Trees of tangles in infinite separation systems

Part I.

with Christian and Jakob 2020-06-09

Reviewing the Splinter Theorem

Theorem (Splinter Theorem; JMC'19)

Let U be a universe of separations and $(\hat{A}_i)_{i \leq n}$ a family of subsets of U. If $(A_i)_{i \leq n}$ splinters then we can pick an element a_i from each A_i so that $\{a_1, \ldots, a_n\}$ is nested.

Theorem (Splinter Theorem; JMC'19)

Let U be a universe of separations and $(\hat{A}_i)_{i \leq n}$ a family of subsets of U. If $(A_i)_{i \leq n}$ splinters then we can pick an element a_i from each A_i so that $\{a_1, \ldots, a_n\}$ is nested.

Typically A_i is the set of separations which efficiently distinguish a given pair of profiles.

Theorem (Splinter Theorem; JMC'19) Let U be a universe of separations and $(A_i)_{i \le n}$ a family of subsets of U. If $(A_i)_{i \le n}$ splinters then we can pick an element a_i from each A_i so that $\{a_1, \ldots, a_n\}$ is nested.

Typically A_i is the set of separations which efficiently distinguish a given pair of profiles.

 $(\mathcal{A}_i)_{i\in I}$ splinters if for all $a_i \in \mathcal{A}_i, a_j \in \mathcal{A}_j$

- $a_i \in \mathcal{A}_j$, or
- $a_j \in \mathcal{A}_i$, or
- a_i and a_j have a corner separation in \mathcal{A}_i or \mathcal{A}_j .

Theorem (Splinter Theorem; JMC'19) Let U be a universe of separations and $(A_i)_{i \le n}$ a family of subsets of U. If $(A_i)_{i \le n}$ splinters then we can pick an element a_i from each A_i so that $\{a_1, \ldots, a_n\}$ is nested.

Typically A_i is the set of separations which efficiently distinguish a given pair of profiles.

 $(\mathcal{A}_i)_{i\in I}$ splinters if for all $a_i \in \mathcal{A}_i, a_j \in \mathcal{A}_j$

- $a_i \in \mathcal{A}_j$, or
- $a_j \in \mathcal{A}_i$, or
- a_i and a_j have a corner separation in \mathcal{A}_i or \mathcal{A}_j .

How can we extend this to the infinite?

The profinite approach

Apply the splinter theorem to finite restrictions.

 \leq , \lor , \land work coordinate-wise.

 \leq , \lor , \land work coordinate-wise.

First Observation: If $(A_i | i \in I)$ in \vec{U} splinters, then so does every projection to a \vec{U}_p .

 \leq , \lor , \land work coordinate-wise.

First Observation: If $(A_i | i \in I)$ in \vec{U} splinters, then so does every projection to a \vec{U}_p . So, apply the finite Splinter Theorem!

Second Observation: If we apply the Splinter Theorem to \vec{U}_p and map the nested set to \vec{U}_q we get a splinter solution for \vec{U}_q . For every \vec{U}_p let \mathcal{N}_p be the set of all nested sets which meet every $\mathcal{A}_i \upharpoonright p$. **Second Observation:** If we apply the Splinter Theorem to \vec{U}_p and map the nested set to \vec{U}_q we get a splinter solution for \vec{U}_q . For every \vec{U}_p let \mathcal{N}_p be the set of all nested sets which meet every $\mathcal{A}_i \upharpoonright p$. Splinter Theorem says that these are non-empty. **Second Observation:** If we apply the Splinter Theorem to \vec{U}_p and map the nested set to \vec{U}_q we get a splinter solution for \vec{U}_q . For every \vec{U}_p let \mathcal{N}_p be the set of all nested sets which meet every $\mathcal{A}_i \upharpoonright p$. Splinter Theorem says that these are non-empty. Second observation says that we can lift the bonding maps f_{qp} to $\hat{f}_{qp} : \mathcal{N}_q \to \mathcal{N}_p$. **Second Observation:** If we apply the Splinter Theorem to \vec{U}_p and map the nested set to \vec{U}_q we get a splinter solution for \vec{U}_q . For every \vec{U}_p let \mathcal{N}_p be the set of all nested sets which meet

every $\mathcal{A}_i \upharpoonright p$. Splinter Theorem says that these are non-empty.

Second observation says that we can lift the bonding maps f_{qp} to $\hat{f}_{qp} \colon \mathcal{N}_q \to \mathcal{N}_p$.

