT (so1, — A) M B
= (—1)kC(SOIn - A)_k2 (S()In - A)_le = Mk(S()).
This completes the proof. O

Remark 6.9: a) Most often, the reduced-order model is computed for ¢; =
¢y = (. In case the matrix H,(sg) is invertible, then the corresponding pro-
jection matrices 1" and W can be computed by the nonsymmetric Lanczos
process.
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b) If the system [A, B,C, D] € ¥, is @ MIMO system, then the nonsym-
metric block-Lanczos method can be used. Then we also have that

span {(SOIn —A)7B, ..., (sol, — A)fEB} CimT,
—H
span {(soln —A)~HeH ((soln — A)Z) CH} CimW
implies N
Mk(so) :Mk(SO)v k=0,1,...,20-1,

but the projection spaces must have a larger dimension to match the same
order of moments. Alternatively, tangential interpolation techniques can be
employed which yield moment matching properties in certain tangential di-
rections, but normally also give smaller projection matrices. This will be
discussed in more detail later.

Algorithm 6.1 employs the nonsymmetric Lanczos algorithm [ ] for mo-
ment matching. In the literature it is known as the Padé-via-Lanczos (PVL)
algorithm.

The quantities computed in Algorithm 6.1 have the following properties (exer-
cisel):

a) The matrices W and T are biorthogonal, i. e., WHT = I,.

b) It holds that

(soln —A)'T=TH+[0 ... 0 te1]Besa,
(soln — AW =WH" +[0 ... 0 we1] 757,
where
a1 72
I — Ba a2
Ve
Be g

c) We have that

im7T =1imCy(sgp), ImW = imOg(S())H.

Remark 6.10: In Algorithm 6.1 breakdowns may occur. It can be shown that
this is the case if and only if the matrix H(so) is singular for some & < ¢. With
regard to Lemma 6.7 this means that we cannot construct matrices W, T e
C™*k with WHT = I, such that im T = im Cy(s) and im W = im Oy(so)".
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Algorithm 6.1 Padé-via-Lanczos for moment matching

Input: [A, B,C,D] € ¥,1,1, so € C\A(A), reduced order ¢.

Output: Reduced-order model [A, B,C,D] = [WHAT,WHB,CT,D] e
1.1 With My (so) = My(so) fork =0, 1, ..., 20— 1.

1: if C(sol, — A)~2B = 0 then
2 Breakdown.
3: else | |
o 1 1 sotn=4)"1B
4 Set tl = m(sojn — A) B, w1 = W(SOIN —

A)yHoH,
Setaj := le(soln — A) My, tg =0, wp := 0, By := 0,71 := 0.
end if
cfork=1,2,...,/do
: Setry := (So[n — A)fltk — gl — Yelk—1-
9. Set sy, := (soln — A)Nwy — apwy, — Brwg_1.
10:  if stry, = 0 then

o N

11: Breakdown.

12:  else

183: Set ,Bk+1 = HT’kHz

14: Set y411 = ﬁs?rk.

15: Set tht1 = WLT]C.

16: Set wiy1 = %sk.

17: Set ajy 1 := wkHH(soIn — A) M.
18: end if

19: end for

20: Construct the reduced-order model as
A:=whAT, B:=WwW"B, C:=CT, D:=D,

where
W:z[wl wg], T:=[t1 tg].

We conclude this subsection with some general remarks on the difficulties of
moment matching model reduction.

Remark 6.11: a) Moment matching is a comparably cheap method for model
reduction, since for each sg, only one (sparse) LU factorization or one pre-
conditioner has to be computed and stored.

b) Computable error estimates or bounds are often very pessimistic or expen-
sive to evaluate. Moreover, there is only a good approximation quality close
to the expansion point so.
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c) The expansion point sg can often only be chosen heuristically by using a
priori knowledge from the system under consideration.

d) Preservation of physical properties such as stability or passivity can only be
guaranteed in special cases. Usually, a post-processing to restore these
properties would be required, but this may destroy the moment matching
properties.

In the following section we will discuss optimal choices for interpolation points
which will cure many of the above mentioned problems.

6.2 7H,-Optimal Interpolation: The Iterative Rational Krylov
Algorithm

This section is based on [ ]. Consider an LTI system [A, B,C, D] €
Yn,1,1. From the results of the previous section it is known that choosing W, T €
C™*¢ such that WHT = I, with

im7T =im [(slln — A)le coe (seln — A)le] )
imW =im [(slfn —A)HCT L (sl — A)fHCT]

will lead to a reduced-order model [A, B,C, D] := [WHAT,WHB,CT, D] €
2&171 with

~

G(sk) = G(sp), G'(sp) =G'(sp), k=1,2,..., 0

The question arises whether for fixed ¢ we can choose the interpolation points
S1, ..., s¢ such that |G — C?H can be minimized in a suitable system norm.
It turns out that we can determine reduced-order models which fulfill such an
optimality criterion locally in the Ha-norm. Recall from Chapter 2 that for SISO
systems we have that

ly =7z,

we Lo ([0,00),R) HUHLQ 7
u#0

HG - CN’YHHQ -

where y, § € L ([0,0),R) are the outputs of the full and reduced-order mod-
els obtained by feeding in the input u € L£5([0, ), R). Further recall that

160 = (& [ 0t - Gfas)

2 )

for G—G e R*H2 which is usually the case, since we have D = Din projection-
based model reduction.
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Finding a global optimum is hard, but we are satisfied with a local optimum
which can be obtained by checking first-order (necessary) optimality conditions.
For this we will need the H5 inner product, which for SISO systems G, H €
RHs reduces to

(G, Hyp, — % f; G (—iw) H (i) duw.

