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CHAPTER 0

Introduction

1. What “is” Fourier Analysis?

The point of departure is that we consider a signal, represented by a function f : R → C,
which we would like to represent and/or approximate.

Example 1.1 (Thresholding/Filtering and Fourier series of periodic functions and a reminder
on Hilbert spaces). Consider a signal which is 2π-periodic and hence determined by a function
f : [0, 2π] → C. Shortly, we we will see that to such a function (under the condition that f is
integrable) we can attribute another function, defined by the formal infinite series

t 7→ S(f)(t) :=

∞∑
n=−∞

f̂(n)e−int = lim
N→∞

N∑
n=−N

f̂(n)e−int

Suppose that f(t) = S(f)(t) for all t ∈ [0, 2π] 1 — in fact this is a highly non-trivial property of
f and at the heart of the relation between S(f) and f . Representing eit by cos and sin indicates
that (the coefficients of) S(f) encode the the contributions of oscillations at fixed frequencies
in the signal. When applying filtering or de-noising one may be interested in cancelling certain
frequency bands in a signal. Mathematically speaking this may be achieved by “thresholding”

the coeffients f̂(n) in S(f): For fixed ε > 0, let for all n ∈ Z,

cn =

{
f̂(n) if |f̂(n)| > ε

0 else

and define S̃ =
∑∞
n=−∞ cne−int.

An important question is

How does S̃ relate to S = f?

To find a first answer to this, let us additionally assume that f lies in the Hilbert space
L2(0, 2π) of square-integrable functions (which clearly is the case if f was continuous). In fact,
in the view of basic Hilbert space theory, it is not at all surprising to expect a close relation

between f and an element of the form
∑
f̂(n)e−int with special coefficients f̂(n) ∈ C: Since

(φn) = ( 1
2π e−int)n∈Z defined an orthonormal basis of L2 (i.e. a complete orthonormal system),

we find that f̂(n) = is given by (f, φn)L2 , where (·, ·)L2 denotes the inner product of L2(0, 2π).
By Parseval’s identity, we even have

‖f‖2L2 =
∑
n∈Z
|(f, fn)|2 =

∑
n∈Z
|f̂(n)|2

and — since (cn)n∈Z ∈ `2(Z) as (f̂(n))n∈Z ∈ `2(Z) — also S(f)− S̃ ∈ L2 with

‖S(f)− S̃‖2L2 =
∑
n∈Z
|f̂(n)− cn|2 =

∑
n∈Z,|f̂(n)|>ε

|f̂(n)|2.

1in fact, we will see that in general it is only meaningful to assume that f and S(f) coincide almost everywhere
with respect to the Lebesgue measure. For the moment let us be a bit vague here.
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2 0. INTRODUCTION

This identity shows the “deviation” of f = S(f) and S̃ in terms of the “energy-norm” L2.

Example 1.2 (Convergence of Fourier series). Going back to the beginning of the previous
example, we reconsider the then-made assumption f = S(f): It turns out that for general
functions f , even if we assume that f is continuous, this question is much harder to answer
than one may expect after having seen the subsequent procedure in the above example (for more
general L2-functions). In fact, the above mentioned representation by Parseval’s identity only

says that f equals the L2-limit limN→∞
∑N
n=−N f̂(n)e−int in the sense of L2. This does not

imply that S(f)(t) = f(t) for all t ∈ [0, 2π] and not even that this identity holds for almost all
t, see Ex. 0.1. Therefore, the following question still remains

Does S(f) equal f pointwise (almost everywhere)? And if not, when does
this hold?

Answer: for f ∈ L2 this is indeed true and subject to a famous result by L. Carleson 2

Example 1.3 (Fourier’s investigation on heat flow). see notes

2. The main questions and goals

Q: Does the Fourier series of a function f converge to f pointwise/in
(some) norm?

3. Prerequisites and Literature

In this course we will strongly rely on concepts from measure theory (e.g. Lebesgue integra-
tion, Lp spaces,..), functional analysis (e.g. bounded linear operators on Banach spaces, uniform
boundedness principle, Hahn-Banach, closed graph, basic Hilbert space theory,..) — it should go
without saying that fundamentals from analysis (Bachelor courses including Analysis III) will be
required too. If any of the mentioned keywords do not “ring a bell” you better consult relevant
literature, such as for example Tao’s book “An Epsilon of Room, I: Real Analysis” [4], available
as online version (see 3) as well as in the library. Alternatively you may consider looking into
Analysis III scripts from past courses at the University of Hamburg.

Further reading: Among the vast literature on Fourier analysis, the books by Y. Katznel-
son (‘An Introduction to Harmonic Analysis’, Cambridge University Press) [2] and L. Grafakos
(‘Classical Fourier Analysis’, Springer Graduate Texts in Mathematics) [1] shall be mentioned
here. The first part of this course on Fourier series we will loosely follow the corresponding part
of Katznelson’s book, whereas the introduction to the Fourier transform — the second part —
is adapted from [1].

2moreover, this result was latter shown to generalize to any f ∈ Lp(0, 2π) for p ∈ (1,∞).
3https://terrytao.wordpress.com/books/an-epsilon-of-room-pages-from-year-three-of-a-mathematical-blog/



CHAPTER 1

Fourier Series

This chapter deals with the interplay of 2π-periodic functions f : R → C and associated
(formal) objects

(0.1)
∑
n∈Z

aneint

with which we aim to represent the functions f . Sometimes it will be convenient to view such
functions as defined on the torus T = R/2πZ or — upon the isomorphism t 7→ eit — on {z ∈
C : |z| = 1}. Furthermore, we can identify 2π-periodic functions on R with functions defined on
[0, 2π). We will make use of the later identification in the following without specifying. Note
that this particularly means that for f : R→ C Lebesgue measurable (and integrable on [0, 2π),∫

T
f(t) dt =

∫ 2π

0

f(x) dλ(x),

where λ denotes the Lebesgue measure.
The presented theory generalizes to any other (positive) period by obvious transformations

(in the literature often the 1-periodic functions are discussed).

1. Definitions and basics

Definition 1.2. An object of the form (0.1) is called a trigonometric series, and in
particular trigonometric polynomial if an = 0 for almost all n.

From the analysis lectures we recall the following fundamental result1

For f ∈ C([a, b];C) there exists a sequence of polynomials (pn)n∈N (with com-
plex coefficients) such that limn→∞ ‖f − pn‖∞,[a,b] = 0.

In particular, this yields

Theorem 1.3 (Weierstrass’ approximation theorem). The trigonometric polynomials lie
dense in C(T).

We remark that there are several ways to prove Weierstass’ theorem, among which is a
“modern approach” via the more general Stone–Weierstrass theorem which we now have in mind
when we take this theorem for granted. However, we will shortly face a constructive proof based
on Fourier series.

Having in mind the goal to represent a function f by a trigonometric series, that is, we would
like to link a (preferably unique) trigonometric series to f ,

f ∼
∑
n

aneint,

1In these lectures, one may have only seen the ‘real version’ of this theorem. The ‘complex version’ however
follows from that case by applying it to real- and imaginary part of the considered continuous function.

3



4 1. FOURIER SERIES

(this notation is, for the moment, nothing else than formal) and recalling the following funda-
mental identity for k ∈ Z

(1.1)

∫ 2π

0

eikt dt =

{
2π k = 0
0 k 6= 0

we (formally) derive

(1.2) an =
1

2π

∫ 2π

0

f(t)e−int dt.

If f was a trigonometric polynomial (or more generally, if the trigonometric sum converges
uniformly), then this formula is indeed justified. From now on and unless stated otherwise, we
will assume that functions f are in L1(T), in which case the integral in (1.2) exists.

Definition 1.4. For a 2π-periodic function f ∈ L1(R), the sequence (an)n∈Z defined by

(1.2) is called the Fourier coefficients of f and we denote it by f̂(n) = an. The trigonometric
series

S(f) =
∑
n∈Z

aneint = (t 7→
∑
n∈Z

aneint)

is called the Fourier series of f and we also use the notation f ∼
∑
n∈Z aneint. Given a (formal)

trigonometric series S of the form (0.1), we call it a Fourier series if there exists an f ∈ L1 such
that S is the Fourier series of f .

Remark 1.5. Trigonometric polynomials take — in some sense — over the role of usual
polynomials but on the unit sphere. More generally, trigonometric series take over the role
of power series. In that sense, Fourier series can be compared to Taylor series of a function.
However, while Taylor series exploit the local behavior of a function, Fourier series encode the
global behavior, as we will see in this course. The latter fact makes them very powerful on one
hand, but far more difficult in study as we shall see.

Theorem 1.6 (Basic facts on Fourier series). The following holds.

(1) f 7→ f̂ is a linear, injective mapping from L1(T) to CZ

(2) f 7→ f̂ bounded from L1(T) to `∞(Z), the space of bounded, complex-valued (double)
sequences, i.e.

‖f̂‖∞ := sup
n∈Z
|f̂(n)| ≤ 1

2π
‖f‖L1(T).

