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Abstract. In this work, the relation between input-to-state stability and integral input-to-
state stability is studied for linear infinite-dimensional systems with an unbounded control operator.
Although a special focus is laid on the case L∞, general function spaces are considered for the inputs.
We show that integral input-to-state stability can be characterized in terms of input-to-state stability
with respect to Orlicz spaces. Since we consider linear systems, the results can also be formulated
in terms of admissibility. For parabolic diagonal systems with scalar inputs, both stability notions
with respect to L∞ are equivalent.
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1. Introduction. In systems and control theory, the question of stability is a
fundamental issue. Let us consider the situation where the relation between the input
(function) u and the state x is governed by the autonomous equation

ẋ = f(x, u), x(0) = x0.(1.1)

One can then distinguish between external stability, that is, stability with respect to
the input u, and internal stability, i.e., when u = 0. For the moment, f is assumed to
map from Rn×Rm to Rn and to be such that solutions x exist on [0,∞) for all inputs
u in a function space Z. Already from this very general viewpoint, it seems clear that
stability notions may strongly depend on the specific choice of Z (and its norm). The
concept of input-to-state stability (ISS) combines both external and internal stability
in one notion. If Z is chosen to be L∞(0,∞;U), U = Rm, a system is called ISS (with
respect to L∞) if there exist functions β ∈ KL, γ ∈ K, such that

‖x(t)‖ ≤ β(‖x0‖, t) + γ(ess sup
s∈[0,t]

‖u(s)‖U )

for all t > 0 and u ∈ Z. Here the sets KL and K refer to the classic comparison
functions from nonlinear systems theory; see section 2. Introduced by Sontag in 1989
[27], ISS has been intensively studied in past decades; see [29] for a survey.
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INFINITE-DIMENSIONAL ISS AND ORLICZ SPACES 869

A related stability notion is integral input-to-state stability (iISS) [28, 2], which
means that for some β ∈ KL, θ ∈ K∞, and µ ∈ K,

(1.2) ‖x(t)‖ ≤ β(‖x0‖, t) + θ

(∫ t

0

µ(‖u(s)‖)U ) ds

)
for all t > 0 and u ∈ Z = L∞(0,∞;U). This property differs from ISS in the sense that
it allows for unbounded inputs u that have “finite energy”; see [28]. Many practically
relevant systems are iISS whereas they are not ISS; see, e.g., [19] for a detailed list.
However, for linear systems, i.e., f(x, u) = Ax + Bu with matrices A and B, iISS is
equivalent to ISS. To some extent, this observation marks the starting point of this
work.

In contrast to the well-established theory for finite-dimensions, a more intensive
study of (integral) input-to-state stability for infinite-dimensional systems has only
begun recently. We refer to [4, 5, 11, 12, 13, 16, 17, 18, 19, 20]. By nature, in
the infinite-dimensional setting, the stability notions from finite-dimensions are more
subtle. We refer to [21] for a listing of failures of equivalences around ISS known from
finite-dimensional systems. In most of the mentioned infinite-dimensional references,
systems of the form (1.1) with f : X × U → X and Banach spaces X and U are
considered. For linear equations, this setting corresponds to evolution equations of
the form

(1.3) ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

where B is a bounded control operator (note that for fixed t, x(t) = x(t, ·) is a function
and ẋ denotes the time-derivative). Analogously to finite-dimensions, in this case, ISS
and iISS are known to be equivalent; see, e.g., [19, Cor. 2] and Proposition 2.14 below.
However, concerning applications the requirement of bounded control operators B is
rather restrictive. Typical examples for systems which only allow for a formulation
with an unbounded B are boundary control systems. It is clear that such phenomena
cannot occur for linear systems in finite-dimensions.

The main point of this paper is to relate and characterize (integral) input-to-state
stability for linear, infinite-dimensional systems with unbounded control operators,
i.e., systems of the form (1.3) with unbounded operators B. This is done by using the
notion of admissibility [25, 31], which also reveals the connection of the mentioned
stability types with the boundedness of the linear mapping

Z → X, u 7→ x(t)

(for x0 = 0). It is not surprising that the choice of topology for Z, the space of inputs
u, is crucial here. However, looking at (1.2) for x0 = 0, it is not clear how the right-
hand side could define a norm for general functions µ and θ. The question of the right
norm for Z motivates one to study ISS and iISS with respect to general spaces Z—not
only Z = L∞ = L∞(0,∞;U). For the precise definition of these notions, we refer to
section 2. We show that Z-ISS and Z-iISS are equivalent for Z = Lp = Lp(0,∞;U),
p ∈ [1,∞). However, it turns out that this paves the way to characterize L∞-iISS
in terms of ISS. More precisely, we will show that L∞-iISS is equivalent to ISS with
respect to some Orlicz space. This is one of the main results of this work. Orlicz
spaces (or Orlicz–Birnbaum spaces) appear naturally as generalizations of Lp-spaces
and ISS with respect to such spaces can thus be seen as a generalization of classical
stability notions. Other choices for general input functions have been made in the
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870 JACOB, NABIULLIN, PARTINGTON, AND SCHWENNINGER

Table 1.1
The relation between ISS and iISS (with respect to L∞) in various settings.

Eq. (1.3),
B bounded

Eq. (1.3),
B unbounded

Eq. (1.1),
f nonlinear

dimX <∞ ISS ⇐⇒ iISS ISS ⇐⇒ iISS ISS =⇒
6⇐=

iISS

dimX =∞ ISS ⇐⇒ iISS ISS
⇐=(

?
=⇒

) iISS not clear

literature—like admissibility with respect to Lorentz spaces [6, 33] or Z-ISS with Z
being a Sobolev space [9, 18].

As we will see, it is plain that Z-iISS always implies Z-ISS for linear systems.
The converse direction, for Z = L∞, remains open in general. It is known that ISS is
equivalent to admissibility (together with exponential stability). We will show that
L∞-iISS in fact implies zero-class admissibility [8, 34], which is slightly stronger than
admissibility; see Proposition 2.13. In Table 1.1, the relation of L∞-ISS and L∞-iISS,
in the various above-mentioned settings is depicted schematically.

In section 2, we will discuss the setting and formally introduce the stability no-
tions mentioned above. This includes a general abstract definition of ISS, iISS, and
admissibility with respect to some function space Z. Furthermore, we will give some
basic facts about their relation.

Section 3 deals with the characterization of ISS and iISS in terms of Orlicz space
admissibility. As a main result, we show that L∞-iISS is equivalent to ISS with respect
to some Orlicz space EΦ, where Φ denotes a Young function, Theorem 3.1. Moreover,
we show that ISS with respect to an Orlicz space is a natural generalization of classic
Lp-ISS that “interpolates” the notions of L1- and L∞-ISS, Theorems 3.2 and 3.4.

In section 4, we consider parabolic diagonal systems with scalar input. More
precisely, we assume that A possesses a Riesz basis of eigenvectors with eigenvalues
lying in a sector in the open left half-plane. For this class of systems we show that
L∞-ISS implies ISS with respect to some Orlicz space and thus, by the results of
section 3, the equivalence between iISS and ISS, known in finite-dimensions, holds for
this class of systems. Moreover, it turns out that any linear, bounded operator from
U to the extrapolation space X−1 is L∞-admissible, which yields a characterization of
ISS. The results of this section partially generalize results that were already indicated
in [7].

We illustrate the obtained results by examples in section 5. In particular, we
present a parabolic diagonal system which is L∞-ISS but not Lp-ISS for any p ∈ [1,∞).
Finally, we conclude by drawing a connection between the question of whether L∞-ISS
implies L∞-iISS and a problem due to Weiss.

2. Stability notions for infinite-dimensional systems.

2.1. The setting and definitions. In this article we study systems Σ(A,B) of
the form

(2.1) ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0,

where A generates a C0-semigroup (T (t))t≥0 on a Banach space X and B is a linear
and bounded operator from a Banach space U to the extrapolation space X−1. Note
that B is possibly unbounded from U to X. Here X−1 is the completion of X with
respect to the norm

‖x‖X−1 = ‖(β −A)−1x‖X
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INFINITE-DIMENSIONAL ISS AND ORLICZ SPACES 871

for some β ∈ ρ(A), the resolvent set of A. It can be shown that the semigroup
(T (t))t≥0 possesses a unique extension to a C0-semigroup (T−1(t))t≥0 on X−1 with
generator A−1, which is an extension of A. Thus we may consider (2.1) on the Banach
space X−1 and therefore for u ∈ L1

loc(0,∞;U), the (mild) solution of (2.1) is given
by the variation of parameters formula

(2.2) x(t) = T (t)x0 +

∫ t

0

T−1(t− s)Bu(s) ds, t ≥ 0.