Now we look for a different way of evaluating this inner product. For this we
need the residues of a function G(s) € R(s) with possibly multiple poles. The
residue of G at pole A € C of order m is given by

1 dm!

res(G,\) 1= (m—1)! if}\ dsm—1

((s = A)™G(s)) -

Note that if G is proper and the pole X is simple, then the residues can be
computed as in Lemma 3.4. Residues are important tools in complex analysis,
for instance for the evaluation of integrals. One of the key results in complex
analysis is the residue theorem which we state next (in a simplified version).

Theorem 6.12 (Residue theorem): Let f : D — C be a meromorphic function
(i.e., a function holomorphic in almost all points in D), I' = D be a simple
closed contour in counterclockwise orientation that does not contain a pole of
fyandlet uy, ..., ur be the poles of f inside the contour I'. Then we have

k
f f(s)ds = 2 2 res(f, 1)
r joc

Lemma 6.13: Let G, H € RHs and let \q, ..., A\, be the poles of G and
pi, - -, pg be the poles of H. Then it holds that

q

(G, H)yy, = Y 1es(G(=)H(-), 1j) = Y ves(H(—)G(-), ).

j=1 j=1
If 1; is a simple pole of H, then it holds that
res(G(—)H ("), 1) = G(—p;) ves(H, p;)-
Moreover, if 11, is a double pole of H, then we have
res(G(—)H (), pj) = G(—pj) res(H, p1) — G'(—p;)ho(1;),

where ho(p;) = limg_,,; ((s — p;)2H(s)).
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Proof. First note that the function G(—s)H (s) may have polesonlyin 1, ..., g4
and — Ay, ..., —\,. Forany R > 0 define the semicircular contour

Tp:i={z]|2=iwwithwe [—R,R]}u{z | z = Re" with 0 ¢ [%,%]}-

"

=T r ~"
’ =:F27R

For sufficiently large R, all poles of H are inside I'r. Since G, H € RHo, it
holds that lim |, G(s) = limy H(s) = 0, and thus we have G(—s)H (s) =
O(|s|72) for |s| — 0. Therefore, G(—s)H (s) decays faster then the length of
the contour I';  grows for R — oo and thus we have

lim G(—s)H(s)ds = 0.

R—0 I's r

By using the residue theorem, we obtain

(G.H,, = % foo G (—iw) H (iw)dw
1

= — lim G(—s)H(s)ds

271'1 R—0 Tr

= Y res(G(—)H("), y)-
j=1

(Note that if a pole 1; of H is canceled by a zero of G(—-), then the above
formula is still correct, since then res(G(—-)H(-), ;) = 0.) If p; is a simple
pole of H, then if G(—p;) # 0, itis also a simple pole of G(—-)H (-) and we get

res(G(—)H (), 1) = B (s = p15)G (=) H(s)

= G(—py) lim (s — p;) H (s) = G(—pz) ves(H, py).
J
On the other hand, if G(—p;) = 0, then G(—-)H(-) has no pole at y; and

0 =res(G(—)H(-), ;) = G(—p ) res(H, ;).

If 11; is a double pole of H, then G(—-)H(-) has no pole, a simple pole, or a
double pole at y;. With

H_ H_
H(s) = 2+ =L 4.
(s —ni)*  s—py

G(—S)=G0+G1(8—,uj)+...,
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where Gy = G(—p;) and Gi = —G'(—p;), it holds that

ves(G(—)H (). ;)
=Go-H1+G1-H_»
— Glopy) fim = (5= ) PH() = G (=p5) Jim (s = 1 H(s)

= G(—py) res(H, pj) — G'(—p3)ho(p;)-

Now we get back to the optimization problem. Assume for simplicity that G €
R*H- (The case of non-strictly proper GG can be handled similarly.) The question
arises how we can check whether G € RH, with McMillan degree /¢ locally
minimizes |G — CNJHHQ. First we attempt to answer an easier question: Is there

aGe R*H4 of McMillan degree ¢ with the same poles as G that yields a smaller
Ho-error norm?

Theorem 6.14: Let o := {p1, ..., ue} < C~ be closed under complex con-
jugation. We define M () to be the set of all functions in R of McMillan
degree at most ¢ whose poles are simple and contained in the set . Then
there are the following facts:

a) If H e M(p), then H is the transfer function of a stable and minimal LTI
system with state-space dimension at most /.

b) The set M(u) is an ¢-dimensional closed subspace of H.

c) The function G solves the minimization problem

|6~ Gl = i 16— Hly, 2

if and only if R
(G-G,H), =0 forall He M(p).

Furthermore, the solution G of the minimization problem (6.2) exists and is
unique.

Proof. Statements a) and b) are easy to show (exercise!).

We only discuss statement ¢). Let G € M () be such that (G- G, H>H2 =0
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forall H e M(p). Then for H € M(u) we get
G = HI}, = (G- G) + (G -3,
= |6~ Gl + G~ H[;,, +2(G -GG~ H),,
= |6 -G, + 16 - H[,,
where the latter equality follows from G — H € M (). This proves that Gisthe
unique minimizer.