(3) for any s ∈ R, ˆτsf = (s 7→ eisf̂(s)), where (τsf)(t) = f(t+ s), (Modulation)

Proof. The linearity follows directly form (1.2). We will present a proof of the injectivity

(and shall see another one in the Exercise classes). Let us assume that f̂ = 0. By linearity it

suffices to show that that f = 0. Again by linearity and the definition of f̂ , we have that

(1.3)

∫ 2π

0

f(t)g(t) dt = 0

for all trigonometric polynomials g2 and hence for all continuous functions g by Weierstrass’
theorem. To conclude that f = 0 we have several alternatives:

2If f is continuous, we can conclude that f = 0 by Weierstrass’ theorem. For more general f ∈ L1(T), we
need a more refined argument



1. DEFINITIONS AND BASICS 5

(α) If we can show that for any measurable set E ⊂ [0, 2π] it holds that
∫
E
f(t) dt = 0, then

it is not hard to see that f = 0. In fact, if f 6= 0, then either <f 6= 0 or =f 6= 0 (in
the L1 sense). Let us assume that there exists ε such that E = {t ∈ [0, 2π] : <f(t) > ε}
has positive measure — the other cases follow analogously. Then <

∫
E
f(t) dt > ελ(E)

which yields a contradiction. In order to show that
∫
E
f(t) dt = 0 for any measurable

set E, recall Lusin’s theorem3

Let h : [a, b]→ C be a measurable function. Then for any δ > 0 there exists a
continuous function hδ : [a, b]→ C such λ({t ∈ [a, b] : |h(t)− hn(t)| 6= 0}) < δ
with ‖hδ‖∞ ≤ ‖h‖∞ 4

Apply this with h = χE and set gn := h2−n and conclude that limn→∞ gn(t) = g(t) for
almost every t ∈ [a, b] 5. As ‖gn‖∞ ≤ 1, dominated convergence together with (1.3)
yields

0 = lim
n→∞

∫ 2π

0

f(s)gn(s) ds =

∫ 2π

0

f(s)g(s) ds =

∫
E

f(s) ds.

(β) For any function g in L∞(T) there exists a sequence of continuous functions that con-
verge to g in weak∗ sense (see e.g. Ex. 2.3), and consequently∫ 2π

0

f(t)g(t) ds = 0 ∀g ∈ L∞(T).

Using the fact that L∞(T) is isometrically isomorph to the dual space of X = L1(T)
(Riesz Representation theorem), this implies that 〈f, g〉X,X′ = 0 for all g ∈ X ′. Hence,
a consequence of the Hahn-Banach theorem yields f = 0.

�

Theorem 1.7 (discrete Riemann–Lebesgue). f 7→ f̂ maps L1(T) to c0(Z), where c0(Z)
denotes the space of sequences that converge to 0 (as n→ ±∞).

Proof. We present a sketch of the proof (the details of each step are left for the exercises).
This follows the routine

prove for smooth + functional analysis

First, one shows (sees) that for any trigonometric polynomial p it holds that p̂ ∈ c0(Z). As

a second step, use that f 7→ f̂ is bounded from L1(T) to `∞(Z), Theorem 1.6 and conclude
the assertion by density of the trigonometric polynomials (Weierstrass’ Theorem) and density of
continuous functions in L1(T). �

Proposition 1.8. The operator f 7→ f̂ is not surjective from L1(R) to c0(Z).

Proof. See Ex. 1.3 �

Proposition 1.9. Let s ∈ T and define the operator τs on L1(R) by τsf = f(· + s). Then
for all n,m ∈ Z and f ∈ L1(R),

(1) τ̂sf(n) = einsf̂(n),

(2) êim·f(n) = f̂(n−m).

3See for instance Tao’s book (the condition on the supremum follows easily from the proof) mentioned in
the introduction.

4where the essential supremum on left hand side of the inequality is allowed to be ∞.
5here, one may use that λ({t : h(t)− hn(t) 6= 0 for infinitely many n ∈ N}) = 0 by Borel-Cantelli
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Proof. To see (1), note that

τ̂sf(n) =
1

2π

∫
T
f(t+ s)e−int dt =

eins

2π

∫
T
f(t)e−int dt = einsf̂(n).

The other assertion follows similarly. �

Remark 1.10 (a warning). One may be tempted to think that Weierstrass’ theorem, The-
orem 1.3, already gives an indication on functions that can ‘safely’ be approximated by Fourier
series: the continuous functions on T, as Fourier himself conjectured. This however turns out
to be (‘very’) wrong as we shall see. In a similar, but different, spirit, we convince ourselves that
the approximating sequence in Weierstrass’ theorem is in general not given by the partial sums
of a Fourier series.

2. Convolutions

In the following let Ω be either R or T and consider Lp = Lp(Ω) = Lp(Ω, λ) where dλ(s) = ds
refers to the corresponding Lebesgue measure. In the present chapter we shall be interested in
the case Ω = T, but later on the case Ω = R will be needed.

Definition 2.1 (Convolution). Let f, g ∈ L1(Ω), then the convolution f ∗ g of f and g is
defined as (f ∗ g)(t) =

∫
Ω
f(t− s)g(s) ds for t ∈ Ω such that the integral exists.

Formally one can define the convolution for more general functions f, g only requiring that
f ∗ g exists for a.e. t ∈ Ω. In the case of L1(Ω) this is indeed guaranteed as the following result
shows.

Theorem 2.2. The convolution ∗ is a bilinear mapping from L1(Ω)× L1(Ω)→ L1(Ω) that
satisfies for all f, g, h ∈ L1(Ω):

‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1(2.1)

f ∗ g = g ∗ f (commutativity)

f ∗ (g ∗ h) = (f ∗ g) ∗ h (associativity).

Proof. Bilinearity easily follows from linearity of the integral. All other assertions are
based on applying Fubini’s theorem. Let us show that ∗ is well-defined from L1(Ω) × L1(Ω) to
L1(Ω) and (2.1). The mapping I(t, s) = f(t− s)g(s) is clearly measurable on Ω×Ω since f and
g are measurable. Furthermore, t 7→ I(t, s) ∈ L1(Ω) for a.e. s ∈ Ω because f ∈ L1(Ω) and by∫

Ω

∫
Ω

|I(t, s)| dt ds =

∫
Ω

|g(s)|
∫

Ω

|f(t− s)| dt ds = ‖g‖L1(Ω)‖f‖L1(Ω),

where we have used the translation invariance of the Lebesgue measure on our choices for Ω, we
get that s 7→ ‖I(·, s)‖L1(Ω) is in L1(Ω). Thus, Fubini’s theorem (or Fubini-Tonelli), yields that

t 7→ (f ∗ g)(t) =
∫

Ω
I(t, s) ds is integrable and

‖f ∗ g‖L1(Ω) =

∫
Ω

∣∣∣∣∫
Ω

I(t, s) ds

∣∣∣∣ dt
≤
∫

Ω

∫
Ω

|I(t, s)| ds dt =

∫
Ω

∫
Ω

|I(t, s)| dt ds = ‖g‖L1(Ω)‖f‖L1(Ω).

�

Inequality (2.1) is only a special instance of the following result.
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Theorem 2.3 (Young’s inequality (for convolutions)). Let 1
p + 1

q = 1 + 1
r for p, q, r ∈ [1,∞]

and f ∈ Lp(Ω), g ∈ Lq. Then f ∗ g ∈ Lr(Ω) and

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq .

Proof. See Exercise 5.4. �

Corollary 2.4 (Minkowski’s inequality). For any g ∈ L1(Ω), the mapping f 7→ f ∗ g is
bounded on Lp(Ω) with norm less or equal to 1.

For a separate proof of Minkowski’s inequality see Ex. 2.4.

Remark 2.5. We have seen convolutions on Lp spaces defined on R and T with the Lebesgue
measure. It is important to realize that the latter are (additive) groups with a translation-
invariant measure. In fact, these are the crucial properties needed to define a convolution. We
remark that this is also possible for more general locally compact topological groups and their,
roughly speaking, translation-invariant measures.

Theorem 2.6 (Convolution and Fourier coefficients). Let f, g ∈ L1(T), n ∈ Z. Then

f̂ ∗ g = 2π f̂ · ĝ,

where the multiplication on the right has to be understood pointwise, i.e. f̂ ∗ g(n) = 2πf̂(n)ĝ(n).
Furthermore,

(f ∗ ein·)(t) = 2πf̂(n)eint.

Proof. By definition of the convolution and the Fourier coefficients,

2πf̂ ∗ g(n) =

∫
T

∫
T
f(t− s)g(s) ds e−int dt =

∫
T

∫
T
f(t− s)e−in(t−s)e−insg(s) ds dt.

Using Fubini (or Fubini-Tonelli)), we can interchange the order of integration, and also using
that translation-invariance of the the Lebesgue measure on T, we get∫

T

∫
T
f(t− s)e−in(t−s)e−insg(s) ds dt =

∫
T

e−insg(s)

∫
T
f(t− s)e−in(t−s) dt ds = (2π)2ĝ(n)f̂(n).

The second claim follows either by a similar calculation or by recalling that êin· = en, where
en denotes the n-th canonical basis vector in c0(Z), and applying the first part of this theorem:

Thus f̂ ∗ ein· = f̂(n)en and by injectivity of the linear map f 7→ f̂ , Theorem 1.6, we deduce

(f ∗ ein·)(t) = f̂(n)eint. �

3. Approximate identities

Definition 3.1 (Approximate identity). A sequence (kn)n∈N ⊂ C(T) is called approximate
identity if

(1)
∫
T kn(s) ds = 1 for all n ∈ N,

(2) supn∈N ‖kn‖L1(T) <∞
(3) limn→∞

∫ 2π−δ
δ

|kn(s)| ds = 0 for all δ ∈ (0, π).