In this paper, we will consider the following types of function spaces.

Assumption 2.1. For a Banach space U , let Z ⊆ L1
loc(0,∞;U) be such that for

all t > 0
(a) Z(0, t;U) := {f ∈ Z | f |[t,∞) = 0} becomes a Banach space of functions on

the interval (0, t) with values in U (in the sense of equivalence classes w.r.t.
equality almost everywhere),

(b) Z(0, t;U) is continuously embedded in L1(0, t;U), that is, there exists κ(t) > 0
such that for all f ∈ Z(0, t;U) it holds that f ∈ L1(0, t;U) and

‖f‖L1(0,t;U) ≤ κ(t)‖f‖Z(0,t;U),

(c) for u ∈ Z(0, t;U) and s > t we have ‖u‖Z(0,t;U) = ‖u‖Z(0,s;U),
(d) Z(0, t;U) is invariant under the left-shift and reflection, i.e., SτZ(0, t;U) ⊂

Z(0, t;U) and RtZ(0, t;U) ⊂ Z(0, t;U), where

Sτu = u(·+ τ), Rtu = u(t− ·),

and τ > 0, and furthermore, ‖Sτ‖L(Z(0,t;U)) ≤ 1 and Rt is isometric,
(e) for all u ∈ Z and 0 < t < s it holds that u|(0,t) ∈ Z(0, t;U) and

‖u|(0,t)‖Z(0,t;U) ≤ ‖u|(0,s)‖Z(0,s;U).

If additionally we have in (b) that

(B) κ(t)→ 0, as t↘ 0,

then we say that Z satisfies condition (B).

For example, Z = Lp refers to the spaces Lp(0, t;U), t > 0, for fixed 1 ≤ p ≤
∞ and U . Other examples can be given by Sobolev spaces and the Orlicz spaces
LΦ(0, t;U) and EΦ(0, t;U); see the appendix. If p > 1 (including p = ∞) and Φ
is a Young function, then Lp, EΦ, and LΦ satisfy condition (B), thanks to Hölder’s
inequality. Clearly, L1 does not satisfy condition (B).

In general, the state x(t) given by (2.2) lies in X−1 for u ∈ L1
loc and t > 0. The

notion of admissibility ensures that indeed x(t) ∈ X.

Definition 2.2. We call the system Σ(A,B) admissible with respect to Z (or
Z-admissible) if

(2.3)

∫ t

0

T−1(s)Bu(s) ds ∈ X

for all t > 0 and u ∈ Z(0, t;U). If Σ(A,B) is admissible with respect to Z, then all
mild solutions (2.2) are in X and by the closed graph theorem there exists a constant
c(t) (take the infimum over all possible constants) such that
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872 JACOB, NABIULLIN, PARTINGTON, AND SCHWENNINGER∥∥∥∥∫ t

0

T−1(s)Bu(s) ds

∥∥∥∥ ≤ c(t)‖u‖Z(0,t;U).(2.4)

Moreover, it is easy to see that Σ(A,B) is admissible if (2.3) holds for one t > 0.

Definition 2.3. We call the system Σ(A,B) infinite-time admissible with respect
to Z (or Z-infinite-time admissible) if the system is admissible with respect to Z and
c∞ := supt>0 c(t) is finite. We call the system Σ(A,B) zero-class admissible with
respect to Z (or Z-zero-class admissible) if it is admissible with respect to Z and
limt→0 c(t) = 0.

Remark 2.4. Clearly, zero-class admissibility and infinite-time admissibility imply
admissibility, respectively.

Since Z ⊆ L1
loc(0,∞;U), for any u ∈ Z and any initial value x0, the mild solution

x of (2.1) is continuous as a function from [0,∞) to X−1. Next we show that zero-class
admissibility guarantees that x even lies in C(0,∞;X).

Proposition 2.5. If Σ(A,B) is Z-zero-class admissible, then for every x0 ∈ X
and every u ∈ Z the mild solution of (2.1), given by (2.2), satisfies x ∈ C([0,∞);X).

Proof. Since x is given by (2.2), it suffices to consider the case x0 = 0. Let u ∈ Z.

We have to show that t 7→ Φtu :=
∫ t

0
T−1(s)Bu(s) ds is continuous. The proof is

divided into two steps.
First, note that t 7→ Φtu is right-continuous on [0,∞). In fact, by

Φt+hu− Φtu = T (t)

∫ h

0

T−1(s)Bu(s+ t) ds,

h > 0, and Z-zero-class admissibility, it follows that

‖Φt+hu− Φtu‖ ≤ c(h)‖T (t)‖‖u(·+ t)‖Z(0,h;U) → 0

for h↘ 0 (where we used properties (d), (e) of Z).
Second, we show that t 7→ Φt is left-continuous on (0,∞). Since (Φt − Φt−h)u =

(Φt − Φt−h)u|(0,t), we can assume that u ∈ Z(0, t;U). Clearly,

(Φt − Φt−h)u = T (t− h)

∫ h

0

T−1(s)Bu(s+ t− h) ds.

It follows that∥∥∥∥∥
∫ h

0

T−1(s)Bu(s+ t− h) ds

∥∥∥∥∥ ≤ c(h)‖u(·+ t− h)‖Z(0,h;U)

≤ c(h)‖u(·+ t− h)‖Z(0,t;U)

≤ c(h)‖u‖Z(0,t;U)
h↘0−→ 0,

where the last two inequalities hold by properties (e) and (d) of Z. Since (T (t))t≥0

is uniformly bounded on compact intervals, we conclude that ‖Φt+hu− Φtu‖ → 0 as
h→ 0.

Remark 2.6. If Σ(A,B) is admissible with respect to Lp, 1 ≤ p < ∞, then,
by Hölder’s inequality, Σ(A,B) is Lq-zero-class admissible for any q > p. Thus,
Proposition 2.5 implies that the mild solution of (2.1) lies in C(0,∞;X) for all u ∈ Lq.
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Moreover, this continuity even holds for u ∈ Lp, which was already shown by Weiss
in his seminal paper [31, Prop. 2.3] on admissible control operators. However, there,
a direct but similar proof is used without using the notion of zero-class admissibility.
As stated in [31, Prob. 2.4], it is an interesting open problem whether the continuity
of x is implied by L∞-admissibility. By Proposition 2.5, the answer is “yes” in the
case of L∞-zero-class admissibility. See also section 6.

To introduce ISS, we will need the following well-known function classes from
Lyapunov theory. Here, R+

0 denotes the set of nonnegative real numbers.

K = {µ : R+
0 → R+

0 | µ(0) = 0, µ continuous, strictly increasing},
K∞ = {θ ∈ K | lim

x→∞
θ(x) =∞},

L = {γ : R+
0 → R+

0 | γ continuous, strictly decreasing, lim
t→∞

γ(t) = 0},

KL = {β : (R+
0 )2 → R+

0 | β(·, t) ∈ K ∀t ≥ 0 and β(s, ·) ∈ L ∀s > 0}.

Definition 2.7. The system Σ(A,B) is called input-to-state stable with respect
to Z (or Z-ISS) if there exist functions β ∈ KL and µ ∈ K∞ such that for every t ≥ 0,
x0 ∈ X, and u ∈ Z(0, t;U)

(i) x(t) lies in X and
(ii) ‖x(t)‖ ≤ β(‖x0‖, t) + µ(‖u‖Z(0,t;U)).
The system Σ(A,B) is called integral input-to-state stable with respect to Z (or

Z-iISS) if there exist functions β ∈ KL, θ ∈ K∞, and µ ∈ K such that for every t ≥ 0,
x0 ∈ X, and u ∈ Z(0, t;U)

(i) x(t) lies in X and

(ii) ‖x(t)‖ ≤ β(‖x0‖, t) + θ(
∫ t

0
µ(‖u(s)‖U ) ds).

The system Σ(A,B) is called a uniformly bounded energy bounded state with
respect to Z (or Z-UBEBS) if there exist functions γ, θ ∈ K∞, µ ∈ K and a constant
c > 0 such that for every t ≥ 0, x0 ∈ X, and u ∈ Z(0, t;U)

(i) x(t) lies in X and

(ii) ‖x(t)‖ ≤ γ(‖x0‖) + θ(
∫ t

0
µ(‖u(s)‖U ) ds) + c.