Consider $N \in \varprojlim (\mathcal{N}_{\mathcal{P}} \mid p \in P).$

Second Observation: If we apply the Splinter Theorem to \vec{U}_p and map the nested set to \vec{U}_q we get a splinter solution for \vec{U}_q .

For every \overline{U}_p let \mathcal{N}_p be the set of all nested sets which meet every $\mathcal{A}_i \upharpoonright p$. Splinter Theorem says that these are non-empty.

Second observation says that we can lift the bonding maps f_{qp} to $\hat{f}_{qp} \colon \mathcal{N}_q \to \mathcal{N}_p$.

Consider $N \in \varprojlim (\mathcal{N}_p \mid p \in P)$. We can turn N into a nested set in \vec{U} .

Second Observation: If we apply the Splinter Theorem to \vec{U}_p and map the nested set to \vec{U}_q we get a splinter solution for \vec{U}_q .

For every \overline{U}_p let \mathcal{N}_p be the set of all nested sets which meet every $\mathcal{A}_i \upharpoonright p$. Splinter Theorem says that these are non-empty.

Second observation says that we can lift the bonding maps f_{qp} to $\hat{f}_{qp}: \mathcal{N}_q \to \mathcal{N}_p$.

Consider $N \in \varprojlim (\mathcal{N}_p \mid p \in P)$. We can turn N into a nested set in \vec{U} .

If the A_i are closed, N meets all of them.

Theorem (Profinite Splinter Theorem)

Let $\vec{U} = \varprojlim (\vec{U}_p \mid p \in \vec{P})$ be a profinite universe and $(A_i \mid i \in I)$ a family of non-empty closed subsets of \vec{U} . If $(A_i \mid i \in I)$ splinters then there is a closed nested set $N \subseteq \vec{U}$ containing at least one element from each A_i . Let $\mathcal{A}_{P,P'}$ be the set of all efficient P-P'-distinguishers. How do we ensure that the $\mathcal{A}_{P,P'}$ are closed? Let $\mathcal{A}_{P,P'}$ be the set of all efficient P-P'-distinguishers. How do we ensure that the $\mathcal{A}_{P,P'}$ are closed? Intuitively it makes sense ... Let $\mathcal{A}_{P,P'}$ be the set of all efficient P-P'-distinguishers. How do we ensure that the $\mathcal{A}_{P,P'}$ are closed? Intuitively it makes sense ... if we ignore \aleph_0 -tangles (ends and ultrafilters): Let $\mathcal{A}_{P,P'}$ be the set of all efficient P-P'-distinguishers.

How do we ensure that the $\mathcal{A}_{P,P'}$ are closed?

Intuitively it makes sense ... if we ignore \aleph_0 -tangles (ends and ultrafilters):

A *k*-profile *P* in a graph *G* is **bounded** if it does not extend to an \aleph_0 -profile.

Let $\mathcal{A}_{P,P'}$ be the set of all efficient P-P'-distinguishers.

How do we ensure that the $\mathcal{A}_{P,P'}$ are closed?

Intuitively it makes sense . . . if we ignore \aleph_0 -tangles (ends and ultrafilters):

A *k*-profile *P* in a graph *G* is **bounded** if it does not extend to an \aleph_0 -profile.

Observation

 \vec{S}_k is closed in \vec{U} .

Let $\mathcal{A}_{P,P'}$ be the set of all efficient P-P'-distinguishers.

How do we ensure that the $\mathcal{A}_{P,P'}$ are closed?

Intuitively it makes sense . . . if we ignore \aleph_0 -tangles (ends and ultrafilters):

A *k*-profile *P* in a graph *G* is **bounded** if it does not extend to an \aleph_0 -profile.

Observation

 \vec{S}_k is closed in \vec{U} .

Lemma

 $\mathcal{A}_{P,P'}$ is closed for bounded P, P'.

Lemma $(A_{P,P'} | P, P' \text{ bounded, robust and distinguishable profiles in } G)$ splinters.

Luckily, the splinter condition was designed for this. We only need robust and distinguishable.

Done!

Can we build a tree-decomposition from this?

...

...

Can we do something without inverse limits?

Relations, Crossing Numbers and Canonicity

In graph separations: Crossing number is strongly submodular.

Encode this in our splinter-condition.

We work on a ground set A. Generally, this will be $\bigcup_i A_i$.

We work on a ground set A. Generally, this will be $\bigcup_i A_i$.

Let **nested** be a reflexive and symmetric relation.

We work on a ground set \mathcal{A} . Generally, this will be $\bigcup_i \mathcal{A}_i$.

Let **nested** be a reflexive and symmetric relation.