If kn ≥ 0 we say that the approximate identity is positive.

Remark 3.2. Note that the notion of an approximate identity can analogously be defined
for functions on R instead of T, see [1].
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Note that the requirement that the kn are continuous is made for technical reasons here
and actually could be dropped. The name “approximate identity” is justified by the following
proposition. The need for such notion also emerges from the fact that there does not exists a
function g ∈ L1(T) such that f ∗ g = f for all f ∈ L1(T) — in other words, there is no neutral
element with respect to ∗ in L1, see Exercise 2.6. For the following recall the Riemann integral
for Banach space valued functions6.

Lemma 3.3. Let X be a Banach space, φ : T→ X continuous and (kn)n be an approximate
identity. Then

lim
n→∞

∫
T
kn(s)φ(s) ds = φ(0).

Proof. By the properties of an approximating identity we have∫
T
kn(s)φ(s) ds− φ(0) =

∫
T
kn(s)[φ(s)− φ(0)] ds.

To show that the right-hand side equals zero, we split the integral∫
T
kn(s)[φ(s)− φ(0)] ds =

∫ 2π−δ

δ

kn(s)[φ(s)− φ(0)] ds+

∫
[0,δ]∪[2π−δ,2π]

kn(s)[φ(s)− φ(0)] ds

with δ ∈ (0, π). Since φ(2π) = φ(0) and since ‖kn‖L1 is uniformly bounded in n, the second term
on the right-hand-side can be made arbitrarily small as δ goes to 0 (independent of n). On the
other hand, ∥∥∥∥∥

∫ 2π−δ

δ

kn(s)[φ(s)− φ(0)] ds

∥∥∥∥∥ ≤ 2 sup
s∈T
‖φ(s)‖X

∫ 2π−δ

δ

|kn(s)| ds −→ 0

for any δ as n→∞ by the definition of an approximate identity. �

Proposition 3.4 (Strong continuity). Let X be one of the following Banach spaces

Ck(T) with norm ‖f‖Ck(T) =

k∑
j=0

‖f (j)‖∞, Lp(T) with p ∈ [1,∞).

Then for s ∈ T, the operator

τs : X → X, f 7→ fs := f(· − s)
is linear and isometric. Furthermore,

∀f ∈ X : s 7→ τsf is continuous.

The latter property is called strong continuity of τ .

Proof. We only give a sketch — see the exercises for details. That τs is well-defined, linear
and isometric is seen directly (also using the translation invariance of the Lebesgue measure).
Hence in particular ‖τs‖L(X) = 1 for all s ∈ T. Let f ∈ Ck(T). Then f (j) is uniformly continuous

on T and hence limt→s ‖f (j)
s (t) − f (j)

t (s)‖∞ = 0 for j ∈ {1, .., k}. For X = Lp(T), p ∈ [1,∞),
recall that (the set) C(T) lies dense in X. Since (the Banach space) C(T) is continuously embed-
ded in X, s 7→ τsf is continuous for f ∈ C(T) by what we have already shown. The continuity
for general f ∈ X now follows by approximation with continuous functions and the fact that
s 7→ ‖τs‖ is uniformly bounded (triangle inequality).

�

6which, to large extend, can be introduced in the same way as the usual Riemann integral for scalar-valued
functions, but ‘replacing the absolute value” by the norm of the Banach space”.
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Remark 3.5. (1) The assertion of Prop. 3.4 remains true if T is replaced by R and
C(T) is replaced by

C0(R) = {f ∈ C(R) : lim
x→±∞

f(x) = 0}.

This can be proved similarly, using compactly supported continuous functions in the
approximation argument.

(2) By Ex. 1.5, the assertion of Prop. 3.4 does not hold for p =∞ as strong continuity fails
in this case.

The previous result motivates the following definition.

Definition 3.6. A Banach space X that is continuously embedded in L1(T), i.e. ∃C > 0
with ‖ · ‖X ≥ C‖ · ‖L1(T), is called homogeneous (Banach) space if

(1) for f ∈ X it follows that fs = f(· − s) ∈ X with ‖f‖X = ‖fs‖X and
(2) the shift group τs is strongly continuous on X.

Note that the spaces considered in Prop. 3.4 are homogeneous Banach spaces

Theorem 3.7 (Approximation in homogenous spaces). Let (kn)n∈N be an approximate iden-
tity and X be a homogeneous Banach space. Then for any f ∈ X it holds that

f = lim
n→∞

∫
T
kn(s)fs ds = lim

n→∞
kn ∗ f,

where the limits as well as the integral exist in X.

Proof. The first identity follows directly from Lem. 3.3. In fact, s 7→ φ(s) = fs is continuous
from T to X since X is a homogenous Banach space and φ(0) = f0 = f . For the second identity,
we will show that for k ∈ C(T)

B1f :=

∫
T
k(s)fs ds = k ∗ f =: B2f

for all f ∈ L1(T). If this holds, then the second identity follows as X is continuously embedded
in L1(T) and therefore, the integral B1f exists as limit of Riemann sums in both L1 and X and
coincides. It is easy to see that B1, B2 are bounded linear operators on L1(T). Hence, it suffices
to show that they coincide on a dense subspace. For t ∈ T let Ct : C(T) → C, f 7→ f(t) denote
the point evaluation operator at t. Also note that the integral B1f exists as limit of Riemann
sums in C(T) — as τs is strongly continuous on C(T). Since Ct is linear and bounded, we have
that

(B1f)(t) = CtB1f =

∫
T
Ct (k(s)fs) ds = (k ∗ f)(t) = (B2f)(t).

�

This theorem has several consequence concerning approximation of elements in homogeneous
Banach spaces and in particular in the context of trigonometric series.

4. The Fejér kernel and Dirichlet kernel

In the following we would like to apply the abstract result derived in the previous section to
specific approximate identities. Recalling that

(eik· ∗ f)(t) = f̂(k)eint2π,

thus

(4.1) (

n∑
k=−n

eik· ∗ f)(t) = 2π

n∑
k=−n

f̂(k)eikt
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one is tempted to believe that

(4.2) Dn(t) =
1

2π

n∑
k=−n

eikt

is an approximate identity. If this was true, then Theorem 3.7 would imply that the (partial
sums of the) Fourier series

(Dn ∗ f)(t) =

n∑
k=−n

f̂(k)eikt

of f ∈ X converge to f in X for any homogenous Banach space X.

Example 4.1 (The Dirichlet kernel). The sequence kn defined by (4.2) is called the Dirichlet
kernel and is not an approximate identity. In fact,

∫
TDn(s) ds = 1, but ‖Dn‖L1(T) is not

uniformly bounded in n ∈ N. More precisely, using the identity

Dn(s) =
1

2π

sin((n+ 1
2 )t)

sin t
2

,

one can show that ‖Dn‖L1(T) ∼ log n, see Exercises.

Not only that (Dn)n fails to be an approximate identity, it can moreover be shown that the
assertion of Theorem 3.7 does not hold with kn = Dn — at least not in the case X = L1(T) and
X = C(T). Motivated by convergence properties for sequences we may instead hope for some
better properties of the arithmetic mean of Dn

Motivated by the fact that the convergence of a sequence (an)n∈N0
may “improve” upon con-

sidering the sequence of arithmetic means instead
(
a0+a1+..+an

n+1

)
n∈N0

, see Ex. 2.0, we introduce

the following kernel.

Definition 4.2 (Fejér kernel). The sequence (Fn)n∈N0 ⊂ C(T) defined by

Fn(t) =
1

n+ 1

n∑
k=0

Dk(t), t ∈ T,

where (Dk)k is defined in Ex. 4.1, is called the Fejér kernel. For f ∈ L1(T), we call

Fn ∗ f =
1

n+ 1

n∑
k=0

(Dk ∗ f)

the n-th Fejér mean (or Césaro mean ) of f . By (4.1), the n-th Fejér mean is nothing else than
the arithmetic mean of the first n+ 1 partial sums of the Fourier series of f .

Proposition 4.3. The Fejér kernel (Fn)n∈N0 defined in Def. 4.2 is an approximate identity,
additionally satisfying for all n ∈ N0, t ∈ T and δ ∈ (0, π),

Fn(t) ≥ 0, Fn(t) = Fn(−t), lim
n→∞

‖Fn‖L∞(δ,2π−δ) = 0.

Furthermore, the following identities hold.

(4.3) Fn(t) =
1

2π

n∑
k=0

(
1− k

n+ 1

)
eint =

1

2π(n+ 1)

(
sin((n+ 1) t2 )

sin t
2

)2

.

Proof. See Ex. 2.1 (first show (4.3) from which the rest follows rather directly). �

Proposition 4.4. ATTENTION: there may have been a typo on the blackboard If (Dn∗f)n∈N
converges in X where X is a homogeneous Banach space and f ∈ X, then (Fn ∗ f)n∈N converges
in X as well — and to the same limit.
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Proof. This follows since Fn ∗ f is the arithmetic mean of Dn ∗ f and Ex. 2.0. �

Theorem 4.5 (Approximation by Fejér kernel). Let X be a homogeneous Banach space and
f ∈ X. Then

(Fn ∗ f) converges to f in X as n→∞.