Let G be a minimizer of (6.2), which is in M(p) by the closedness property.
Then we get

|(G +eH) = G[;, — |G -G, =2:(G—G.H), +e|H[3, >0 (63)

If <(§Y -G, H>H2 # 0 for some H € M(u), then for sufficiently small ¢ > 0
we have ’25<(§* -G, H>H2‘ > ¢2|H|j,,. However, this is a contradiction to

the nonnegativity of (6.3). Therefore, we have <@ -G, H>H2 =(0forall H
M(p). O

By Lemma 6.13 we obtain

L

j=1

for all H € M(p), which is equivalent to

~

G(—uj) = G(—uj), j = 1, 2, ey £.

So in other words, G has to interpolate G at the mirror images of its own poles.
The next question is whether the poles u1, p2, - .., pe are optimal.

Definition 6.15: Let G € R, be given and let 6(-) denote the McMillan degree
of a rational function. Then the function G € R*H> is a local minimizer of the
minimization problem

HeR?—Itlzl,i?(H):Z |G — HHHQ, (6.4)

|G = Gy, <G = H]y,

I,
is satisfied for all H € RH» with §(H) = £ and |G — H|,, <eforsomee > 0.

We will now derive necessary optimality conditions for G being a local minimizer
of the minimization problem (6.4).
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Theorem 6.16: If G € R, is a local minimizer of (6.4) and G has only simple
poles p := {u1, ..., ue} (closed under complex conjugation), then it holds that

<G*G~!,G'H1+HQ>H2 =0

for all Hy, Hy € M(p).

Proof. Suppose that G. € RH> with §(G.) = £ and |G — @5|{H2 <c-efora
sufficiently small € > 0 and some constant ¢ > 0. Then it holds that

Ter=yells

~ 112
3, <G =G

Ha
=(@-8&)+(@-a.)l;,

—|c- 5“?{2 +2(G=G,G—Ge), + |G- ég||;2.

This implies that for all sufficiently small € > 0 we have that

~ o ~ 2

0< 2<G -G,G— G5>H2 + ||G — GEH%. (6.5)
Let 1, ..., ue be ordered such that pq, po, ..., pe, are the real poles and
p; = o +iB; with 8; > 0for j = fgr + 1, ..., fr + {c are the nonreal poles.

Then any H; € M(p) can be written as a partial fraction expansion as

lr+lc
Z Vi i Z 216 O‘J )+
_ (e N2 1 A2
Hj j=lr+1 (s — ay) 2t B

for some v;, pj, 7; € R. Thus we get

~ ~ ‘r ~ O
<G—QGiﬂ+%%&:Z%-G—G, >

j=1 T
Lrt+lc ~
5~  (—oy)G
+ > p{ G-G, S
j=Lr+1 ( _aj) +ﬁ] H
fRifc N a N
+ T G—G,2> +<G—G,H2>H :
j=tp+1 (—a)*+5 Ho ’

By Theorem 6.14, we have (G — é,H2>H2 = 0. Now we show that also the
other summands vanish. Assume that for some j € {1, 2, ..., {g} we have

that N
G -G, G £ 0.
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We write G(s) = (s—i(]% for some polynomials p(s), q(s) € R[s] and define
(s)

p
(s = uj — (££))q(s)’

where the sign of +¢ is chosen to match the one of <G — é, _G;j >H . Then
2

G:(s) :=

we have
Guls) = G(s) £ e—25 L o(e2),

which leads to

G(s) — G(s) = Fe Gls) + 0(52)
S — Uy
and N
~ o~ o~ ~ G )
<G—G,G—G5>H2 = —¢ <G_G"—Mj>7_[ +(’)(£ )
=:c>0

Together with (6.5) we get
0 < =28 4 ?e? + O(e?) = —22 + 0(52).
But this is a contradiction for sufficiently small € > 0.

Now write @(s) = % forsomeje{lp+1,lp+2,...,lp+Llc}

and p(s), ¢(s) € R[s]. In an analogous fashion, it can be shown that

by using
~ p(s)
Ge(s) = and
) e~ ) )
~ p(s)
GE S) = )
B = G —a+ 72— @)
respectively. From this we can conclude the claim of the theorem. O

The question arises whether we can interpret the above theorem as interpola-
tion conditions. With Lemma 6.13 we obtain

4

j=1
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If H, has exactly the same poles as G, then 145 is a double pole of G-H (recall
that G, Hy € M(p)) and G(—p;) = G(—p; ) forall j =1, 2, ..., £. This gives

0= =3} (@)~ &) (i (s uj>2c?<s>H1<s>)

S— 1
¢
=— Z (G'(—py) — é/(—ﬂj)) res (é, 1;) res(Hi, p1).

Since this is true for all H; € M(u), we obtain that
G'(—pj) = G (=), j=1,2,...,L

The analysis carried out above can also be generalized to deal with transfer
functions G(s) € R(s)P*™ of MIMO systems. This will lead to tangential inter-
polation conditions, meaning that the original and the reduced transfer function
moments only match in certain tangential directions. We will not discuss this in
detail here, but summarize the result in the following theorem.

Theorem 6.17: Let an asymptotically stable system [A, B, C, D] € £,, ,, , with
transfer function G € RH% ™ be given. Let

~

~ 1 -
G(s)zZ cjb;'—i-D

with /Z;j eCm™andc; e CP,j=1,2,...,¢bealocal minimizer of the minimiza-
tion problem
min HG — HHH2

HeRHY ™, 6(H)=¢
Then the following statements are satisfied:
a) It holds that D = D.
b) It holds that

G(—pj)bj = G(—pj)bj, G(—py) = &G (—py), j=1,...,¢

¢) It holds that

~

E?G’(—uj)gj = gyé/(—uj)bj, ] =S 1, ooy /.