Remark 2.8.
1. By the inclusion of Lp spaces on bounded intervals we obtain that Lp-ISS

(Lp-iISS, Lp-UBEBS) implies Lq-ISS (Lq-iISS, Lq-UBEBS) for all 1 ≤ p <
q ≤ ∞. Further the inclusions L∞ ⊆ EΦ ⊆ LΦ ⊆ L1 and Z ⊆ L1

loc yield a
corresponding chain of implications of ISS, iISS, and UBEBS.

2. Note that in general the integral
∫ t

0
µ(‖u(s)‖U ) ds in the inequalities defining

Z-iISS and Z-UBEBS may be infinite. In that case, the inequalities hold
trivially. This indicates that the major interest in iISS and UBEBS lies in
the case Z = L∞, in which the integral is always finite.

2.2. Relations between the stability notions. Recall that the semigroup
(T (t))t≥0 is called exponentially stable if there exist constants M,ω > 0 such that

‖T (t)‖ ≤Me−ωt, t ≥ 0.(2.5)

Lemma 2.9. Let (T (t))t≥0 be exponentially stable and Σ(A,B) be Z-admissible.
Then the following holds:

(i) Σ(A,B) is infinite-time Z-admissible.
(ii) Σ(A,B) is Z-iISS if and only if there exist θ ∈ K∞ and µ ∈ K such that for

every u ∈ Z(0, 1;U),
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874 JACOB, NABIULLIN, PARTINGTON, AND SCHWENNINGER

(2.6)

∥∥∥∥∫ 1

0

T−1(s)Bu(s) ds

∥∥∥∥ ≤ θ(∫ 1

0

µ(‖u(s)‖U ) ds

)
.

Moreover, if (2.6) holds, then Σ(A,B) is Z-iISS with the same choice of µ.

Proof. By the representation of the solution (2.2) for x0 = 0, it follows that the
condition in (ii) is necessary for Z-iISS. For the sufficiency it is enough to consider
x0 = 0 by exponential stability. Therefore, both (i) and (ii) hold if we can show
that there exists C > 0 such that for any t > 0 and u ∈ Z(0, t;U), there exists
ũ ∈ Z(0, 1;U) such that the following three inequalities hold:∥∥∥∥∫ t

0

T−1(s)Bu(s) ds

∥∥∥∥ ≤ C ∥∥∥∥∫ 1

0

T−1(s)Bũ(s) ds

∥∥∥∥ ,
‖ũ‖Z(0,1;U) ≤ ‖u‖Z(0,t;U),∫ 1

0

µ(‖ũ(s)‖U ) ds ≤
∫ t

0

µ(‖u(s)‖U ) ds ∀µ ∈ K.

Without loss of generality, we assume that t ∈ N and otherwise extend u suitably by
the zero-function. By splitting the integral, substitution, and the fact that Σ(A,B)
is Z-admissible, we get for u ∈ Z(0, t;U),∥∥∥∥∫ t

0

T−1(s)Bu(s) ds

∥∥∥∥ =

∥∥∥∥∥
t−1∑
k=0

∫ k+1

k

T−1(s)Bu(s) ds

∥∥∥∥∥
=

∥∥∥∥∥
t−1∑
k=0

T (k)

∫ 1

0

T−1(s)Bu(s+ k) ds

∥∥∥∥∥
≤

t−1∑
k=0

‖T (k)‖ max
k=0,..,t−1

∥∥∥∥∫ 1

0

T−1(s)Bu(s+ k) ds

∥∥∥∥
≤ C · max

k=0,..,t−1

∥∥∥∥∫ 1

0

T−1(s)Bu(s+ k) ds

∥∥∥∥ ,
where C <∞ only depends on the exponentially stable semigroup (T (t))t≥0. Choose
ũ = u(· + k0)|(0,1), where k0 is the argument such that the above maximum is at-

tained. Clearly,
∫ 1

0
µ(‖ũ(s)‖U ) ds ≤

∫ t
0
µ(‖u(s)‖U ) ds. We now use the properties of

Z described in Assumption 2.1. By (d), u(·+k0) ∈ Z(0, t;U) and ‖u(·+k0)‖Z(0,t;U) ≤
‖u‖Z(0,t;U). Therefore, property (e) implies that ũ ∈ Z(0, 1;U) with ‖ũ‖Z(0,1;U) ≤
‖u(·+ k0)‖Z(0,t;U) ≤ ‖u‖Z(0,t;U).

Note that (i) in Lemma 2.9 for the case Z = Lp is well-known and can, e.g., be
found in [30] for p = 2.

Proposition 2.10. Let Z ⊆ L1
loc(0,∞;U) be a function space. Then we have as

follows:
(i) The following statements are equivalent:

(a) Σ(A,B) is Z-ISS,
(b) Σ(A,B) is Z-admissible and (T (t))t≥0 is exponentially stable,
(c) Σ(A,B) is Z-infinite-time admissible and (T (t))t≥0 is exponentially stable.

(ii) If Σ(A,B) is Z-iISS, then the system is Z-admissible and (T (t))t≥0 is expo-
nentially stable.

(iii) If Σ(A,B) is Z-UBEBS, then the system is Z-admissible and (T (t))t≥0 is
bounded, that is, (2.5) holds for ω = 0.
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Proof. Clearly, Z-ISS, Z-iISS, and Z-UBEBS imply Z-admissibility (consider
x0 = 0 in (2.2) and observe that x(t) ∈ X for all t > 0). Further, Z-admissi-
bility and exponential stability of (T (t))t≥0 show Z-ISS; see Remark 2.4. If Σ(A,B)
is Z-ISS or Z-iISS, by setting u = 0, it follows that ‖T (t)‖ < 1 for sufficiently large t,
which shows that (T (t))t≥0 is exponentially stable. It is easy to see that Z-UBEBS
implies boundedness of (T (t))t≥0. Finally, by Remark 2.4 items (b) and (c) in (i) are
equivalent.

Proposition 2.11. If 1 ≤ p <∞, then the following are equivalent:
(i) Σ(A,B) is Lp-ISS,

(ii) Σ(A,B) is Lp-iISS,
(iii) Σ(A,B) is Lp-UBEBS and (T (t))t≥0 is exponentially stable.

Proof. Clearly, by the definition of iISS and UBEBS, (ii) ⇒ (iii). By Proposition
2.10, (iii)⇒ (i). Thus in view of Proposition 2.10 it remains to show that Lp-infinite-
time admissibility and exponential stability imply Lp-iISS. Indeed, Lp-infinite-time
admissibility and exponential stability show for x0 ∈ X and u ∈ Lp(0, t;U) that

‖x(t)‖ ≤Me−ωt‖x0‖+ c∞ ‖u‖Lp(0,t;U)

= Me−ωt‖x0‖+ c∞

(∫ t

0

‖u(s)‖pU ds
)1/p

,

which shows Lp-iISS.

Remark 2.12. Let 1 ≤ p < ∞. If the system Σ(A,B) is Lp-admissible and
(T (t))t≥0 is exponentially stable, then the system Σ(A,B) is Lp-ISS with the fol-
lowing choices for the functions β and µ:

β(s, t) := Me−ωts and µ(s) := c∞s.

Here the constants M and ω are given by (2.5) and c∞ = supt≥0 c(t).

Proposition 2.13. If Σ(A,B) is L∞-iISS, then Σ(A,B) is L∞-zero-class admis-
sible.

Proof. If Σ(A,B) is L∞-iISS, then there exist θ ∈ K∞ and µ ∈ K such that for
all t > 0, u ∈ L∞(0, t;U), u 6= 0,

(2.7)
1

‖u‖∞

∥∥∥∥∫ t

0

T−1(s)Bu(s) ds

∥∥∥∥ ≤ θ(∫ t

0

µ
(
‖u(s)‖U
‖u‖∞

)
ds

)
.

Since the function µ is monotonically increasing and ‖u(s)‖U ≤ ‖u‖∞ a.e., the right-
hand side of (2.7) is bounded above by θ(tµ(1)) which converges to zero as t↘ 0.

We illustrate the relations of the different stability notions with respect to L∞

discussed above in the diagram depicted in Figure 2.1.

