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Reviewing the Splinter Theorem



Reviewing the Splinter Theorem

Theorem (Splinter Theorem; JMC’19)
Let U be a universe of separations and (Ai )i≤n a family of

subsets of U. If (Ai )i≤n splinters then we can pick an element ai

from each Ai so that {a1, . . . , an} is nested.

Typically Ai is the set of separations which

efficiently distinguish a given pair of profiles.

(Ai )i∈I splinters if for all ai ∈ Ai , aj ∈ Aj

• ai ∈ Aj , or

• aj ∈ Ai , or

• ai and aj have a corner separation in Ai or Aj .

How can we extend this to the infinite?

2



Reviewing the Splinter Theorem

Theorem (Splinter Theorem; JMC’19)
Let U be a universe of separations and (Ai )i≤n a family of

subsets of U. If (Ai )i≤n splinters then we can pick an element ai

from each Ai so that {a1, . . . , an} is nested.

Typically Ai is the set of separations which

efficiently distinguish a given pair of profiles.

(Ai )i∈I splinters if for all ai ∈ Ai , aj ∈ Aj

• ai ∈ Aj , or

• aj ∈ Ai , or

• ai and aj have a corner separation in Ai or Aj .

How can we extend this to the infinite?

2



Reviewing the Splinter Theorem

Theorem (Splinter Theorem; JMC’19)
Let U be a universe of separations and (Ai )i≤n a family of

subsets of U. If (Ai )i≤n splinters then we can pick an element ai

from each Ai so that {a1, . . . , an} is nested.

Typically Ai is the set of separations which

efficiently distinguish a given pair of profiles.

(Ai )i∈I splinters if for all ai ∈ Ai , aj ∈ Aj

• ai ∈ Aj , or

• aj ∈ Ai , or

• ai and aj have a corner separation in Ai or Aj .

How can we extend this to the infinite?

2



Reviewing the Splinter Theorem

Theorem (Splinter Theorem; JMC’19)
Let U be a universe of separations and (Ai )i≤n a family of

subsets of U. If (Ai )i≤n splinters then we can pick an element ai

from each Ai so that {a1, . . . , an} is nested.

Typically Ai is the set of separations which

efficiently distinguish a given pair of profiles.

(Ai )i∈I splinters if for all ai ∈ Ai , aj ∈ Aj

• ai ∈ Aj , or

• aj ∈ Ai , or

• ai and aj have a corner separation in Ai or Aj .

How can we extend this to the infinite?

2



The profinite approach



The profinite approach

Apply the splinter theorem to finite restrictions.
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The profinite approach

A profinite universe is an inverse limit U = lim←− (Up | p ∈ P) of

finite Up , it consists of those separations s = (sp | p ∈ P) which

are compatible wrt. bonding maps fpq : Up → Uq.

≤,∨,∧ work coordinate-wise.

First Observation: If (Ai | i ∈ I ) in U splinters, then so does

every projection to a Up . So, apply the finite Splinter Theorem!
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The profinite approach

Second Observation: If we apply the Splinter Theorem to Up

and map the nested set to Uq we get a splinter solution for Uq .

For every Up let Np be the set of all nested sets which meet

every Ai � p.

Splinter Theorem says that these are non-empty.

Second observation says that we can lift the bonding maps fqp

to f̂qp : Nq → Np.

Consider N ∈ lim←− (Np | p ∈ P). We can turn N into a nested set

in U.

If the Ai are closed, N meets all of them.
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Theorem (Profinite Splinter Theorem)
Let U = lim←− (Up | p ∈ P) be a profinite universe and (Ai | i ∈ I )

a family of non-empty closed subsets of U. If (Ai | i ∈ I )

splinters then there is a closed nested set N ⊆ U containing at

least one element from each Ai .
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Application to graphs

Let AP,P′ be the set of all efficient P–P ′-distinguishers.

How do we ensure that the AP,P′ are closed?

Intuitively it makes sense . . .

if we ignore ℵ0-tangles (ends and ultrafilters):

A k-profile P in a graph G is bounded if

it does not extend to an ℵ0-profile.

Observation
Sk is closed in U.

Lemma
AP,P′ is closed for bounded P,P ′.
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Application to graphs

Lemma
(AP,P′ | P,P ′ bounded, robust and distinguishable profiles in G )

splinters.

Luckily, the splinter condition was designed for this.

We only need robust and distinguishable.
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Done!

Can we build a tree-decomposition from this?
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No.
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Can we do something without inverse limits?
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Relations, Crossing Numbers and

Canonicity



Finite crossing number

In graph separations: Crossing number is strongly submodular.

Encode this in our splinter-condition.
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The nestedness relation

We work on a ground set A. Generally, this will be
⋃

i Ai .

Let nested be a reflexive and symmetric relation.

Crossing means ‘not nested’.

A corner of a and b is an element c of A, such that

anything that crosses c also crosses a or b.
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Finite crossing number

Split (Ai | i ∈ I ) into ‘levels’:

| | : I → N0

Think of |i | as ‘the order of the elements of Ai .’

The k-crossing number of a is the number of elements of A
that cross a and lie in some Ai with |i | = k .

We take care here not to count multiplicities.
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The thin splinter theorem

(Ai | i ∈ I ) thinly splinters if:

1. For every i ∈ I all elements of Ai have finite k-crossing

number for all k ≤ |i |.

2. If ai ∈ Ai and aj ∈ Aj cross with |j | < |i |, then Ai contains

some corner of ai and aj that is nested with aj .

3. If ai ∈ Ai and aj ∈ Aj cross with |i | = |j | = k , then

• either Ai contains a corner of ai and aj with

strictly lower k-crossing number than ai ,

• or else Aj contains a corner of ai and aj with

strictly lower k-crossing number than aj .

Theorem (Thin Splinter Theorem)
If (Ai | i ∈ I ) thinly splinters, then there is a canonical set

N ⊆ A which meets every Ai and is pairwise nested.
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Proof

Construct N0 ⊆ N1 ⊆ N2 . . . ,

s.t. Nk takes care of all Ai with |i | ≤ k .

Set N−1 := ∅. In step k:

Let N+
k consist of

from each Ai with |i | = k

among those elements nested with Nk−1

all of minimum k-crossing number.

Set Nk := Nk−1 ∪ N+
k . Need to show:

• For each Ai we had elements to choose from.

• Nk is nested.
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Proof

• For each Ai , |i | = k , we had elements to choose from.

That is, Ai has an element that is nested with Nk−1.

By (1) every element of Ai crosses only finitely many elements of

Nk−1.

Let ai be one that crosses as few as possible.

Suppose it crosses some aj ∈ Nk−1, then aj ∈ Aj with |j | < k .

By (2), ai and aj have a corner in Ai that is nested with aj .

U This corner was a better choice for ai .
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Proof

• Nk is nested.

Every element of N+
k is nested with Nk−1 by construction.

Only need to show that N+
k is nested.

Suppose ai and aj in N+
k cross.

By (3) there is a corner of ai and aj in Ai or Aj ,

with a strictly lower k-crossing number than

the corresponding ai or aj . U
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