Now we want to put this into an algorithm. We want to compute a state-space
realization of the reduced transfer function G without explicitly computing it.
Given the interpolation points 5; and the tangential directions b; and ¢; for j =
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1, 2, ..., ¢, we can construct a reduced-order model such that the tangential
interpolation conditions

and
MG (3)b; =G E)b;, G=1,..., L

are satisfied. We do this by two-sided interpolation with projection matrices
W, T e C™** with WHT = I, and

T = im (311, — A)Bh .. (Rl — 4) Bl
W = im (811, — AN, . (30, — A)THOME] .

On the other hand, if a reduced-order system [A, B,C, D] € S, is given,
we compute new interpolation data as follows: Assume that Ais diagonalizable,
i. e., there exists an invertible matrix X € C**¢ such that

X TAX = M = diag(pa, - . ., ).
Then we have
G(s) = C(sly— A) "B+ D =CX (sl — M)"'X'B + D.

With

we then obtain

From this we can construct a new model as above that fuffills the tangential in-
terpolation conditions at the data (— 1, bj, ¢;). This leads to an algorithm that
alternates between the construction of a reduced-order model from interpola-
tion data and the generation of new interpolation data from a given reduced-
order model. If this iteration converges, then the tangential interpolation condi-
tions are satisfied. This can be interpreted as a fixed-point iteration and results
in Algorithm 6.2. The algorithm is usually terminated if the change in the pole
locations between two consecutive iterations is below a given tolerance, or if
the distance (e. g., measured in the Hs-norm) of the reduced transfer functions
between two consecutive iterations is sufficiently small.
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Algorithm 6.2 lterative rational Krylov algorithm (IRKA)
Input: Asymptotically stable [A, B, C, D] € ¥,, , ;,, desired reduced order /.
Output: Reduced-order model [Z, B,C, 5] € Somp-
1: Choose initial interpolation data (1, 3]-, G)j=1,..., L
2: while not converged do
3:  Construct the model [A,E’,C’, f)] = [WHAT,WHB,CT, D] € %,
where W, T' e C"*¢ with WHT = I, and

T = im [~ — A Bhy . (—pely— A) 7Bl
imW =im [(f,ulln —A)~HeHe L (—pel, — A)_HC’H’C}] .
4:  Compute new interpolation data (uj, Ej, Ej), j=1,...,¢: Compute an
invertible matrix X € C**¢ such that X 'AX = diag(u1, ..., pe) and
set R
by
c|=X7'B, [a ... &]:=CX, D:=D.
o
5: end while

Remark 6.18: a) The initial interpolation data is either chosen randomly or by
a cheaply computable reduced-order model such as a partial realization.

b) Stability of intermediate reduced-order models is not guaranteed. Unstable
intermediate systems may occur, in particular, if the initial interpolation data
is far away of the optimal one.

c) If the full-order model contains only real matrices, then also a real reduced-
order model can be obtained by choosing the interpolation data such that it
is closed under complex conjugation and by a realification of the projection
matrices W and T by noting that

im [(—,un —A)'Bb (—fl, — A)*lBg]
—im [Re ((—;dn . A)—lBB) Im ((—uIn . A)—lBB)] .

d) Convergence of IRKA cannot be guaranteed, counter-examples are known.

e) In case of convergence, the resulting system may only be locally optimal,
but in many cases, it even converges to a very good local or even global
optimizer in only a few iterations. Unfortunately, a complete convergence
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analysis of the method it still an open problem. Partial results are only known
for symmetric systems.

f) The reduced-order models obtained by IRKA are usually competitive to
those obtained by balanced truncation.

6.3 Interpolation from Data: The Loewner Framework

In this section we discuss another framework for interpolation that is solely
based on data obtained from the system under consideration, see [ I In
many situations it may be the case that a model is not available, but only some
input/output data may given. Then we seek for a model of low order that best
reproduces this data. Note that this process is rather called reduced-order
modeling instead of model reduction, since no model is given. The methods
discussed here are related to the field of system identification, where it is the
goal to determine a model or its parameters from measurements, to validate
it and to assess its robustness with respect to uncertainties in the data via
statistical considerations.

Assume that we have given right or column data (\;, r;, w;) € CxC™ xCP, i =
1,2,..., k, and left or row data (uj, j, v;) e Cx CP xC™, j =1,2,...,q.
We seek a function G(s) € C(s)P*™ such that

é()\z>rz = Wi, 1= 1, 2, cvey k,

7G) =0, G=1,2,...,q

For simplicity we assume that {\i, ..., A\g} N {p1, ..., pg} = &. We reorga-
nize the right data as

A = diag(\1, ..., A\) € CF¥F,
R:=[r1 o ry] € C™xk, (6.6)
W .= [w1 wy ... wk] ECPXk,

and the left data as

M = diag(p1, ..., pg) € CT*9,
M=t by ...ty e, (6.7)

VH = [’Ul V2 ... ’Uq]ECqu.
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From the data we construct the Loewner matrix

le7’1 —Z'fwl fu'l"rk —K'i'wk
p1—A1 T p1—Ak
L:= : ; e CI*F, (6.8)
obtry—tHw, obrg—Hwy,
Hg—A1 T Hg—Ak

and the shifted Loewner matrix

,ullerl—ETwl)q ,ullerk—f'fkak
H1—A1 T H1— Ak
L, := : : e CI¥¥, (6.9)
,uqv?rl—ﬁgwl)q ,uqurk—ﬁzlwk/\k
Ha—A1 e Ha—Ar

The matrix pencil sL. — L, € C[s]?9** is also called the Loewner pencil.