Proof. This follows from Theorem 3.7 and since (Fn)n is an approximate identity, Propo-
sition 4.3. �

Corollary 4.6. The set of trigonometric polynomials Trig(T) lies dense in any homoge-
neous Banach space X in the sense that the closure of Trig(T) ∩X in X equals X. Moreover,
for any f ∈ X, the sequence

fn(t) =

n∑
k=0

(
1− k

n+ 1

)
f̂(k)eint

converges to f in the X norm. In particular, the trigonometric polynomials lie dense in Ck(T)
and Lp(T) for any p ∈ [1,∞), k ∈ N0.

Proof. Note that Fn ∗ f = fn by Proposition 4.3 and Theorem 2.6. The rest follows from
Theorem 4.5. �

Corollary 4.6 provides a constructive proof of Weierstrass’ theorem. However, we should be
aware of the fact that the proof of Theorem 3.7 relied on the fact that C(T) lies dense in L1(T)
— which then should not be argued by Weierstrass’ theorem, but more directly (e.g. use that
the simple functions are dense in L1 and apply Lusin’s theorem).

Theorem 4.7. For X = L1(T) or X = C(T) there exists a function f ∈ X such that the
partial sums Dn ∗ f of the Fourier series of f do not converge in X. Moreover, there exists
f ∈ C(T) and t0 ∈ T such that (Dn ∗ f)(t0) does not converge.

Proof. This is proved in Ex. 2.5 by an abstract argument employing the uniform bound-
edness principle. �

Remark 4.8. Although the proof of Theorem 4.7 was based on an abstract existence argu-
ment, it is possible to construct such f ∈ C(T) explicitly, see e.g. [2, 1].

Theorems 4.5 and 4.7 leave us with two main questions/goals.

(I) Do the Fejér means (Fn ∗f)n converge pointwise almost everywhere for any f ∈ L1(T)?
(II) Do the partial sums (Dn ∗ f)n of a Fourier series converge in Lp(T) for any f ∈ Lp(T)?

We remark that we could have asked the second question for more general homogeneous Banach
spaces X other than C(T) or L1(T), but here will restrict to the important class of Lp spaces
only.

Let us first approach (I):

Theorem 4.9 (Pointwise convergence of Fejér means). Let f ∈ L1(T), t0 ∈ T and assume
that there exists Lt0 ∈ C such that

(4.4) lim
h→0+

1

h

∫ h

0

∣∣∣∣12(f(t0 + s) + f(t0 − s))− Lt0
∣∣∣∣ ds = 0.

Then limn→∞(Fn ∗ f)(t0) = Lt0 .
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Proof. Let us consider (Fn ∗ f)(t0)− Lt0 for n ∈ N: Since
∫
T Fn = 1, we have

(Fn ∗ f)(t0)− Lt0 =

∫
T
Fn(s)(f(t0 − s)− Lt0) ds

=

∫ π

−π
Fn(s)(f(t0 − s)− Lt0) ds

=

∫ π

0

Fn(s)(f(t0 + s) + f(t0 − s)− 2Lt0) ds,

where we used Fn(−s) = Fn(s), see Prop. 4.3, in the last identity. We now split the integral,∫ π
0

=
∫ v

0
+
∫ π
v

with v ∈ (0, π) which will be determined later, and estimate by triangle inequality,∣∣∣∣∫ π

0

Fn(s)(f(t0 + s) + f(t0 − s)− 2Lt0) ds

∣∣∣∣ ≤ ∫ v

0

|.|+
∫ π

v

|.| =: I1 + I2.

The goal is to show that I1 + I2 → 0 as n→∞. To estimate I1 and I2, let us investigate |Fn(s)|,
s ∈ (0, π), first, by using Prop. 4.3 again,

(4.5) |Fn(s)| = 1

2π(n+ 1)

∣∣∣∣ sin((n+ 1) s2 )

sin s
2

∣∣∣∣2 ≤ min

(
n+ 1,

π2

(n+ 1)s2

)
where use the elementary estimates | sin(x)| ≤ |x| and 2

πx ≤ sin(x) for x ∈ [0, π2 ) as follows∣∣∣∣ sin((n+ 1) s2 )

sin s
2

∣∣∣∣2 ≤ 1

| sin s
2 |2
≤ π2

4

4

s2
,

∣∣∣∣ sin((n+ 1) s2 )

sin s
2

∣∣∣∣2 ≤ (n+ 1)2( s2 )2

( 2s
π2 )2

≤ (n+ 1)2π
2

4
.

The idea is to choose v = v(n) such that I1 and I2 converge to 0 as n→∞. Let v = n−
1
4 . Then

we have for I2,

I2 =

∫ π

n−1/4

|Fn(s)| · |f(t0 + s) + f(t0 − s)− 2Lt0 |︸ ︷︷ ︸
=:g(s), g∈L1(T)

ds
(4.5)

≤ π2

(n+ 1)n−1/2

∫ π

0

|g(s)| ds n→∞−→ 0.

We still have not used the assumption that the limit in (4.4) is finite. To do so, and to handle
I2 define

P (h) =

∫ h

0

|g(s)| ds with g(s) = f(t0 + s) + f(t0 − s)− 2Lt0 .

By assumption, 1
hP (h)→ 0 as h→ 0+. By further splitting the integral in I1 we get We further

split I1 =
∫ n−1

0
|.|+

∫ n−1/4

n−1 |.| (having set v = n−1/4) and get

I1 =

∫ n−1

0

|.|+
∫ n−1/4

n−1

|.|
(4.5)

≤
∫ n−1

0

(n+ 1)|g(s)| ds+

∫ n−1/4

n−1

π2

(n+ 1)s2
|g(s)| ds

= (n+ 1)P ( 1
n ) +

∫ n−1/4

n−1

π2

(n+ 1)s2
P ′(s) ds,

where in the last step we used Lebesgue’s fundamental theorem of calculus7. By assumption,
(n+ 1)P ( 1

n )→ 0 as n→∞ and it remains to consider the second term on the right-hand side.
Integration by parts gives∫ n−1/4

n−1

π2

(n+ 1)s2
P ′(s) ds =

π2

n+ 1

P (s)

s2
|n
−1/4

n−1 +
2π2

n+ 1

∫ n−1/4

n−1

P (s)

s3
ds

7implying that P , as the primitive of an integrable function, is differentiable almost everywhere and the
derivative P ′ coincides with the integrand.
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It follows directly from limh→0+ h−1P (h) = 0 that the first term on the right-hand side tends to
0 as n→∞. For the second term note that by the same reasoning, for every ε > 0 it holds that
P (s)
s3 ≤

ε
s2 for all s ∈ (0, sε) and sufficiently small sε > 0. Therefore, for every ε > 0 there exists

N ∈ N such that for all n > N ,

2π2

n+ 1

∫ n−1/4

n−1

P (s)

s3
ds ≤ 2επ2

n+ 1
(n− n 1

4 ) < 2επ2.

Thus, altogether, I1 → 0 as n→∞. �

Remark 4.10. Note that the condition (4.4) is in particular satisfied if

(4.6) lim
s→0+

1

2
(f(t0 + s) + f(t0 − s)) = Lt0

and hence especially for any point t0 if f is in C(T). In this special situation, the version of
Theorem 4.9 is referred to as Fejér’s theorem.

Theorem 4.9 even implies that the Fejér means Fn ∗ f of a function f ∈ L1(T) converge
pointwise almost everywhere to f . The proof relies on a stronger version of Lebesgue fundamental
theorem of calculus saying particularly that for f ∈ L1(T), condition (4.4) is satisfied for almost
every t0 in T. In fact, one can use (more involved) methods from Fourier analysis to show
this result — we leave out the proof and refer to e.g. [3, Lecture 3, Thm. 2.1] and see also [1,
Thm. 3.4.4].

Theorem 4.11. Let f ∈ L1(T), then limn→∞(Fn ∗ f)(t) = f(t) for almost every t ∈ T.

Theorem 4.11 provides an affirmative answer to Question (I). For a similar result concerning
pointwise convergence for another summability kernel, see Exercise 4.4 on the Poisson kernel.

5. Convergence of Fourier series in homogeneous Banach spaces

We have already seen that for the spaces X = C(T) and X = L1(T) the partial sums of a
Fourier series (i.e. the sequence of Dirichlet means) does not converge in the respective norms,
i.e.

Dn ∗ f → f in X for n→∞.
This failure was seen by relating convergence with uniform boundedness of the operator sequence
(MDn)n∈N defined by

(5.1) MDn : X → X, f 7→ Dn ∗ f.
Let us begin this section with showing that this is actually a manifestation of an argument for
general spaces. In the following the phrase “the Fourier series of f converges to f in X always
refers to the convergence of the partial sums Dn ∗ f .

Theorem 5.1. Let X be a homogeneous Banach space. Then the Fourier series of all f ∈ X
converges to f in X if and only if the operators (MDn)n∈N defined by (5.1) are uniformly bounded.

Proof. The sufficiency (“⇒”) is a direct consequence of the uniform boundedness principle.
In fact, for f ∈ X the sequence (MDnf)n∈N is bounded in X, i.e. supn∈N ‖MDnf‖X <∞ since
MDnf converges for n → ∞ by assumption. Thus, by the uniform boundedness principle
(recalling that MDn : X → X is a bounded operator on X for every n ∈ N, see Ex. 2.4), we
conclude that (MDn)n∈N is bounded in B(X,X), the space of bounded linear operators on X.
Conversely, assume that C := supn∈N ‖MDn‖ < ∞. In order to show that MDnf → f as
n → ∞, we first consider the case when f is a trigonometric polynomial and show the general
case by density of these polynomials in X and that C <∞.