Proposition 2.14. Suppose that B is a bounded operator from U to X and Z ⊆
L1
loc(0,∞;U) is a function space as in section 2.1. Then the following statements are

equivalent:
(i) (T (t))t≥0 is exponentially stable,
(ii) Σ(A,B) is Z-admissible and (T (t))t≥0 is exponentially stable,
(iii) Σ(A,B) is Z-infinite-time admissible and (T (t))t≥0 is exponentially stable,
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Lp-iISS Lp-admissible Lp-ISS

L∞-iISS
L∞-zero-class

admissible
L∞-admissible L∞-ISS

Fig. 2.1. Relations between the different stability notions with respect to Lp, p < ∞, and L∞

for a system Σ(A,B), where it is assumed that the semigroup is exponentially stable.

(iv) Σ(A,B) is Z-ISS,
(v) Σ(A,B) is Z-iISS,

(vi) Σ(A,B) is Z-UBEBS and (T (t))t≥0 is exponentially stable,
(vii) Σ(A,B) is L1

loc-admissible and (T (t))t≥0 is exponentially stable.
If Z satisfies assumption (B), then the above assertions are equivalent to

(viii) Σ(A,B) is Z-zero-class admissible and (T (t))t≥0 is exponentially stable.

Proof. By Proposition 2.10 we have (v) ⇒ (vi) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i), and
Proposition 2.11 and Remark 2.8 prove (vii) ⇒ (v). The implication (i) ⇒ (vii)
follows from the fact that by the boundedness of B we have x(t) ∈ X for all t ≥ 0 and
all u ∈ L1(0, t;U). Clearly, (viii) ⇒ (ii). Thus it remains to show that if Z satisfies
assumption (B), then (i)⇒ (viii). Let (T (t))t≥0 be exponentially stable, that is, there
exist constants M,ω > 0 such that (2.5) holds. Therefore, for any u ∈ L1(0, t;U),

‖x(t)‖ ≤Me−ωt‖x0‖+M‖B‖
∫ t

0

e−ω(t−s)‖u(s)‖U ds

≤Me−ωt‖x0‖+M‖B‖
∫ t

0

‖u(s)‖U ds.(2.8)

Using that Z(0, t;U) is continuously embedded in L1(0, t;U), we conclude that

(2.9) ‖x(t)‖ ≤Me−ωt‖x0‖+M‖B‖κ(t)‖u‖Z(0,t;U)

for all t ≥ 0. If assumption (B) holds, then the embedding constants κ(t) tend to 0
as t↘ 0. Hence, (2.9) shows that (i) implies (viii).

For the special case Z = Lp(0,∞;U), parts of the equivalences in Proposition
2.14 can already be found in [19].

Remark 2.15. Note that in Proposition 2.14, the assertions are independent of
Z as the assertions only rest on exponential stability. In particular, if one of the
equivalent conditions holds, then the system Σ(A,B) is Lp-ISS with the choices for
the functions β and µ

β(s, t) := Me−ωts and µ(s) :=
M

ωq
‖B‖s,

where q is the Hölder conjugate of p, and Lp-iISS with

β(s, t) := Me−ωts, µ(s) := s, and θ(s) := sM‖B‖.

Here the constants M and ω are given by (2.5). Although in this case a system is
Lp-ISS or Lp-iISS for all p if this holds for some p, the choices for the functions µ,
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however, do depend on p. Note that if B is unbounded, then the question whether a
system is Lp-ISS or Lp-iISS crucially depends on p.

Furthermore, note that in the trivial case X = U = C and A = −1, B = 1, we
have that the system Σ(A,B) is not L1-zero-class admissible.

3. iISS from the viewpoint of Orlicz spaces. In this section we relate L∞-
ISS and L1-ISS to ISS with respect to Orlicz spaces EΦ corresponding to a Young
function Φ. The use of Orlicz spaces is motivated by the idea of understanding the
integral appearing in the definition of iISS, (1.2), as some type of norm. For the
definition and fundamental properties of Orlicz spaces and Young functions, we refer
to the appendix. The main results of this section are summarized in the following
three theorems.

Theorem 3.1. The following statements are equivalent:
(i) There is a Young function Φ such that the system Σ(A,B) is EΦ-ISS.

(ii) Σ(A,B) is L∞-iISS.
(iii) (T (t))t≥0 is exponentially stable and there is a Young function Φ such that

the system Σ(A,B) is EΦ-UBEBS.

If Φ satisfies the ∆2-condition (see Definition A.12) more can be said.

Theorem 3.2. If Φ is a Young function that satisfies the ∆2-condition, then the
following are equivalent:

(i) Σ(A,B) is EΦ-ISS.
(ii) Σ(A,B) is EΦ-iISS.
(iii) Σ(A,B) is EΦ-UBEBS and (T (t))t≥0 is exponentially stable.

Remark 3.3. Since Lp-spaces are examples of Orlicz spaces where the ∆2-condition
is satisfied, Theorem 3.2 can be seen as a generalization of Proposition 2.11.

Theorem 3.4. The following statements are equivalent:
(i) Σ(A,B) is L1-ISS.

(ii) Σ(A,B) is L1-iISS.
(iii) Σ(A,B) is EΦ-ISS for every Young function Φ.

The proofs of Theorems 3.1, 3.2, and 3.4 are given at the end of this section.

Lemma 3.5. Let Σ(A,B) be L∞-iISS. Then there exist θ̃,Φ ∈ K∞ such that Φ is
a Young function which is continuously differentiable on (0,∞) and

(3.1)

∥∥∥∥∫ t

0

T−1(s)Bu(s) ds

∥∥∥∥ ≤ θ̃(∫ t

0

Φ(‖u(s)‖U ) ds

)
for all t > 0 and u ∈ L∞(0, t;U).

EΦ-iISS EΦ-admissible EΦ-ISS

L∞-iISS
EΨ-admissible

for some Ψ
EΨ-ISS

for some Ψ

Fig. 3.1. Relations between the different stability notions with respect to Orlicz spaces for a
system Σ(A,B), where it is assumed that the semigroup is exponentially stable and that Φ satisfies
the ∆2-condition.
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Proof. By assumption, (T (t))t≥0 is exponentially stable and there exist θ ∈ K∞
and µ ∈ K such that (2.6) holds for Z = L∞. Without loss of generality we can assume
that µ belongs to K∞. By Lemma 14 in [23] there exist a convex function µv ∈ K∞ and
a concave function µc ∈ K∞ such that both are continuously differentiable on (0,∞)
and µ ≤ µc ◦ µv holds on [0,∞). Now for any Young function Ψ: [0,∞) → [0,∞) it
is straightforward to check that µc ◦Ψ−1 is a concave function and hence we have by
Jensen’s inequality

θ

(∫ 1

0

µ(‖u(s)‖U ) ds

)
≤ θ

(∫ 1

0

µc ◦ µv(‖u(s)‖U ) ds

)
≤ (θ ◦ µc ◦Ψ−1)

(∫ 1

0

(Ψ ◦ µv)(‖u(s)‖U ) ds

)
.

Using Remark 3.2.7 in [15] it is easy to see that Φ := Ψ ◦ µv is a Young function.
Taking θ̃ := θ ◦µc ◦Ψ−1 we obtain the desired estimate for t = 1. By Lemma 2.9, the
assertion follows.

Proof of Theorem 3.1. (i) ⇒ (ii): Since Λ(s) = s2 defines a Young function with
Λ(1) = 1, it can be easily seen that

Φ1(s) =

{
Φ(s), s < 1,

Φ(Λ(s)), s ≥ 1,

defines another Young function such that Φ ≤ Φ1. Furthermore, Φ1 increases essen-
tially more rapidly than Φ (see Definition A.13), since the composition Φ ◦ Λ of two
Young functions Φ,Λ is known to be increasing essentially more rapidly than Φ (see
p. 114 of [14]). We define θ : [0,∞)→ [0,∞) by

θ(α) = sup

{∥∥∥∥∫ 1

0

T−1(s)Bu(s) ds

∥∥∥∥ ∣∣∣ u ∈ L∞(0, 1;U),

∫ 1

0

Φ1(‖u(s)‖U ) ds ≤ α
}

for α > 0 and θ(0) = 0. Clearly, θ is nondecreasing. Admissibility with respect to EΦ

and Remark A.10.4 yield that for u ∈ L∞(0, 1;U),∥∥∥∥∫ 1

0

T−1(s)Bu(s) ds

∥∥∥∥ ≤ c(1)‖u‖EΦ(0,1;U) ≤ c(1)

(
1 +

∫ 1

0

Φ1(‖u(s)‖U ) ds

)
.