Lemma 6.19: With the notation introduced in (6.6), (6.7), (6.8), and (6.9), the
two Sylvester equations

LA— ML =LW — VR (6.10)

and
LA — ML, = LWA - MVR (6.11)

are satisfied.

Proof. By denoting with [-];, the (i, j)-th entry of the matrix in the brackets, we
obtain that

H H H H
virs — Low; virs — L0 ws
[LA—M]L]Z‘]‘: 1 '] 7 j)\j_ﬂi ) 1 )
i = Aj Wi — A
v — GwiAg — pivf'ry + pilfw;

Pi = Aj
= (Mw; —of'r; = [LW — VR];;.

Moreover, we have

H H H ’
[MA—MMM:mei%%M—MM%Zi%%
piv A — Glwidd — ptofrg + piliw;
B i — Aj
= M) — o'y = [LWA — MV R];;.
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Remark 6.20: Let the data be sampled from a (regular) linear descriptor system

%Eaz(t) Az(t) + Bu(t),
y(t) = Ca(t)

with transfer function G(s) = C(sE — A)~! B and define the matrices

Cr : [(/\1E —A)Bry ... (\E-— A)_lBrk] e Ck,

HC(mE — A~

Oy : e CT*n,

by CpgE — A)~

which are called generalized tangential controllability matrices and generalized
tangential observability matrices, respectively. With these, it follows that

[L]s; = i - i’ﬁwﬂ
M J
G (pg)ry — K?G(Aj)r]
fi = Aj
O (wE — A~ = (\E — A1) Br;
Hi — A
_HOwE — AT ((VE - A) — (mE — A)(\E — A)~'Br;

Bi — Aj
— (B ~ A BOGE — A By

and similarly
oHr O\ Hap
[Lo]ij _ HiUy T4 AJE’L Wy

pi — Aj
il G (pa)rs — UG\
fri = A
= —LIC(wE — A)TLANE — A Br;.
This gives

L = —O,EC;, L, =—0,ACs.

Now we state and proof a result that gives us the structure of the dynamical
system that interpolates the data.
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Theorem 6.21: Assume that there is given data as in (6.6), (6.7) with k& = q.
Let the associated Loewner pencil sL — L, be regular (i.e., det(sL — L,) is
not the zero polynomial) and assume thatno A\;, < = 1, 2, ..., kand pu;, j =
1, 2, ..., qis an eigenvalue of the pencil sl. — IL,. Then

E=-L A=-L,, B=V, C=W
is an interpolating descriptor system realization, i.e., the function @(s) =
C(sE — A)_lB interpolates the given data.

Proof. For the proof we make use of the Sylvester equations (6.10) and (6.11).
By multiplying the first equation by s and subtracting it from the second one, we
obtain

(Ly — sL)A — M (L, — sL) = LW (A — sly) — (M — sI;)VR. (6.12)
Multiplying this equation by e; from the right and setting s = \;, we obtain
(MNilg — M)(Ly — ML)e; = (Nidg — M)V,
which is equivalent to
(Ly — MsL)e; = Vg

and yields
w; = We; = W(Ly — ANL) Vg

Therefore, we obtain w; = é(Ai)ri, i=1,...,k, ie., the right data is inter-
polated. To prove that also the left data is interpolated we multiply (6.12) by e]T
from the left and take s = p;. This gives

e] (Lo — piL) (A — pjIy) = ef LW (A — i),

which is equivalent to

e}_(LU — ;L) = E?VV.

Therefore, we obtain

ot = €]V = 0W (L — L)'V,

which yields v} = Z?@(Mj),j =1, ..., ¢. This completes the proof. O

A common situation that arises in practice is redundant data, i.e., the case
where we have to much data. In this case, the Loewner pencil sl — L, is
singular and thus the transfer function G does not exist. The question that
arises is how we can treat this situation in the Loewner framework.
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Theorem 6.22: Let data as in (6.6), (6.7) and the associated Loewner matrices
(6.8) and (6.9) be given. Assume that

rank((L — L) = rank [IL LU] = rank [IL]% ] =7

VEE (AL ooy MY U i, oo g}

Consider the economic SVDs
SH L S ol
[L Lol =YZX", | |=Y%X (6.13)
o

with ¥;, ¥, € R™", and X € C¥*" and Y € C?*". If R and L both have full
column rank, then

E=-YLx, A=-Y"L,Xx, B=Y"V, C=wX

is an interpolating descriptor system realization, i.e., the function @(s) o=
C(sE — A)le interpolates the given data.

Proof. Here we show only show that the right interpolation conditions are sat-
isfied, the proof for the left interpolation conditions is analogous. From (6.13)
and since X, Y have orthonormal columns, we have that . = —}71ETXH and
L, = —Y,%, XH. Therefore, we obtain

LXX" = Vo x"xxH = _vinxH=L,
L,XX" = V,o, XPxx" = von . x"=1L,.
Moreover, we have
L, — LA = VR,

which follows from

oHe o )\ pH H. _ yH
_ vy = Aliwy vty — 4

i — A Wi — Aj
i=1,2 ..k =12 ... q

S = o'y = [VRIy,

(]

[Lo — LA

Similarly we have
L, — ML =LW.