�
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As we have seen in Exercise 2.4, the norm of Sn =MDn as operator on X can be bounded
by ‖Dn‖L1(T), but this inequality may be strict.

Remark 5.2. As described in the beginning of this section, from Example 4.1 (and see also
Ex. 2.5) it can be inferred that ‖MDn‖L1(T)→L1(T) ∼ log(n) which, by Theorem 5.1, implies that

there exists f ∈ L1(T) such that the Fourier series of f does not converge to f . On the other
hand we can “apply” Theorem 5.1 to the Dirichlet kernel in X = L2. From Exercise 2.4 (d), we

know that ‖Sn‖L2(T)→L2(T) ≤ 2π‖D̂n‖`∞(Z) = 1 and hence the partial sums of the Fourier series

for L2 functions converge in L2. However, recall that this is something we knew already from
the functional analysis class, as indicated in the introduction.

Remark 5.3. In contrast to the situation in Remark 5.2 (where X = C(T) or X = L1(T)),
it is difficult to calculate (or estimate) ‖Sn‖X→X for general homogeneous spaces X and thus
to conclude on the convergence of the Fourier series. For that reason, we will reformulate this
property once more in the next subsection. Our ultimate goal is to discuss the convergence of
Dn ∗ f in Lp (for f ∈ Lp).

5.1. Conjugate trigonometric series.

Definition 5.4 (Conjugate trigonometric series). Given a trigonometric series
∑
n∈Z aneint,

we call
−
∑
n∈Z

i sgn(n)aneint

the conjugate (trigonometric) series 8.

In the following we shall be particularly interested in conjugate series of Fourier series. Let
us first study the question whether Fourier series are invariant under conjugation, i.e.

Is the conjugate series of a Fourier series again Fourier series?

Recall that we say that a trigonometric series is a Fourier series if its coefficients are the Fourier
coefficients of some function in L1(T). This question looks harmless, but, as we shall see shortly,
has a negative answer. However, more special functions f ∈ L1(T) for which an affirmative

answer can be given are e.g. f ∈ A(T) = {f ∈ L1(T) : f̂ ∈ `1(Z)} (think about why!).

Proposition 5.5. (1) Let (an)n∈Z ∈ c0(Z) be a given sequence such that an = a−n,
an ≥ 0 and 1

2 (an−1 + an+1) ≥ an for all n ∈ N0. Then there exists f ∈ L1(T)

nonnegative such that f̂(n) = an for all n ∈ Z.

(2) Let f ∈ L1(T) be such that f̂(n) = −f̂(−n) ≥ 0 for all n ∈ N0. Then
(
f̂(n)
n

)
n∈N
∈

`1(N).

Proof. (1): From the assumption, (an − an+1) ↘ 0 and moreover, n(an − an+1) → 0 as
n→∞ (this follows from

∑
n∈N0

(an − an+1) = a0). Define

f(t) = 2π

∞∑
n=1

n(an−1 + an+1 − 2an)Fn−1(t)

for t ∈ T. To see that the series converges in L1(T), note that by supn∈N ‖Fn‖L1(T) < ∞, it

suffices to see that
∑k
n=1 n(an−1 + an+1 − 2an) converges for k → ∞. The latter follows easily

from the identity
k∑

n=1

n(an−1 + an+1 − 2an) = a0 − ak − k(ak − ak+1).

8Recall that without further specifications these series are only formally defined by their coefficients sequence.
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This also shows that the limit as k → ∞ equals a0. It remains to show that f̂(m) = am for all

m ∈ Z. By linearity and boundedness of f 7→ f̂ we have

f̂(m) =

∞∑
n=1

n(an−1 + an+1 − 2an)2πF̂n−1(m).

Since F̂n−1(m) = 0 for |m| ≥ n and 2πF̂n−1(m) = (1− |m|n ) for |m| < n, this yields

f̂(m) =

∞∑
n=|m|+1

n(an−1 + an+1 − 2an)(1− |m|
n

).

Using the above derived convergence properties of (an) it is not hard to see that the last sum
equals a|m| (index shift!).

(2): see Ex. 3.1(3). �

Corollary 5.6. There exists a Fourier series such that its conjugate series is not a Fourier
series. More precisely, the following holds: Let an > 0 for all n ∈ Z such that

∑
n∈Z

an
n = ∞.

Then −i
∑
n∈Z ansgn(n)eint is not a Fourier series.

Proof. Let an = 1
log(n) for |n| ≥ 2 and 0 else. �

Definition 5.8 (Homogeneous spaces invariant under conjugation). We say that a homoge-
neous Banach space X is closed under conjugation if for any f ∈ X, it follows that there exists
f̃ ∈ X with

ˆ̃
f(m) = −isgn(m)f̂(m) ∀m ∈ Z.

Note that the property of being invariant under conjugation is non-trivial: In particular, the
homogeneous space L1(T) does not possess it by Corollary 5.6. On the other hand, examples of
a space which are invariant under conjugation are given by X = L2(T) or X = A(T) as can be
seen easily.

Proposition 5.9. Let X be a homogeneous Banach space. The following assertions are
equivalent.

(1) X is invariant under conjugation,

(2) f 7→ f̃ is a well-defined, bounded linear operator from X to X.

(3) f 7→ P+f = 1
2 f̂(0) + 1

2 (f + if̃) is a well-defined, bounded linear operator from X to X.

Note that (̂P+f)(m) = f̂(m) for m ≥ 0, and (̂P+f)(m) = 0 for m < 0.

Proof. We show (1) =⇒ (2) =⇒ (3) =⇒ (1). The first implication is a consequence of the

closed graph theorem, by which it suffices to show that the mapping f 7→ f̃ is closed. By (1),
the mapping is well-defined and obviously linear. Let fn, f, g ∈ X, n ∈ N, be such that fn → f
and f̃n → g in X as n → ∞. To show that f̃ = g, consider the Fourier coefficients. Since
‖ · ‖X ≥ ‖ · ‖L1 , we have that

lim
n→∞

f̂n(m) = f̂(m) and lim
n→∞

̂̃
fn(m) = ĝ(m)

for all m ∈ Z, by Theorem 1.6. On the other hand, we have that
̂̃
fn(m) = −isgn(m)f̂n(m) by

definition. Therefore,
ˆ̃
f = ĝ and thus f̃ = g by uniqueness of the Fourier coefficients, Theorem

1.6. Thus, by the closed graph theorem (X is a Banach space), the mapping f 7→ f̃ is bounded.

(2) =⇒ (3): This is clear since f 7→ f̂(0) and f 7→ f are bounded operators on X and therefore
P+ is bounded as sum of bounded operators.
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(3) =⇒ (1): This follows by f̃ = −i(2P+f− f̂(0)−f) and since the right-hand side is well-defined
for f ∈ X. �

In fact, homogeneous spaces which are invariant under conjugation characterize the property
that the partial sums of Fourier series converge:

Theorem 5.10. Let X be a homogeneous Banach space such that f 7→ ein·f is an isometry
from X to X 9 for any n ∈ Z. Then the following assertions are equivalent.

(1) For all f ∈ X the Fourier series converges to f in X,
(2) X is invariant under conjugation.

Proof. By Theorem 5.1 and Proposition 5.9 it suffices to show that MDn are uniformly
bounded operators on X if and only if P+ is a bounded operator on X. From the definition of
the Dirichlet kernel and Theorem 2.6 we get the following dentity for f ∈ X,

(5.2)

2n∑
k=0

f̂(k)eikt = eint(Dn ∗ (fe−in·))(t) = eint(MDn(fe−in·))

For n ∈ Z let Jn be the operator defined by (Jnf)(t) = eintf(t). Clearly, J−n = (Jn)−1 and,
by assumption, ‖Jnf‖X = ‖f‖X and hence particularly ‖Jn‖ = 1. Let f be a trigonometric
polynomial. Then for sufficiently large n,

P+f =

2n∑
k=0

f̂(k)eikt = JnMDnJ−nf,

where we used (5.2). Thus ‖P+f‖X ≤ ‖MDn‖‖f‖X . If we assume that C = supn∈N ‖MDn‖X→X <
∞, then it follows that ‖P+f‖X ≤ C‖f‖X for any trigonometric polynomial and thus P+ is
bounded on X by density, Corollary 4.6. Conversely, if P+ is bounded on X, then by

(J−nP+Jn − Jn+1P+J−n−1)f =MDnf

for any f ∈ X, we have that ‖MDn‖ ≤ 2‖P+‖ for all n ∈ N. �

Theorem 5.11 (Convergence of Fourier series in Lp, Riesz 1927). Let p ∈ (1,∞).
Then for every f ∈ X = Lp(T) the partial sums Dn ∗ f of the Fourier series of f converge to f
in X as n→∞.

Sketch of the proof. The proof of Theorem 5.11 is split into the following steps

(1) Show Theorem 5.11 for the special case that p = 2k with k ∈ N, (Lemma A)
(2) Show that this implies the assertion for p ≥ 2 (interpolation)
(3) Show the case p ∈ (1, 2) (duality).