Hence, θ(α) <∞ for all α ≥ 0.
If we can show that limt↘0 θ(t) = 0, then, by Lemma 2.5 in [3], there exists

θ̃ ∈ K∞ such that θ ≤ θ̃ pointwise. Therefore, let (αn)n∈N be a sequence of positive
real numbers converging to 0. By the definition of θ, for any n ∈ N there exists
un ∈ L∞(0, 1;U) such that ∫ 1

0

Φ1(‖un(s)‖U ) ds ≤ αn

and

(3.2)

∣∣∣∣θ(αn)−
∥∥∥∥∫ 1

0

T−1(s)Bun(s) ds

∥∥∥∥∣∣∣∣ < 1

n
.

Hence the sequence (‖un(·)‖U )n∈N is Φ1-mean convergent to zero (see Definition A.11).
By Theorem A.14, the sequence even converges to zero with respect to the norm of
the space LΦ(0, 1) and thus also in EΦ(0, 1). Hence

lim
n→∞

‖un‖EΦ(0,1;U) = lim
n→∞

‖‖un(·)‖U‖EΦ(0,1) = 0,
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where we used Remark A.10.2. Hence, by admissibility,∥∥∥∥∫ 1

0

T−1(s)Bun(s) ds

∥∥∥∥ ≤ c(1)‖un‖EΦ(0,1;U) → 0,

as n→∞. Altogether we obtain that

θ(αn) ≤
∣∣∣∣θ(αn)−

∥∥∥∥∫ 1

0

T−1(s)Bun(s) ds

∥∥∥∥∣∣∣∣+

∥∥∥∥∫ 1

0

T−1(s)Bun(s) ds

∥∥∥∥
≤ 1

n
+ c(1)‖un‖EΦ(0,1;U),

and thus limn→∞ θ(αn) = 0.
Therefore, there exists θ̃ ∈ K∞ such that θ ≤ θ̃ pointwise. Furthermore, Φ1 is a

Young function, and in particular we have Φ1 ∈ K∞. The definition of θ yields that∥∥∥∥∫ 1

0

T−1(s)Bu(s) ds

∥∥∥∥ ≤ θ(∫ 1

0

Φ1(‖u(s)‖U ) ds

)
≤ θ̃

(∫ 1

0

Φ1(‖u(s)‖U ) ds

)
for all u ∈ L∞(0, 1;U). By Lemma 2.9, we conclude that Σ(A,B) is L∞-iISS.

(ii) ⇒ (i): Now assume that Σ(A,B) is L∞-iISS. We need to show that for some
Young function Φ the system Σ(A,B) is EΦ-ISS. By Proposition 2.10(i) it suffices

to show that there is a Young function Φ such that
∫ t

0
T−1(s)Bu(s) ds ∈ X for all

u ∈ EΦ(0, t). Note that since EΦ(0, t;U) ⊂ L1(0, t;U) for any Young function Φ,

the integral always exists in X−1. By assumption,
∫ t

0
T−1(s)Bu(s) ds ∈ X for all

u ∈ L∞(0, t). By Lemma 3.5, there exist θ̃ ∈ K∞ and a Young function Φ such that
(3.1) holds. Let u ∈ EΦ. By definition, there is a sequence (un)n∈N ⊂ L∞(0, t;U)
such that limn→∞ ‖un − u‖EΦ(0,t;U) = 0. Since (un)n∈N is a Cauchy sequence in
EΦ(0, t;U), we can assume without loss of generality that ‖un − um‖EΦ(0,t;U) ≤ 1 for
all m,n ∈ N. By [15, Lemma 3.8.4(i)] this implies that for all n,m ∈ N,∫ t

0

Φ(‖un(s)− um(s)‖U ) ds ≤ ‖un − um‖EΦ(0,t;U).

Together with (3.1) and the monotonicity of θ̃, this yields∥∥∥∥∫ t

0

T−1(s)B(un(s)− um(s)) ds

∥∥∥∥ ≤ θ̃(∫ t

0

Φ(‖un(s)− um(s)‖U ) ds

)
≤ θ̃

(
‖un − um‖EΦ(0,t;U)

)
.

Hence (
∫ t

0
T−1(s)Bun(s) ds)n∈N is a Cauchy sequence in X and thus converges. Let y

denote its limit. Since EΦ(0, t;U) is continuously embedded in L1(0, t;U) (see Remark
A.10.3), it follows that

lim
n→∞

∫ t

0

T−1(s)Bun(s) ds =

∫ t

0

T−1(s)Bu(s) ds

in X−1. Since X is continuously embedded in X−1, we conclude that

y =

∫ t

0

T−1(s)Bu(s) ds.
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Thus, we have shown that
∫ t

0
T−1(s)Bu(s) ds ∈ X for all u ∈ EΦ and hence Σ(A,B)

is admissible with respect to EΦ.
(i) ⇒ (iii): This follows since for all u ∈ EΦ(0, t;U) it holds that u ∈ L̃Φ(0, t;U)

and

‖u‖EΦ ≤ 1 +

∫ t

0

Φ(‖u(s)‖U ) ds;

see Remark A.10.4.
(iii) ⇒ (i): This follows by 2.10 and 2.10 of Proposition 2.10.

Proof of Theorem 3.2. The implications (ii) ⇒ (iii) ⇒ (i) follow, analogously as
for the Lp-case, by Proposition 2.10.

(i) ⇒ (ii): Similarly to the proof of Theorem 3.1, we can define a nondecreasing
function θ by

θ(α) = sup

{∥∥∥∥∫ 1

0

T−1(s)Bu(s) ds

∥∥∥∥ ∣∣∣ u ∈ EΦ(0, 1;U),

∫ 1

0

Φ(‖u(s)‖U ) ds ≤ α
}

for α > 0 and θ(0) := 0. By EΦ-admissibility and Remark A.10.4, we have that∥∥∥∥∫ 1

0

T−1(s)Bu(s) ds

∥∥∥∥ ≤ c(1)‖u‖EΦ(0,1;U) ≤ c(1)

(
1 +

∫ 1

0

Φ(‖u(s)‖U ) ds

)
for u ∈ EΦ(0, 1;U) ⊂ L̃Φ(0, t;U). Hence, θ is well-defined. In analogy to the proof of
Theorem 3.1, it remains to show that θ is right-continuous at 0. This follows because
Φ satisfies the ∆2-condition. In fact, if the latter is true, it is known that a sequence
(un)n∈N in EΦ converges to 0 if and only if the sequence is Φ-mean convergent to
zero (see Definition A.11). Therefore, αn ↘ 0 implies that there exists a sequence
un ∈ EΦ(0, 1;U) that converges to 0 in EΦ and such that∣∣∣∣θ(αn)−

∥∥∥∥∫ 1

0

T−1Bun(s) ds

∥∥∥∥∣∣∣∣ ≤ 1

n
, n ∈ N.

By EΦ-admissibility, we conclude that θ(αn)→ 0 as n→∞.
Hence, by Lemma 2.4 in [3], we find θ̃ ∈ K∞ such that θ ≤ θ̃ pointwise. By

definition of θ, this implies∥∥∥∥∫ 1

0

T−1(s)Bu(s) ds

∥∥∥∥ ≤ θ̃(∫ 1

0

Φ(‖u(s)‖U ) ds

)
for all u ∈ EΦ(0, 1;U). Finally, Lemma 2.9 yields that Σ(A,B) is EΦ-iISS.

Proof of Theorem 3.4. By Propositions 2.10 and 2.11, we only need to show the
equivalence of (i) and (iii). That (i) implies (iii) follows immediately since EΦ is
continuously embedded in L1.