This gives

LWxxH = (L, - ML) XX" =L, - ML = LW.
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Sine LM has full column rank, this implies WX X" = W. With the above
identities we get

“AXP + EXHA = vPL X XH - yPLX XHA

= YH(L, —LA)
= YHVR.
Thenfori =1, 2, ..., k we get
CN;()\Z)n =C ZE A _léri
e YRy

O

Remark 6.23: In general there are many projections leading to the same trans-
fer function. To make this precise, assume that ® € C**", ¥ € C9*" are given
such that X"® and Y are both nonsingular. Then the model given by

E=-0"Ly, A=-o"L,v, B=9o"V, C=wv
has the transfer function G(s) := C'(sE — A) ' B with the notation as in Theo-
rem 6.22.

To illustrate the method we give a simple example.

1

Example: Consider the function G(s) = 7.

points

We sample this function at the

AM=1, X =2 A3=3,
M1 = _17 M2 = _27 u3 = _37
and obtain the data
A=diag(1,2,3), R=[1 1 1], W=[3 % 4],
M= ding(-1,-2,-8), F=[1 1 1], V¥=[} } 4.

Then the Loewner pencil sl — L, is given by

0 -1 _1 103 1
10 10 10
L=} 0 -&| L-|% § §
2 1 g T E R
10 50 5 50 10
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It is easily checked by some SVDs that

rank(éL — L,) = rank [L L,] = rank [E‘] =2
Vee (=3, -2, —1,1, 2, 3}.

Therefore, we choose ®, ¥ e C3*2. We take

Now a simple calculation gives

1 p—
s2+1

C(sE—A)_IE = G(s),
so we have reconstructed our original model (which can be realized by a system

of state-space dimension two) from the data.




CHAPTER /

Outlook

In this course on model reduction we have mainly considered system-theoretic
methods, i. e., methods that mainly try to approximate the input/output behavior
of a dynamical system. In this chapter we will have a brief look onto some
further aspects of model reduction that could not be covered in this course in
full detail.

7.1 Parametric Model Reduction

In industrial applications one often considers dynamical systems that depend
on parameters. Then one is often interested in optimizing these parameters
which often requires a lot of simulations of the dynamical system for many
parameters. In this context one is particularly interested in reduced represen-
tations of the model to make these simulations feasible. The great challenge
consists of finding a reduced-order model that is a good approximation of the
original one for all parameters. A good survey on such methods is [ I
To make this precise, consider a parametric LTI system

o(t;p) = A(p)z(t;p) + B(p)u(t),
y(t;p) = C(p)z(t; p) + D(p)u(t),

where A(p) € R™*", B(p) e R**™, C(p) € R?*", and D(p) e R¥*™ forall p €
Q < R4 In this setting it is desirable to have a parameter-affine representation

101
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of the model as

A(p) = Ao + al(p)Al —+ ...
B(p) = Bo + bl(p)Bl =+ ...
C(p) = Co + Cl(p)cl + ...

+ Qg y (p)A/wn
+ b () Bros
+ Cre (p)cfic

(7.1)

for fixed matrices Ao, ..., Ax, e R™*", By, ..., By e R, Cy, ..., Cx, €
R?*™ and functions ay, ..., ax,, b1, ..., bey, €1, ..., Cxee : © — C. Note
that any system can be written in this form, but for computational efficiency it
is desirable to have k4, kB, ko « n. This representation easily allows the
construction of reduced-order models via projection, i.e., projection matrices
W, T e R™" are constructed such that WTT = I, and such that the reduced-
order model is given by

#(t;p) = A(p)E(t;p) + B(p)u(t),
y(t;p) = C(p)Z(t;p) + D(p)u(t),
where
Alp) = WTA()T = WT AT + ar(p)W T AT + ... + ap, ()W A, T,
B(p) = WTB(p) = W' By + bi(p)W By + ... + b, ()W By,
C(p) = C(p)T = CoT + c1(p)C1T + ... + ¢ (p)Crupe T,
D(p) = D(p).

The main questions that have to be faced here, are the following:

a) Do we want to determine global projection matrices W and T that are good
for all p € 2 or do we rather determine local projection matrices W1, . .., Wy,
11, ..., T} from models for particular parameters p1, ..., pi?

b) If we determine local projection matrices, how do we choose good parame-
ters p1, ..., pr and how can we use the information to get a reduced-order
model forp ¢ {p1, ..., pr}?

There are several ways to attack these questions. If the local projection matri-
ces Wy, ..., Wy, Ty, ..., T} from models for particular parameters p1, ..., px
are known, then one can obtain a reduced-order model for some p ¢ {p1, ..., pi}
by

a) transfer function interpolation: If CNT‘j(s) = 5’(pj)(sln - A(pj))ilé(pj) +
5(pj), then one can construct

k
G(s,p) = Y. 9;(p)Gj(s)
j=1
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for an arbitrary p € €2, where g;(-) are some interpolation functions (such
as Lagrange polynomials). Further, rational interpolation techniques have
been developed to find good global projection matrices. These lead to (tan-
gential) interpolation conditions that do not only lead to moment matching
at interpolation points sy, ..., sy, but also at the parameters p1, po, ..., pk.

b) matrix interpolation: Instead of interpolating the transfer functions, the re-
duced functions A(-), B(-), C(-), D(-) can be obtained via interpolation at
the parameters p1, ..., pg.