�

Lemma A. The assertion of Theorem 5.11 holds for p = 2k with k ∈ N.

Proof. As we have seen in Proposition 5.9, boundedness of the conjugation f 7→ f̃ on
X = Lp characterizes the convergence of the Fourier series. Hence, it suffices to show that there
exists some constant C2k > 0 such that ‖f̃‖L2k ≤ C2k‖f‖L2k for all trigonometric polynomials
f , since the latter set is dense in X, Corollary 4.6. For a trigonometric polynomial f , P+f =
1
2 (f̂(0)+f+if̃) =

∑N
j=0 f̂(j)eik·, for sufficiently large N . If we additionally assume that f̂(0) = 0,

then the latter identity implies using the elementary identity (1.1) that∫
T
(f(t) + if̃(t))2k dt = 0.

9i.e. t 7→ eintf(t) ∈ X and ‖ein·f‖X = ‖f‖X for all f ∈ X.
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From this identity we will now extract an estimate for ‖f̃‖L2k . By expanding the binomial, we
derive

2k∑
j=0

(
2k

j

)
i2k−j

∫
T
f(t)j f̃(t)2k−j dt = 0.

Let us for the moment further assume that f and f̃ are real-valued. Thus, taking real parts gives

k∑
j=1

(
2k

2j

)
(−1)k−j

∫
T
f(t)2j f̃(t)2k−2j dt = −(−1)k‖f̃‖2k2k

and thus by Hölder’s inequality

‖f̃‖2kL2k ≤
k∑
j=1

(
2k

2j

)∫
T
|f(t)2j f̃(t)2k−2j | dt

≤
k∑
j=1

(
2k

2j

)
‖f‖2j

L2k‖f̃‖2k−2j
L2k .

Dividing by ‖f‖2kL2k yields that(
‖f̃‖L2k

‖f‖L2k

)2k

≤
k∑
j=1

(
2k

2j

)(
‖f̃‖L2k

‖f‖L2k

)2k−2j

for all f 6= 0 satisfying the listed assumptions. In other words, x =
‖f̃‖

L2k

‖f‖
L2k

satisfies p(x) ≤ 0 for

the polynomial p(x) = x2k −
∑k
j=1

(
2k
2j

)
x2k−2j . By the mean value theorem and the fact that

p(0) < 0, we conclude that p has at least one zero and we can hence denote by C2k the largest
zero of p. It follows that

‖f̃‖L2k ≤ C2k‖f‖L2k

for all real-valued trigonometric polynomials f such that f̃ is also real-valued and f̂(0) = 0.
It remains to remove the made conditions on the trigonometric polynomials f . If f is such that

f̂(0) = 0, then we can decompose f by f = P + iQ where

P (t) =

N∑
j=−N

1

2

(
f̂(j) + f̂(−j)

)
︸ ︷︷ ︸

cj

eijt, Q(t) =

N∑
j=−N

1

2i

(
f̂(j)− f̂(−j)

)
eijt,

and where N is sufficiently large. Then P (t) =
∑N
j=1 2<cj cos(jt) and Q(t) =

∑N
j=1 2=cj sin(jt)

are real-valued. Therefore, by linearity of f 7→ f̃ and by what we have already shown,

(5.3) ‖f̃‖L2k = ‖P̃ + iQ̃‖L2k ≤ C2k(‖P‖L2k + ‖Q‖L2k) ≤ 2C2k‖f‖L2k .

where the last inequality follows by max{|P (t)|, |Q(t)|} ≤ (|P (t)| + |Q(t)|) 1
2 = |f(t)| for t ∈ T.

Finally, we remove the assumption that f̂(0) = 0: For a general trigonometric polynomial we
have by linearity and the fact that g̃ = 0 if g is constant,

‖f̃‖L2k = ‖ ˜(f − f̂(0)) +
˜̂
f(0)‖L2k = ‖ ˜(f − f̂(0))‖L2k ≤ 2C2k‖f − f̂(0)‖L2k
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where we used (5.3). By Theorem 1.6 and Hölder’s inequality,

‖f − f̂(0)‖L2k ≤ ‖f‖L2k + |f̂(0)|(2π)
1
2k

≤ ‖f‖L2k + ‖f‖L1(2π)
1
2k−1

≤ ‖f‖L2k + ‖f‖L2k(2π)
1
k−1 ≤ 2‖f‖L2k .

Thus, altogether, ‖f‖L2k ≤ 4C2k‖f‖L2k for trigonometric polynomials f and hence for all f ∈
L2k. �

Recall that a function f : C → C is called entire if there exists a sequence (an)n∈N0
of

complex numbers such that f(z) =
∑∞
n=0 anz

n for all z ∈ C. For entire functions one has the
following maximum modulus principle:

(5.4) Ω ⊂ C open, bounded =⇒ sup
z∈Ω
|f(z)| = max

z∈∂Ω
|f(z)|,

where ∂Ω denotes the boundary of Ω, see Exercise 5.2 for a proof. We even need version of the
maximum modulus principe for unbounded domains, which is covered by the following result.

Lemma 5.12 (Hadamard’s Three Lines lemma — for entire functions). Let H be entire
and assume that H grows at most exponentially on the vertical strip S = {z ∈ C : <z ∈ (0, 1)},
i.e. there exists c1, c2 > 0 such that |H(z)| ≤ c1ec2=(z) for all z ∈ S. Further suppose that
Cj := sup<z=j |H(z)| <∞ for j ∈ {0, 1}. Then10

|H(z)| ≤ C1−θ
0 Cθ1 if <z = θ.

Proof. Define G by G(z) = H(z)(C1−z
0 Cz1 )−1. Since |C1−z

0 Cz1 | = C1−θ
0 Cθ1 for <z = θ, it

thus remains to show that |G(z)| ≤ 1 for all z ∈ S. As we cannot apply the maximum modulus
principle to the unbounded set S directly, we first assume that |G(x + iy)| → 0 as |y| → ∞
uniformly in x ∈ (0, 1). Hence there exists y0 > 0 such that |G(z)| < 1 for z ∈ S with =(z) > y0.
Applying the maximum modulus principle, (5.4), to G and Ω = {z ∈ S : |=z| < y0}, yields that
|G(z)| ≤ 1 for z ∈ Ω since it follows from the assumption on H that |G(z)| ≤ 1 when either
<z = 0 or <z = 1. Together this shows that |G(z)| ≤ 1 for all z ∈ S. In the general case when
H is only assumed to grow at most exponentially, we consider Gn defined by

Gn(z) = G(z)e
z2−1
n

which converges to G(z) for any z ∈ S as n → ∞. Since |e z
2−1
n | = e

1
n (−(=z)2+(<z)2−1), it

follows that for every fixed n, |Gn(z)| goes to 0 uniformly in S as =(z) → ∞ and thus satisfies
the assumption made in the first proof step. Therefore, |Gn(z)| ≤ 1 for all n ∈ N and thus
|G(z)| ≤ 1 for all z ∈ S. �

Recall that for a measure space (Ω, µ) a function f : Ω→ C is called simple if it is of the form

f =

n∑
j=1

fjχAj

with n ∈ N, fj ∈ C and measurable, disjoint sets Aj ⊂ Ω. We say that a simple function f has finite

measure support if µ(Aj) < ∞ for j ∈ {1, . . . , n}. Note that for p ∈ [1,∞), the set of simple functions

with finite measure support Msimple,finite(Ω, µ) lies dense in any Lp(Ω, µ) if the measure space is σ-finite.

10Note that this statement actually holds more generally for functions f which are analytic on S and con-
tinuous on the closure S.
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Theorem 5.13 (Riesz–Thorin interpolation theorem). Let (Ωi, µi), i = 1, 2 be σ-finite
measure spaces and let pi, qi ∈ [1,∞]. Let T be an operator mapping the space of simple functions
Ω1 → C with finite measure support Msimple,finite(Ω, µ) to Lq1(Ω2, µ2) ∩ Lq2(Ω2, µ2) such that

(5.5) ‖Tf‖Lqi (Ω2) ≤ Ci‖f‖Lpi (Ω1) ∀f ∈Msimple,finite(Ω1, µ).

Then there exists a constant Cp,q > 0 such that

‖Tf‖Lq(Ω2) ≤ Cp,q‖f‖Lp(Ω1) ∀f ∈Msimple,finite(Ω1, µ),

where

(5.6)
1

p
=

1− θ
p1

+
θ

p2
,

1

q
=

1− θ
q1

+
θ

q2
, θ ∈ (0, 1),

and Cp,q ≤ C1−θ
1 Cθ2 .

In particular, if p <∞, then T extends to a bounded operatore from Lp(Ω1, µ1) to Lq(Ω2, µ2).