Conversely, let Σ(A,B) be EΦ-admissible for every Young function Φ. According
to Proposition 2.10(a), we have to show that Σ(A,B) is L1-admissible. Let t > 0 and

u ∈ L1(0, t;U). It remains to prove that
∫ t

0
T−1(s)Bu(s) ds ∈ X. By [14, p. 61], there

exists a Young function Φ satisfying the ∆2-condition such that ‖u(·)‖U ∈ LΦ.1 The

1In [14, p. 61] it is actually shown that for given f ∈ L1(0, t), there exists a Young function
Q such that f ∈ LQ◦Q(0, t) and such that Q satisfies the ∆′-condition, i.e., ∃c, u0 > 0 ∀u, v ≥
u0 : Q(uv) ≤ cQ(u)Q(v). In fact, it is easy to see that this property implies that Q ◦ Q satisfies
∀u ≥ u0 : (Q ◦Q)(`u) ≤ k(`)(Q ◦Q)(u) for some ` > 1 and k(`) > 0, which is known to be equivalent
to Q ◦Q satisfying the ∆2-condition; see [14, p. 23].
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∆2-condition implies that EΦ = LΦ and EΦ(0, t;U) = LΦ(0, t;U); see [24, p. 303] or

[26, Thm. 5.2]. Thus
∫ t

0
T−1(s)Bu(s) ds ∈ X by assumption.

Proposition 3.6. Let Σ(A,B) be L∞-ISS. If there exist a nonnegative function
f ∈ L1(0, 1), θ ∈ K, a constant c > 0, and a Young function µ such that for every

u ∈ L1(0, 1;U) with
∫ 1

0
f(s)µ(‖u(s)‖U ) ds <∞ one has∥∥∥∥∫ 1

0

T−1(s)Bu(s) ds

∥∥∥∥ ≤ c+ θ

(∫ 1

0

f(s)µ(‖u(s)‖U ) ds

)
,

then Σ(A,B) is L∞-iISS.

Proof. By Theorem 3.1 and Proposition 2.10 it is sufficient to show that there
is a Young function Φ such that the system Σ(A,B) is EΦ-admissible. Theorem A.3
implies that there exists a Young function Ψ such that f ∈ L̃Ψ(0, 1). Let Φ̃ be the
complementary Young function to Ψ. We define the Young function Φ by Φ := Φ̃ ◦µ.
Using Remark A.6 for u ∈ EΦ(0, 1;U) we obtain∥∥∥∥∫ 1

0

T−1(s)Bu(s) ds

∥∥∥∥ ≤ c+ θ

(∫ 1

0

f(s)µ(‖u(s)‖U ) ds

)
≤ c+ θ

(∫ 1

0

Ψ(f(s)) ds+

∫ 1

0

Φ̃(µ(‖u(s)‖U ) ds

)
.

This shows that for all u ∈ EΦ(0, 1;U) we have∫ 1

0

T−1(s)Bu(s) ds ∈ X,

that is, Σ(A,B) is EΦ-admissible.

4. Stability of parabolic diagonal systems. In the previous section we have
proved that for infinite-dimensional systems L∞-iISS implies L∞-ISS. It is an open
question whether the converse implication holds. Here, we give a positive answer for
parabolic diagonal systems, which are a well-studied class of systems in the literature;
see, e.g., [30].

Throughout this section we assume that U = C, 1 ≤ q <∞, and that the operator
A possesses a q-Riesz basis of eigenvectors (en)n∈N with eigenvalues (λn)n∈N lying in
a sector in the open left half-plane C−. More precisely, (en)n∈N is a q-Riesz basis of
X if (en)n∈N is a Schauder basis and for some constants c1, c2 > 0 we have

c1
∑
k

|ak|q ≤

∥∥∥∥∥∑
k

akek

∥∥∥∥∥
q

≤ c2
∑
k

|ak|q

for all sequences (ak)k∈N in `q = `q(N). Thus without loss of generality we can
assume that X = `q and that (en)n∈N is the canonical basis of `q. We further assume
that the sequence (λn)n∈N lies in C with supn Re(λn) < 0 and that there exists a
constant k > 0 such that |Imλn| ≤ k|Reλn|, n ∈ N, i.e., (λn)n ⊂ C \ Sπ/2+θ for some
θ ∈ (0, π/2), where

Sπ/2+θ = {z ∈ C | |z| > 0, | arg z| < π/2 + θ}.

Then the linear operator A : D(A) ⊂ `q → `q, given by

Aen = λnen, n ∈ N,
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and D(A) = {(xn) ∈ `q |
∑
n |xnλn|q < ∞}, generates an analytic exponentially

stable C0-semigroup (T (t))t≥0 on `q, which is given by T (t)en = etλnen. An easy
calculation shows that the extrapolation space (`q)−1 is given by

(`q)−1 =

{
x = (xn)n∈N |

∑
n

|xn|q

|λn|q
<∞

}
,

‖x‖X−1
= ‖A−1x‖`q .

Thus the linear bounded operator B from C to (`q)−1 can be identified with a sequence
(bn)n∈N in C satisfying ∑

n∈N

|bn|q

|λn|q
<∞.

Thanks to the sectoriality condition for (λn)n∈N this is equivalent to∑
n∈N

|bn|q

|Reλn|q
<∞.

The following result shows that, under the above assumptions, the system Σ(A,B)
is L∞-iISS. Thus for this class of systems L∞-iISS is equivalent to L∞-ISS, and both

notions are implied by B ∈ (`q)−1, that is,
∑
n
|bn|q
|λn|q < ∞. The following theorem

generalizes the main result in [7], where the case q = 2 is studied.

Theorem 4.1. Let U = C, and suppose that the operator A possesses a q-Riesz
basis of X that consists of eigenvectors (en)n∈N with eigenvalues (λn)n∈N lying in a
sector in the open left half-plane C− with supn Re(λn) < 0 and B ∈ L(C, X−1). Then
the system Σ(A,B) is L∞-iISS, and hence also L∞-ISS and L∞-zero-class admissible.

Remark 4.2. In the situation of Theorem 4.1, Σ(A,B) is L∞-iISS if and only if
Σ(A,B) is L∞-ISS.

Proof of Theorem 4.1. Without loss of generality we may assume X = `q and
that (en)n∈N is the canonical basis of `q. Let f : (0,∞)→ [0,∞) be defined by

f(s) =
∑
n∈N

|bn|q

|Reλn|q−1
eReλns.

Then it is easy to see that f belongs to L1(0,∞). Now for u ∈ L1(0, 1) with∫ 1

0
f(s)|u(s)|q ds <∞ we obtain (denoting by q′ the Hölder conjugate of q)∥∥∥∥∫ 1

0

T−1(s)Bu(s) ds

∥∥∥∥q
`q

=
∑
n∈N
|bn|q

∣∣∣∣∫ 1

0

eλnsu(s) ds

∣∣∣∣q

≤
∑
n∈N
|bn|q

(∫ 1

0

eReλns|u(s)| ds
)q

=
∑
n∈N

|bn|q

|Reλn|q

(∫ 1

0

|Reλn|eReλns|u(s)| ds
)q

≤
∑
n∈N

|bn|q

|Reλn|q

(∫ 1

0

|Reλn|eReλns|u(s)|q ds
)

(∫ 1

0

|Reλn|eReλns ds

)q/q′D
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≤
∑
n∈N

|bn|q

|Reλn|q

(∫ 1

0

|Reλn|eReλns|u(s)|q ds
)

=

∫ 1

0

∑
n∈N

|bn|q

|Reλn|q−1
eReλns|u(s)|q ds

=

∫ 1

0

f(s)|u(s)|q ds

<∞.

This shows that the system Σ(A,B) is L∞-ISS and the claim now follows from Propo-
sition 3.6.

Remark 4.3. Theorem 4.1 states that L∞-admissibility implies EΦ-admissibility
for some Young function Φ in the case of parabolic diagonal systems. A natural
question is whether Φ can always be chosen such that the ∆2-condition is satisfied.
Looking at the proof and having in mind that L1 equals the union of all spaces EΨ

where Ψ satisfies the ∆2-condition, this could be expected. However, the answer
is negative, which can be seen as follows. For a Young function Φ satisfying the
∆2-condition there exist constants x0 > 0 and p ∈ N \ {1} such that

Φ(x) ≤ xp, x > x0;

see [14, p. 25]. This implies that EΦ ⊃ Lp; see, e.g., [15, sect. 3.17]. However,
there exist Young functions that do not satisfy the latter estimate, e.g., Φ(x) =
ex−1 − x− e−1. In Example 5.2, Σ(A,B) is not Lp-admissible for any p <∞, which,
with the above reasoning, implies that the system cannot be EΦ-admissible for any Φ
satisfying the ∆2-condition.

Lemma 4.4. Let µ be a positive regular Borel measure supported on a sector Sφ
with φ ∈ (0, π2 ), and let 1 ≤ q <∞. Then the following are equivalent:

(i) The Laplace transform L : L∞(0,∞)→ Lq(C+, µ) is bounded.
(ii) The function s 7→ 1/s lies in Lq(C+, µ).