Note that the above techniques do not need the affine representation (7.1).
On the other hand, the affine representation is explicitly used in determin-
ing good global projection matrices by parametric balanced truncation. This
method computes global low-rank factorizations of parametric Lyapunov equa-
tions, but it still has limitations since it can only be applied to special classes
of systems such as systems with pointwise positive definite A(p) that allow the
development of error estimators. These error estimators are important to find
good sampling parameters p in the algorithm.

7.2 Sampling-Based Methods

A further class of methods that has not been discussed in this course are
sampling-based methods. These methods mainly consist of sampling the solu-
tion of the system under consideration for several initial conditions or parameter
values and approximating the space in which the solutions live. If a basis for
this space for some initial conditions or parameters is known, then the hope
is that also the solutions for the other values can be well represented in this
basis. Sampling-based methods play a great role in model reduction of PDEs,
see, e.g., [ ]. Consider for example 1D Burgers’ equation

0 02 10 )
t) — Vs P - >
Sy t) v y(a ) + 5yl t)? =0, 2€[0,1], >0

with the boundary and initial conditions

A finite element discretization with the finite element basis {1, ..., N} leads
to the spatially discretized model

ﬁ%g@) —vKj(t) + L(§(1)) = 0.
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Then an approximate solution of the original problem is of the form

N
On(z,t) = > @i(@)Bi(t),
i=1

where y;(t) is the i-th component of 4(¢). The goal is to replace this model by
a reduced-order model

~d ~ ~ .

M&y(t) —vKy(t) + L(g(t)) =0

that can be described by an orthonormal basis {1, ..., ¥} with k& <« N. Then
an approximate solution of the original problem is of the form

k
n(z,t) = > val@)Bi(t),
=1

where y;(t) is the i-th component of 7(¢). The question is how to determine the
basis {1, ..., ¥ }. Assume that we have given “snapshots” of the full-order
solution g (x, t),i.e., weknow {g1(-), ..., n(-)} :={Un(,t1), - ., Un(-,tn)} <
X, where X is assumed to be a Hilbert space with inner product (-, -)y and in-
duced norm |||y := ¢, ->¥2. For given k < n, the method of proper orthogonal
decomposition (POD) computes an optimal solution of the optimization problem

min - % = Gil%, Wiy =0 Vi Lefl, ...k},
{1, ¥} (3

where y;(z) = 2;?:1 {¥i,¥j) ¥j(x) is an approximation of 7; using the ba-
sis {1, ..., ¥p}. Assume w.l.o.g. that X = R¥. (Note that if X is any
finite dimensional Hilbert space, then there exists an isometric isomorphism
P (X, (oy) = (RY, ¢, Hpa), where (-, g is the standard inner product
in RV — so we can exploit the notation and simply denote ®(y) by 7.) So we
get an equivalent optimization problem

n
min Hz%—@Hg, Wby =050 Vi, Lefl, ..., k},
{1, ¥t
where gj; = Z?zl (i ¢j>RN ;. LetY = [3?1 .. gjn] e RV*n gand

YY Ty =Njaby forj=1,2,....,n withd =X >...> \,.
Then the POD basis is given by {¢1, ..., ¥} = {1;1, e, Jk} In other words,
the POD basis consists of the &k dominant left singular vectors of the snapshot
matrix Y. Furthermore, the error is given by

n
i=1

2 n

= > N

9 j=k+1

2
2 i i ¥ — i
j=1
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In the literature several further aspects are discussed such as optimal choices
of snapshots for parameter-dependent problems (by developing error estima-
tors) and the application to optimal control problems.




106 Chapter 7. Outlook




Bibliography

[Ant05]

[AV73]

[BBYS]

[BGW15]

[BKS13]

[BKS15]

[Bog07]

[BS13]

A. C. Antoulas. Approximation of Large-Scale Dynamical Systems.
SIAM Publications, Philadelphia, PA, USA, 2005.

B. D. O. Anderson and S. Vongpanitlerd. Network Analysis and Syn-
thesis — A Modern Systems Theory Approach. Prentice-Hall, Engle-
wood Cliffs, NJ, USA, 1973.

P. Benner and R. Byers. An exact line search method for solving gen-
eralized continuous-time algebraic Riccati equations. [EEE Trans.
Automat. Control, 43(1):101-107, 1998.

P. Benner, S. Gugercin, and K. Willcox. A survey on projection-based
model reduction methods for parametric dynamical systems. SIAM
Rev., 57(4):483-531, 2015.

P. Benner, P. Kiirschner, and J. Saak. Efficient handling of complex
shift parameters in the low-rank cholesky factor ADI method. Numer.
Algorithms, 62(2):225-251, 2013.

P. Benner, P. Kiirschner, and J. Saak. Self-generating and efficient
shift parameters in ADI methods for large Lyapunov and Sylvester
equations. Electron. Trans. Numer. Anal., 43:142-162, 2014-2015.

V. |. Bogachev. Measure Theory. Springer-Verlag, Berlin, Heidel-
berg, 1st edition, 2007.

P. Benner and J. Saak. Numerical solution of large and sparse contin-
uous time algebraic matrix Riccati and Lyapunov equations: A state
of the art survey. GAMM-Mitt., 6(1):32-52, 2013.

107



108

Bibliography

[GABO8]

[Geo88]

[GO13]

[Kle68]

[LR95]

[MAO7]

[Moo81]

[Obe91]

[Pen00]

[PR55]

[Ran96]

[RMO06a]

[RMO6b]

[RS10]

S. Gugercin, A. C. Antoulas, and C. A. Beattie. H2 model reduction
for large-scale linear dynamical systems. SIAM J. Matrix Anal. Appl.,
30(2):609-638, 2008.