Proof. In the following we will abbreviate Lp = Lp(Ω1) and Lq = Lq(Ω2) as the space Ωi
is clear from the context. Recall that q′ denotes the Hölder conjugate of q, i.e. 1

q + 1
q′ = 1. By a

Hahn-Banach argument and duality of Lp spaces, it suffices to show that

|
∫

Ω2

(Tf)g dµ2| ≤ Cp,q

for simple functions f : Ω1 → C and g : Ω2 → C with finite measure support and with
‖f‖Lp , ‖g‖Lq′ = 1 (why?!, check this in particular for limiting cases p, q′ = ∞). Our goal is
to apply Hadamard’s three lines lemma. Let us factorize f and g as follows

f = ei arg(f)F 1−θ
1 F θ2 , g = ei arg(g)G1−θ

1 Gθ2,

with11 Fi, Gi non-negative and such that Fi ∈ Lpi , Gi ∈ Lq
′
i with norms ‖Fi‖Lpi = ‖Gi‖Lq′i = 1

— this can be achieved by setting Fi = |f |
p
pi and Gi = |g|

q′
q′
i . Now define h : C→ C by

h(z) =

∫
Ω2

T (ei arg(f)F 1−z
1 F z2 )ei arg(g)G1−z

1 Gz2 dµ2,

which is well-defined and entire since Fi and Gi are simple functions with finite measure support:
More precisely, this by the fact that there exists pairwise disjoint measurable sets Aj ⊂ Ω1, and
Bk ⊂ Ω2, and aj , bj , ck, dk > 0, for j = 1, ..,m, k = 1, .., l such that

h(z) =
∑
j,k

a1−z
j bzjc

1−z
k dzk

∫
Ω2

T (ei arg(f)χAj )e
i arg (g)χBk dµ2.

To apply Lemma 5.12, it remains to check that h is bounded in modulus along the lines iR and
1 + iR. Let us first check that F 1−z

1 F is2 ∈ Lp1 and G1−is
1 Gis2 ∈ Lq

′
1 . This holds with norms equal

to 1 since |F 1−is
1 F is2 | = F1 and |G1−is

1 Gis2 | = G1 (since Fi, Gi are nonnegative). Hence, for s ∈ R,

|h(is)| =
∣∣∣∣∫

Ω2

T (ei arg(f)F 1−is
1 F is2 )ei arg(g)G1−is

1 Gis2 dµ2

∣∣∣∣
≤ ‖T (ei arg(f)F 1−is

1 F is2 )‖Lq1 ‖G1−is
1 Gis2 ‖Lq′1

≤ C1‖F 1−is
1 F is2 )‖Lp1 ‖G1−is

1 Gis2 ‖Lq′1
= C1

11here, arg denotes a principal branch of the argument and we “set” ei arg (x) = 1 if x = 0.
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where the first estimate follows from Hölder’s inequality and the second is clear by the assumed
boundedness of T . Analogously, we get |h(1 + is)| ≤ C2 for all s ∈ R. Thus by Lemma 5.12,

|h(z)| ≤ C1−θ
1 Cθ2 for <z = θ. Setting z = θ, the assertion follows since

h(θ) =

∫
Ω2

(Tf)g dµ2.

�

Proof of Theorem 5.11. Let k ∈ N. We apply the Riesz–Thorin Theorem to the opera-
tors Tf = f̃ defined from L2k(T) to L2k+2(T) and from L2k+2(T) to L2k+2(T). By Lemma A, T
is bounded on both spaces and hence Theorem 5.13 yields that T : Lp(T) → Lp(T) is bounded
as well for all p ∈ (2k, 2k + 2). Since this holds for arbitrary k ∈ N, we conclude that Lp is
invariant under conjugation for all p ≥ 2 and thus the assertion of the Theorem holds for such p
by Proposition 5.9.
The final step — that the statement also holds for p ∈ (1, 2) now follows by duality: For that
consider the dual operator T ′ : (Lq(T))′ → (Lq(T))′ of the conjugation operator on Lq(T) for
q > 2. By duality of Lq-spaces and the definition of the dual operator, this means that

〈f, Tg〉Lq′ ,Lq = 〈T ′f, g〉Lq′ ,Lq ∀f ∈ Lq
′
(T), g ∈ Lq(T),

where q is the Hölder conjugate of q, i.e. 1
q + 1

q′ = 1. Let us consider f, g ∈ Trig(T). Then by

Tf = f̃ ,

2πi

N∑
m=−N

f̂(m)ĝ(m)sgn(m) = 2π

N∑
m=−N

T̂ ′f(m)ĝ(m),

and therefore, T̂ ′f(m) = isgn(m)f̂(m) = −̂̃f(m) for all m ∈ {−N, ..,N} where N is chosen

sufficiently large. By density of the trigonometric polynomials it follows that T ′f = −f̃ . Since
with T also T ′ is a bounded operator, we hence conclude that f 7→ f̃ = −T ′f is bounded on Lq

′
.

Since this holds for all q ∈ (2,∞), the assertion follows.
�

Remark 5.14. We emphasize that Theorem 5.11 does not show that the partial sums (Dn ∗
f)n∈N of the Fourier series of f ∈ Lp(T) converge pointwise a.e. to f(t) (compare with Ex. 0.1).
However, this statement is in fact true, but relies on a deep result by Carleson–Hunt from the
1960ies.

We give another application of the Riesz–Thorin interpolation theorem, which comes natural

knowing that f 7→ f̂ is a bounded operator from both L1(T) to `∞(Z) and L2(T)→ `2(Z).

Theorem 5.15 (Hausdorff–Young). For p ∈ [1, 2] and q ∈ [2,∞] defined by 1 = 1
p + 1

q ,

the operator f 7→ f̂ is bounded from Lp(T) to `q(Z) with operator norm equal to (2π)−
2
q (2π)−

1
q .

Proof. See Exercise 6.1. The claim holds for p = 1 and p = 2 by Theorem 1.6 and Hilbert
space theory respectively. Thus we can apply Theorem 5.13 for the σ-finite measure spaces (T, λ)

and (Z, | · |) — | · | refers to the counting measure — and get that f 7→ f̂ is bounded from Lp(T)
to `q(Z) for all pairs (p, q) of the form

1

p
=

1− θ
1

+
θ

2
,

1

q
=

1− θ
∞

+
θ

2
, θ ∈ (0, 1).

Hence, 1
p = 1− θ

2 and q = 2
θ , which gives the assertion.

�
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6. Coming back to the heat equation

see notes.





CHAPTER 2

The Fourier tranform

Note: In the following Lp will — unless state otherwise — refer to Lp(R) = Lp(R, λ) where
λ refers to the Lebesgue measure (on the Lebesgue measurable sets).

Motivated by the question

How to represent a non-periodic function on R in an analogous way as with
Fourier series?

we are lead to a “continuous” transformation of a function f — in contrast to the Fourier series
which is “discrete”.

1. Basics on the Fourier transform and the Schwartz class

Definition 1.1 (Fourier transform on L1). For f ∈ L1(R) the function F(f) : R → C
defined by

F(f)(s) =

∫
R
f(s)e−ist ds, s ∈ R

is called Fourier transform of f .

In the following we use the operators, ω ∈ R \ {0}, g ∈ L∞(R),

τwf = f(·+ ω), mgf = fg, Rf = f(−·), Dωf = f(w·)
defined for f ∈ Lp(R) for any p ∈ [1,∞].

Theorem 1.2 (Basics of the Fourier transform). Let ω ∈ R \ {0}.
(1) F : L1(R)→ L∞(R) is linear and bounded
(2) The range ran F of F lies in C0(R) = {f ∈ C(R) : limx→±∞ f(x) = 0}, that is
F ∈ C0(R) for all f ∈ L1(R) (Riemann–Lebesgue)

(3) For eiω(s) := eiωs we have

Fme−iω = τωF (Modulation)

Fτω = meiωF (Translation)

FR = RF (Reflection)

F · = RF (Conjugation)

FDω = m1/|ω|D 1
ω
F (Dilation)

considered on L1(R).
(4) F(f ∗ g) = F(f) · F(g) (Convolution Theorem)
(5) for any f ∈ Ck(R) such that f (`) ∈ L1(R) for all ` = 0, .., k,

F(f (k)) = m(is)kF(f),

where is refers to the function s 7→ is. Conversely, if x 7→ x`f(x) ∈ L1(R) for all
` = 0, .., k,

[F(f)](k) = F(m(−is)kf)

23
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Proof. See Exercise 6.1. �

Remark 1.3. Compared to the definition of the Fourier series for a given function in L1(T),
it is not clear how to define the Fourier transform of a general function in Lp(R) for p > 1
since the integral defining F may not converge absolutely then: Recall that Lp(R) 6⊂ L1(R)
since λ(R) =∞! This shows already a crucial technical difficulty when dealing with the Fourier
transform of a function. However, as we shall see shortly, it is possible to ‘define’ the Fourier
transform on L2(R) in a consistent way. In fact, one may naively think that this is possible if
the integral

∫
R eist is “allowed” to converge conditionally, which is not meaningful in terms of

the Lebesgue integral however.

In the following we will use the notation

∂αf =
∂αf

∂xα
= f (α)

for α ∈ N0 and a α-times differentiable function f : R→ C.

Definition 1.4 (The Schwartz class). A function f ∈ C∞(R) is defined to be in the
Schwartz class S(R) if

∀α, β ∈ N0 : ρα,β(f) := sup
x∈R
|xα∂βf(x)| <∞.

Note that (x 7→ e−x
2

) and any compactly supported C∞(R)-function is in S(R). Further
note that it is easily seen that a function f ∈ C∞(R) lies in S(R) if and only if

∀N, β ∈ N0∃CN,β > 0 ∀x ∈ R : |f (β)(x)| ≤ C(1 + |x|)−N .