Proof. (i) ⇒ (ii): Taking f(t) = 1 for t ≥ 0 we have that Lf(s) = 1/s and the
result follows.

(ii) ⇒ (i): For f ∈ L∞(0,∞) and s ∈ C+ we have∣∣∣∣∫ ∞
0

f(t)e−st dt

∣∣∣∣ ≤ ‖f‖∞ ∫ ∞
0

|e−st| dt ≤ ‖f‖∞/(Re s) ≤M‖f‖∞/|s|,

where M is a constant depending only on φ. Now condition (ii) implies that L is
bounded.

Theorem 4.5. Suppose that A possesses a q-Riesz basis of X consisting of eigen-
vectors (en)n∈N with eigenvalues (λn)n∈N lying in a sector in the open left half-plane
C− and B ∈ X−1. Then the following assertions are equivalent:

(i) Σ(A,B) is infinite-time L∞-admissible.
(ii) supλ∈C+

‖(λ−A)−1B‖ <∞.
(iii) The function s 7→ 1/s lies in Lq(C+, µ), where µ is the measure

∑
|bk|qδ−λk

.

Proof. By [9, Thm. 2.1], admissibility is equivalent to the boundedness of the
Laplace transform L : L∞(0,∞) → Lq(C+, µ), and hence (i) and (iii) are equivalent
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L∞-iISS
L∞-zero-class

admissible
L∞-admissible L∞-ISS

B ∈ X−1

Fig. 4.1. Relations between the different stability notions for parabolic diagonal system (as-
suming that the semigroup is exponentially stable).

by Lemma 4.4. Note that

‖(λ−A)−1B‖q =
∑
k

|bk|q

|λ− λk|q
.

Now if (ii) holds, then (iii) also holds, letting λ → 0. Conversely, if (iii) holds, then
by sectoriality we have that ∑

k

|bk|q

|Reλk|q
<∞,

and hence
∑
k |bk|q/|λ− λk|q is bounded independently of λ ∈ C+, that is, (ii)

holds.

Remark 4.6. Let bp(X) denote the set of Lp-admissible control operators from C
to X−1 for a given A. By Theorem 4.1, we have that b∞(X) = X−1 for exponentially
stable, parabolic diagonal systems. Using [32, Thm. 6.9] and the inclusion of the
Lp-spaces, we obtain the following chain of inclusions for X = `q with q > 12:

X = b1(X) ⊂ bp(X) ⊂ b∞(X) = X−1.(4.1)

It is not so hard to show that the equality b∞(X) = X−1 does not hold in general if
the exponential stability is dropped. In fact, a counterexample on X = `2 with the
standard basis is given by λn = 2n, n ∈ Z, bn = 2n/n for n > 0, and bn = 2n for
n < 0.

The relations of the different stability notions with respect to L∞ for parabolic
diagonal systems are summarized in the diagram shown in Figure 4.1.

5. Some examples.

Example 5.1. Let us consider the following boundary control system given by the
one-dimensional heat equation on the spatial domain [0, 1] with Dirichlet boundary
control at the point 1,

xt(ξ, t) = axξξ(ξ, t), ξ ∈ (0, 1), t > 0,

x(0, t) = 0, x(1, t) = u(t), t > 0,

x(ξ, 0) = x0(ξ),

where a > 0. It can be shown that this system can be written in the form Σ(A,B) in
(2.1). Here X = L2(0, 1) and

Af = f ′′, f ∈ D(A),

D(A) =
{
f ∈ H2(0, 1) | f(0) = f(1) = 0

}
.

2Here, q = 1 is also allowed if (T ∗(t))t≥0 is strongly continuous.
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Moreover, with λn = −aπ2n2,

Aen = λnen, n ∈ N,

where the functions en =
√

2 sin(nπ·), n ≥ 1, form an orthonormal basis of X.
With respect to this basis, the operator B = aδ′1 can be identified with (bn)n∈N
for bn = (−1)n

√
2anπ, n ∈ N. Therefore,

∑
n∈N

|bn|2

|λn|2
=

1

3
<∞,

which shows that B ∈ X−1. By Theorem 4.1, we conclude that the system is L∞-iISS.
Moreover, we obtain the following L∞-ISS and L∞-iISS estimates:

‖x(t)‖L2(0,1) ≤ e−aπ
2t‖x0‖L2(0,1) +

1√
3
‖u‖L∞(0,t),

‖x(t)‖L2(0,1) ≤ e−aπ
2t‖x0‖L2(0,1) + c

(∫ t

0

|u(s)|pds
)1/p

for p > 2 and some constant c = c(p) > 0. For the second inequality, we used the fact
that Σ(A,B) is even Lp-admissible for p > 2, as can be shown by applying Theorem
3.5 in [9]. We note that a slightly weaker L∞-ISS estimate for this system can also
be found in [12].

Example 5.2. As remarked, Example 5.1 provides a system Σ(A,B) which is even
Lp-admissible for p > 2. In the following we present a system which is L∞-admissible
but not Lp-admissible for any p < ∞. In order to find such an example, we use the
characterization of Lp-admissibility from [9, Thm. 3.5].

LetX = `2 and let (λn)n∈N, (bn)n∈N define a parabolic diagonal system Σ(A,B) as
in section 4. Furthermore, let p ∈ (2,∞). Then Σ(A,B) is infinite-time Lp-admissible
if and only if (

2−
2n(p−1)

p µ(Qn)
)
n∈Z
∈ `

p
p−2 (Z),

where µ =
∑
n∈Z |bn|2δ−λn and Qn = {z ∈ C | Re z ∈ (2n−1, 2n]}, n ∈ Z.

We choose λn = −2n and bn = 2n

n for n ∈ N. Clearly, B = (bn) ∈ X−1. Then we
have that

2−
2n(p−1)

p µ(Qn) = 2−
2n(p−1)

p
22n

n2
=

2
2n
p

n2
,

and thus for p > 2,((
2−

2n(p−1)
p µ(Qn)

) p
p−2

)
n∈Z

=

(
2

2n
p−2

n
2p

p−2

)
n∈Z

/∈ `1.

Hence, Σ(A,B) is not Lp-admissible for any p > 2 and therefore also not for any
p ≥ 1. However, since

∑
n∈N |bn|2/|Reλn|2 =

∑
n∈N 1/n2 < ∞, Theorem 4.1 shows

that Σ(A,B) is L∞-iISS and in particular infinite-time L∞-admissible.
We observe that by Theorem 3.1, there exists a Young function Φ such that

Σ(A,B) is EΦ-admissible. However, as the system is not Lp-admissible, such Φ cannot
satisfy the ∆2-condition; see Remark 4.3.
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6. Conclusions and outlook. In this paper, we have studied the relation be-
tween ISS and iISS for linear infinite-dimensional systems with a (possibly) unbounded
control operator and inputs in general function spaces. In this situation, ISS is equiv-
alent to admissibility together with exponential stability of the semigroup. We have
related the notions of iISS with respect to L1 and L∞ to ISS with respect to Orlicz
spaces. The known result that ISS and iISS are equivalent for Lp-inputs with p <∞
was generalized to Orlicz spaces that satisfy the ∆2-condition. Moreover, we have
shown that for parabolic diagonal systems and scalar input, the notions of L∞-iISS
and L∞-ISS coincide.

Among possible directions for future research are the investigation of the non-
analytic diagonal case, general analytic systems, and the relation of zero-class ad-
missibility and ISS. Recently, the results on parabolic diagonal systems have been
adapted to more general situations of analytic semigroups—the crucial tool being
the holomorphic functional calculus for such semigroups [10]. Furthermore, versions
ISS and iISS for strongly stable semigroups rather than exponentially stable can be
studied; see [22].

Finally, we mention that the existence of a counterexample for one of the unknown
(converse) implications in Figure 2.1 can be related to the following open question
posed by Weiss in [31, Prob. 2.4].

Question A. Does the mild solution x belong to C([0,∞), X) for any x0 ∈ X
and u ∈ Z = L∞(0,∞;U) provided that Σ(A,B) is L∞-admissible?

Although we do not provide an answer to this question, we relate it to the fol-
lowing.

Proposition 6.1. At least one of the following assertions is true:
1. The answer to Question A is positive for every system Σ(A,B).
2. There exists a system Σ(A0, B0) with A0 generating an exponentially stable

semigroup and Σ(A0, B0) is L∞-admissible but not L∞-zero-class admissible.