T. T. Georgiou. On the computation of the gap metric. Systems
Control Lett., 11(4):253—-257, 1988.

C. Guiver and M. R. Opmeer. Error bounds in the gap met-
ric for dissipative balanced approximations. Linear Algebra Appl.,
439(12):3659-3698, 2013.

D. Kleinman. On an iterative technique for Riccati equation compu-
tations. IEEE Trans. Automat. Control, 13(1):114—115, 1968.

P. Lancester and L. Rodman. Algebraic Riccati Equations. Oxford
University Press, New York, 1995.

A. J. Mayo and A. C. Antoulas. A framework for the solution of
the generalized realization problem. Linear Algebra Appl., 425(2—
3):634-662, 2007.

B. C. Moore. Principal component analysis in linear systems: Con-
trollability, observability, and model reduction. IEEE Trans. Automat.
Control, AC-26(1):17-32, 1981.

R. Ober. Balanced parametrization of classes of linear systems.
SIAM J. Control Optim., 29(6):1251-1287, 1991.

T. Penzl. A cyclic low rank Smith method for large sparse Lyapunov
equations. SIAM J. Sci. Comput., 21(4):1401-1418, 2000.

D. Peaceman and H. Rachford. The numerical solution of elliptic and
parabolic differential equations. J. Soc. Indust. Appl. Math., 3(1):28—
41, 1955.

A. Rantzer. On the Kalman-Yakubovich-Popov lemma. Systems
Control Lett., 28(1):7—10, 1996.

J. Rommes and N. Martins. Efficient computation of multivariate
transfer function dominant poles using subspace acceleration. IEEE
Trans. Power Syst., 21(4):1471-1483, 2006.

J. Rommes and N. Martins. Efficient computation of transfer function
dominant poles using subspace acceleration. IEEE Trans. Power
Syst., 21(3):1218—-1226, 2006.

T. Reis and T. Stykel. Positive real and bounded real balancing for
model reduction of descriptor systems. Internat. J. Control, 83(1):74—
88, 2010.




Bibliography 109

[Saa82]

[Sim07]

[SZ02]

[Vol13]

[Wac13]

[Wil71]

[Wil72a]

[Wil72b]

[ZDG96]

Y. Saad. The Lanczos biorthogonalization algorithm and other
oblique projection projection methods for solving large unsymmetric
systems. SIAM J. Numer. Anal., 19(3):485-506, 1982.

V. Simoncini. A new iterative method for solving large-scale Lya-
punov equations. SIAM J. Sci. Comput., 29(3):1268—-1288, 2007.

D. C. Sorenson and Y. Zhou. Bounds on eigenvalue decay rates
and sensitivity of solutions to Lyapunov equations. CAAM Technical
Reports, Rice University, 2002.

S. Volkwein. Proper orthogonal decomposition:  Theory
and reduced-order modeling, August 2013. Available from
http://www.math.uni-konstanz.de/numerik/personen/
volkwein/teaching/POD-Book.pdf.

E. Wachspress. The ADI Model Problem. Springer-Verlag, New York,
NY, USA, 1st edition, 2013.

J. C. Willems. Least squares stationary optimal control and the alge-
braic Riccati equation. IEEE Trans. Automat. Control, AC-16(6):621—
634, 1971.

J. C. Willems. Dissipative dynamical systems part |: General theory.
Arch. Ration. Mech. Anal., 45(5):321-351, 1972.

J. C. Willems. Dissipative dynamical systems part Il: Linear systems
with quadratic supply rates. Arch. Ration. Mech. Anal., 45(5):352—
393, 1972.

K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control.
Prentice-Hall, Englewood Cliffs, NJ, 1996.



http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf
http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf

110

Bibliography




Bibliography

111




	Introduction
	What is Model Reduction?
	Examples of Large-Scale Dynamical Systems
	A Controlled Discretized Heat Equation
	Further Examples


	Basics of Systems and Control Theory
	Properties of LTI Systems
	Laplace Transformation and Transfer Functions
	Realizations
	Hardy Spaces
	The Hilbert Space H2p m
	The Banach Space Hp m


	Eigenvalue-Based Approaches
	Modal Truncation
	The Dominant Pole Algorithm

	Balancing-Based Approaches
	Input and Output Energy
	Balancing Transformations and Balanced Truncation
	Hankel Operator and Hankel Singular Values
	Properties of Balanced Truncation
	Numerical Solution of Large-Scale Lyapunov Equations
	Derivation of the ADI Iteration
	The ADI Shift Parameter Problem
	The Low-Rank Phenomenon
	The Low-Rank Cholesky Factor ADI Iteration
	Balanced Truncation Using the LRCF-ADI Method


	Passivity-Preserving Balancing-Based Model Reduction
	Passivity and Positive Real Transfer Functions
	Positive Real Balanced Truncation
	Analysis of the Method
	Numerical Solution of Large-Scale Algebraic Riccati Equations
	Newton's Method for Solving Algebraic Riccati Equations
	The Low-Rank Newton-Kleinman Method


	Interpolatory Model Reduction
	Moment Matching
	Moments
	One-Sided Moment Matching
	Two-Sided Moment Matching

	H2-Optimal Interpolation: The Iterative Rational Krylov Algorithm
	Interpolation from Data: The Loewner Framework

	Outlook
	Parametric Model Reduction
	Sampling-Based Methods