Crossing means 'not nested'.

We work on a ground set \mathcal{A} . Generally, this will be $\bigcup_i \mathcal{A}_i$.

Let **nested** be a reflexive and symmetric relation.

Crossing means 'not nested'.

A corner of a and b is an element c of A, such that anything that crosses c also crosses a or b.

Split $(A_i \mid i \in I)$ into 'levels':

| $|: I \rightarrow \mathbb{N}_0$

Think of |i| as 'the order of the elements of A_i .'

Split $(A_i \mid i \in I)$ into 'levels':

 $| \ | : I \rightarrow \mathbb{N}_0$

Think of |i| as 'the order of the elements of A_i .'

The *k*-crossing number of *a* is the number of elements of \mathcal{A} that cross *a* and lie in some \mathcal{A}_i with |i| = k.

Split $(A_i \mid i \in I)$ into 'levels':

 $| \ | : I \rightarrow \mathbb{N}_0$

Think of |i| as 'the order of the elements of A_i .'

The *k*-crossing number of *a* is the number of elements of \mathcal{A} that cross *a* and lie in some \mathcal{A}_i with |i| = k.

We take care here not to count multiplicities.

 $(A_i \mid i \in I)$ thinly splinters if:

1. For every $i \in I$ all elements of A_i have finite k-crossing number for all $k \leq |i|$.

 $(A_i \mid i \in I)$ thinly splinters if:

- 1. For every $i \in I$ all elements of A_i have finite k-crossing number for all $k \leq |i|$.
- 2. If $a_i \in A_i$ and $a_j \in A_j$ cross with |j| < |i|, then A_i contains some corner of a_i and a_j that is nested with a_j .

 $(\mathcal{A}_i \mid i \in I)$ thinly splinters if:

- 1. For every $i \in I$ all elements of A_i have finite k-crossing number for all $k \leq |i|$.
- 2. If $a_i \in A_i$ and $a_j \in A_j$ cross with |j| < |i|, then A_i contains some corner of a_i and a_j that is nested with a_j .
- 3. If $a_i \in \mathcal{A}_i$ and $a_j \in \mathcal{A}_j$ cross with |i| = |j| = k, then
 - either A_i contains a corner of a_i and a_j with strictly lower k-crossing number than a_i,
 - or else A_j contains a corner of a_i and a_j with strictly lower k-crossing number than a_j.

 $(A_i \mid i \in I)$ thinly splinters if:

- 1. For every $i \in I$ all elements of A_i have finite k-crossing number for all $k \leq |i|$.
- 2. If $a_i \in A_i$ and $a_j \in A_j$ cross with |j| < |i|, then A_i contains some corner of a_i and a_j that is nested with a_j .
- 3. If $a_i \in \mathcal{A}_i$ and $a_j \in \mathcal{A}_j$ cross with |i| = |j| = k, then
 - either A_i contains a corner of a_i and a_j with strictly lower k-crossing number than a_i,
 - or else A_j contains a corner of a_i and a_j with strictly lower k-crossing number than a_j.

Theorem (Thin Splinter Theorem)

If $(A_i | i \in I)$ thinly splinters, then there is a canonical set $N \subseteq A$ which meets every A_i and is pairwise nested.

Construct $N_0 \subseteq N_1 \subseteq N_2 \dots$, s.t. N_k takes care of all \mathcal{A}_i with $|i| \leq k$. Set $N_{-1} := \emptyset$. In step k: Let N_k^+ consist of from each \mathcal{A}_i with |i| = kamong those elements nested with N_{k-1} all of minimum k-crossing number.

Set $N_k \coloneqq N_{k-1} \cup N_k^+$. Need to show:

- For each A_i we had elements to choose from.
- N_k is nested.

• For each A_i , |i| = k, we had elements to choose from.

That is, A_i has an element that is nested with N_{k-1} .

By (1) every element of A_i crosses only finitely many elements of N_{k-1} .

Let a_i be one that crosses as few as possible.

Suppose it crosses some $a_j \in N_{k-1}$, then $a_j \in A_j$ with |j| < k. By (2), a_i and a_j have a corner in A_i that is nested with a_j . This corner was a better choice for a_i . • N_k is nested.

Every element of N_k^+ is nested with N_{k-1} by construction. Only need to show that N_k^+ is nested. Suppose a_i and a_j in N_k^+ cross. By (3) there is a corner of a_i and a_j in \mathcal{A}_i or \mathcal{A}_j , with a strictly lower *k*-crossing number than the corresponding a_i or a_j .