Proof. This follows directly from Proposition 2.5.

Appendix A. Orlicz spaces. In this section we recall some basic definitions
and facts about Orlicz spaces. More details can be found in [14, 15, 1, 35]. For
the generalization to vector-valued functions see [24, Chap. VII, sect. 7.5]. In the
following I ⊂ R is an open bounded interval, U is a Banach space, and Φ: R+

0 → R+
0

is a function.

Definition A.1. The Orlicz class L̃Φ(I;U) is the set of all equivalence classes
(w.r.t. equality almost everywhere) of Bochner-measurable functions u : I → U such
that

ρ(u; Φ) :=

∫
I

Φ(‖u(x)‖U ) dx <∞.

In general, L̃Φ(I;U) is not a vector space. Of particular interest are Orlicz classes
generated by Young functions.

Definition A.2. A function Φ : [0,∞)→ R is called a Young function (or Young
function generated by ϕ) if

Φ(t) =

∫ t

0

ϕ(s) ds, t ≥ 0,

where the function ϕ : [0,∞)→ R has the following properties: ϕ is right-continuous
and nondecreasing, ϕ(0) = 0, ϕ(s) > 0 for s > 0, and lims→∞ ϕ(s) =∞.
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Theorem A.3 (see [15, Thm. 3.2.3 and Thm. 3.2.5]). Let Φ be a Young function.
Then L̃Φ(I;U) is a convex set and L̃Φ(I;U) ⊂ L1(I;U). Conversely, for u ∈ L1(I;U)
there is a Young function Φ such that u ∈ L̃Φ(I;U).

Definition A.4. Let Φ be the Young function generated by ϕ. Then Ψ defined by

Ψ(t) =

∫ t

0

ψ(s) ds with ψ(t) = sup
ϕ(s)≤t

s, t ≥ 0,

is called the complementary function to Φ.

The complementary function of a Young function is again a Young function. If
ϕ is continuous and strictly increasing in [0,∞), i.e., belongs to K∞, then ψ is the
inverse function ϕ−1 and vice versa. We call Φ and Ψ a pair of complementary Young
functions.

Theorem A.5 (Young’s inequality [35, Thm. I, p. 77]). Let Φ, Ψ be a pair of
complementary Young functions and ϕ, ψ their generating functions. Then

uv ≤ Φ(u) + Ψ(v) ∀u, v ∈ [0,∞).

Equality holds if and only if v = ϕ(u) or u = ψ(v).

Remark A.6. Let Φ, Ψ be a pair of complementary Young functions, u ∈ L̃Φ(I)
and v ∈ L̃Ψ(I). By integrating Young’s inequality we get∫

I

|u(x)v(x)| dx ≤ ρ(u; Φ) + ρ(v; Ψ).

We are now in position to define the Orlicz spaces for which several equivalent defi-
nitions exist. Here we use the so-called Luxemburg norm.

Definition A.7. For a Young function Φ, the set LΦ(I;U) of all equivalence
classes (w.r.t. equality almost everywhere) of Bochner-measurable functions u : I → U
for which there is a k > 0 such that∫

I

Φ(k−1‖u(x)‖U ) dx <∞

is called the Orlicz space. The Luxemburg norm of u ∈ LΦ(I;U) is defined as

‖u‖Φ := ‖u‖LΦ(I;U) := inf

{
k > 0

∣∣∣ ∫
I

Φ(k−1‖u(x)‖) dx ≤ 1

}
.

For the choice Φ(t) := tp, 1 < p < ∞, the Orlicz space LΦ(I;U) equals the
vector-valued Lp-spaces with equivalent norms.

Theorem A.8 (see [15, Thm. 3.9.1]). (LΦ(I;U), ‖ · ‖Φ) is a Banach space.

Clearly, L∞(I, U) is a linear subspace of LΦ(I, U).

Definition A.9. The space EΦ(I, U) is defined as

EΦ(I, U) = L∞(I, U)
‖·‖LΦ(I;U)

.

The norm ‖ · ‖EΦ(I;U) refers to ‖ · ‖LΦ(I;U).

If U = K with K ∈ {R,C}, then we write LΦ(I) := LΦ(I;K) and EΦ(I) :=
EΦ(I;K) for short.
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Remark A.10. The Banach spaces EΦ(I;U) and LΦ(I;U) have the following
properties:

1. EΦ(I;U) is separable; see, e.g., [26, Thm. 6.3].
2. For a measurable u : I → U , u ∈ LΦ(I;U) if and only if f = ‖u(·)‖U ∈ LΦ(I).

This follows from the fact that ‖u‖Φ = ‖f‖Φ. Thus, (un)n∈N ⊂ LΦ(I;U)
converges to 0 if and only if (‖un(·)‖U )n∈N converges to 0 in LΦ(I).

3. Let Φ, Ψ be a pair of complementary Young functions. The extension of
Hölder’s inequality to Orlicz spaces reads as follows: for any u ∈ LΦ(I) and
v ∈ LΨ(I), it holds that uv ∈ L1(I) and∫

I

|u(s)v(s)| ds ≤ 2‖u‖LΦ(I)‖v‖LΨ(I);

see [15, Thm. 3.7.5 and Rem. 3.8.6]. This implies that for u ∈ LΦ(I;U),

‖u‖L1(0,t;U) =

∫ t

0

‖u(s)‖U ds ≤ 2‖χ(0,t)‖Ψ‖u‖Φ,

i.e., LΦ(I;U) is continuously embedded in L1(I;U). Moreover, ‖χ(0,t)‖Ψ → 0
as t↘ 0, where χ(0,t) denotes the characteristic function of the interval (0, t).

4. EΦ(I;U) ⊂ L̃Φ(I;U) ⊂ LΦ(I;U); see, e.g., [26, Thm. 5.1]. For u ∈ L̃Φ(I;U),

‖u‖Φ ≤ ρ(‖u(·)‖U ; Φ) + 1 <∞.
Definition A.11 (see Φ-mean convergence). A sequence (un)n∈N in LΦ(I) is

said to converge in Φ-mean to u ∈ LΦ(I) if

lim
n→∞

ρ(un − u; Φ) = lim
n→∞

∫
I

Φ(|un(x)− u(x)|) dx = 0.

Definition A.12. We say that a Young function Φ satisfies the ∆2-condition if

∃k > 0, u0 ≥ 0 ∀u ≥ u0 : Φ(2u) ≤ kΦ(u).

It holds that EΦ(I;U) = L̃Φ(I;U) = LΦ(I;U) if Φ satisfies the ∆2-condition.

Definition A.13. Let Φ and Φ1 be two Young functions. We say that the func-
tion Φ1 increases essentially more rapidly than the function Φ if, for arbitrary s > 0,

lim
t→∞

Φ(st)

Φ1(t)
= 0.

Theorem A.14 (see [14, Thm. 13.4]). Let Φ,Φ1 be Young functions such that
Φ1 increases essentially more rapidly than Φ. If (un)n∈N ⊂ L̃Φ1(I) converges to 0 in
Φ1-mean, then it also converges in the norm ‖ · ‖Φ.
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[31] G. Weiss, Admissibility of unbounded control operators, SIAM J. Control Optim., 27 (1989),
pp. 527–545.

[32] G. Weiss, Admissible observation operators for linear semigroups, Israel J. Math., 65 (1989),
pp. 17–43.

[33] A. Wynn, α-admissibility of observation operators in discrete and continuous time, Complex
Anal. Oper. Theory, 4 (2010), pp. 109–131.

[34] G. Xu, C. Liu, and S. Yung, Necessary conditions for the exact observability of systems on
Hilbert spaces, Systems Control Lett., 57 (2008), pp. 222–227.

[35] A. C. Zaanen, Linear Analysis. Measure and Integral, Banach and Hilbert Space, Linear
Integral Equations, Interscience Publishers, New York, 1953.

D
ow

nl
oa

de
d 

03
/1

6/
18

 to
 1

34
.1

00
.2

20
.1

35
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://arxiv.org/abs/1709.04261
https://doi.org/10.1080/03601239109372748

	Introduction
	Stability notions for infinite-dimensional systems
	The setting and definitions
	Relations between the stability notions

	iISS from the viewpoint of Orlicz spaces
	Stability of parabolic diagonal systems
	 Some examples
	Conclusions and outlook
	Appendix A. Orlicz spaces
	Acknowledgments
	References