If f ∈ S(R), the property follows by the binomial formula. Conversely, we have |xαf (β)(x)| ≤
C |x|α

(1+|x|)N which is bounded on R for N ≥ α. Let us introduce the following type of topology on

the Schwartz space.

Definition 1.5 (Convergence in the Schwartz space). Let (fn)n∈N ⊂ S(R) and f ∈ S(R).

We say that the sequence (fn) converges to f in S(R), fn
S→ f , if

∀α, β ∈ N : ρα,β(f − fn) = sup
x∈R
|xα(f − fn)(β)(x)| → 0, as n→∞.

Remark 1.6. One may wonder how the sequential convergence defined in Def. 1.5 relates
to a topology on the space S(R). In fact, this convergence can be shown to be equivalent to
convergence of a sequence in the following metric defined on S(R)

d(f, g) =
∑
j∈N

2−j
ραj ,βj (f − g)

1 + ραj ,βj (f − g)
,

where j 7→ (αj , βj) is a bijection from N → N0 × N0. See Ex. 6.2. In other words, the local
convex topological vector space defined by defined by the seminorms ρα,β , α, β ∈ N0 — as the
initial topology for which ρα,β is continuous — is metrizable. Moreover, it can be shown that
the above metric even yields a complete space.

Proposition 1.7 (Properties of S(R)). (1) The inclusions C∞c (R) ⊂ S(R) ⊂ Lp(R)
are dense in the ‖ · ‖Lp-norm for p ∈ [1,∞).

(2) S(R) is continuously embedded in Lp(R) for all p ∈ [1,∞] 1.

1Here “continuously embedded” means that the identity is sequentially continuous, i.e. fn
S→ f implies that

fn
Lp→ f . However, by Remark 1.6, sequential continuity coincides with continuity between the topological spaces.
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(3) For f, g ∈ S(R) we have that fg and f ∗ g are elements of S(R) as well as ∂αf ∈ S(R)
with ∂α(f ∗ g) = ∂αf ∗ g = f ∗ ∂αg.

Proof. See Ex. 6.2. for (1), (2) and (3) without the part on ∂αf . The fact that for f ∈ S(R)
also ∂αf ∈ S(R) simply follows by definition of S(R). To see that ∂α commutes with the
convolution consider α = 1: Since s 7→ |∂tf(t− s)g(s)| is dominated by an integrable function of
the form s 7→ C(1 + |t− s|)−2‖g‖∞, we conclude that ∂(f ∗ g) = ∂f ∗ g, which, by symmetry also
equals f ∗ ∂g by (a consequence of) dominated convergence. The rest follows by induction. �

Definition 1.8 (The inverse Fourier transform). For f ∈ L1(R) the function F∗(f) defined
by

F?(f)(s) =
1

2π
F(f)(−s) =

1

2π

∫
R
f(s)eist ds

is called “inverse Fourier transfrom” of f .

Let us show that the latter notion is meaningful.

Lemma 1.9. Let f, g, h ∈ S(R). Then

(1)
∫
R fF(g) dλ =

∫
R(Ff)g dλ.

(2) F(F?(f)) = f = F?(F(f))
(3) 〈f, h〉 = 1

2π 〈F(f),F(h)〉
(4) 〈Ff,F?h〉 = 〈f, h〉
(5) ‖f‖L2(R) =

√
1

2π‖F(f)‖L2(R) =
√

2π‖F?f‖L2(R) (Parseval’s identity)

where 〈f, h〉 =
∫
R f(s)g(s) ds.

Proof. Assertion (1) follows by Fubini’s theorem. The idea to prove (2) is as follows:
Choose a function h ∈ L1(R) with the following properties

• h ∈ S(R),
• 1

2πF(h( ·2π ) = h,
• h(0) = 1.

The existence of such a function will be shown in the exercises (hint: h(x) = aebx
2

for suitable
a, b ∈ R). The idea is to represent f by an approximate identity, f = limλ→∞

∫
R f(s)hλ(t− s) ds

and then use (1) in order to find to prove the equality in (2). By exercise 6.2 and the assumptions
on h, hλ = λh(λ·), λ > 0, defines an approximate identity. Hence, by a version of Theorem 3.7,
we have that f(t) = limλ→∞(f ∗ hλ)(t). On the other hand — motivated by idea to choose g
such that F(g) = hλ(t − ·) = λRτtDλh — we find g(t) = 1

2πRme−itD 1
2πλ

h, where we used the

basic properties of the Fourier transform and that F(h) = 2πh. By (1), we now have

(f ∗ hλ)(t) =

∫
R
f(s)F(g)(s) ds =

∫
R

(F(f)(s))g(s) ds

=
1

2π

∫
R
(F(f)(s))(Rme−itD 1

λ
h)(s) ds

=
1

2π

∫
R
(F(f)(s))eitsh(

−s
2πλ

) ds

Since h(0) = 1, the last integral converges to 1
2π

∫
R(F(f)(s))eits ds for λ → ∞, by dominated

convergence. Altogether, we thus have f(t) = (F?Ff)(t) for all t ∈ R. The other identity follows
by applying what we have shown to Rf = f(−·).
Assertion (3) and (4) follows from (1) and (2) by setting g = F?(h) and noting that F?(h) =
1

2πF(h). Assertion (5) follows direcltly from (3). �
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Theorem 1.10 (The Fourier transform on S(R)). The Fourier transform is a well-defined
linear mapping from S(R) to S(R). Moreover,

(1) F is continuous and bijective on S(R) (with in the natural topology on S(R))

(2) (2π)−
1
2F is isometric on S(R) with respect to the L2-norm, i.e.

∀f ∈ S(R) : ‖F(f)‖L2(R) = (2π)
1
2 ‖f‖L2(R)

Thus F is also continuous with continuous inverse on the S(R) equipped with the L2-
norm.

The inverse F−1 on S(R) is given by F?.

Proof. By Lemma 1.9(2), F is bijective on S(R) with inverse F−1 = F?. For the continuity
in (1) see Ex. 6.2 and use the analogous argument for the continuity of F?. Assertion (2) follows
from Lemma 1.9(5). �

2. The Fourier transform on L2

Theorem 2.1 (The Fourier transform on L2). The definition of the Fourier transform F
can be extended to functions in L2(R) such that (2π)

1
2F is an isometric isomorphism from L2(R)

to L2(R) 2. For functions f in L1(R)∩L2(R), this abstract extension coincides pointwise almost
everywhere with the action of F .

Proof. Let F̃ : L2 → L2 denote the unique bounded operator which extends the operator
F : S(R) → S(R) such that F̃ |L2 = F — note that we use the density of S(R) in L2 here. By
Theorem 1.10, we even have that

∀f ∈ L2(R) : ‖F̃(f)‖L2(R) = (2π)
1
2 ‖f‖L2(R)

Thus (2π)−
1
2 F̃ is an isometric isomorphism. Let f ∈ L1∩L2. It remains to show that F̃(f) = Ff

pointwise almost everywhere. Note that this is not clear a-priori as F̃ is only defined as operator
on L2(R) and F̃f is defined as the L2-limit of the Cauchy sequence Ffn where (fn)n∈N is a

sequence in S(R) which converges to f ∈ L2(R) in the L2-norm, i.e. ‖Ffn − F̃f‖L2 = 0 3.
Let gn = fχ{|x|≤n} and let fn ∈ C∞(R) with support in [0, n] such that ‖gn − fn‖L2(R) =

‖gn − fn‖L2([0,n]) <
1
n . Then ‖f − fn‖L2(R) → 0 as n→∞ and also for fixed s ∈ R,

|(Ff −Ffn)(s)| ≤ ‖f − fn‖L1(R) ≤ ‖f − gn‖L1(R) + ‖gn − fn‖L1(0,n)

By definition of gn, it is easy to see that the term ‖f−gn‖L1(R) goes to 0 as n→∞ since f ∈ L1.
The second term ‖gn − fn‖L1(0,n), can be estimated using Cauchy-Schwarz so that we get

‖gn − fn‖L1(0,n) ≤
√
n‖gn − fn‖L2(0,n) ≤

1√
n
→ 0, (n→∞).

Thus Ffn(s)→ Ff(s) for any s ∈ R. On the other hand, we know that L2-convergence always
implies the existence of a subsequence which converges pointwise almost everywhere (see Ex. 1.0)

— therefore, Ffnk → F̃f pointwise almost everywhere. Thus, Ff(s) = F̃f(s) for a.e. s ∈ R. �

Remark 2.2. Note that isometric isomorphisms on Hilbert spaces are nothing else than
unitary operators — the latter being defined as operators T : X → X such that T ∗T = T ∗T = I.

2Note that we identify the operator F with its “extension” defined on L2.
3As we know from Ex.1.0, L2-convergence need not imply pointwise convergence.
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Theorem 2.3 (Hausdorff–Young inequality for the Fourier transform). Let p ∈ (1, 2) and
let q denote the Hölder conjugate of p. The Fourier transform F can be uniquely extended to a
bounded operator from Lp(R) to Lq(R) with

‖Ff‖Lq ≤ Cp‖f‖Lp ∀f ∈ Lp(R),

where Cp = (2π)1− 1
p .

Proof. This is an application of Riesz–Thorin’s theorem since F act as (extension of a)
bounded operator on the spaces

L1 → L∞, ‖Ff‖L∞ ≤ ‖f‖L1

L2 → L2, ‖Ff‖L2 ≤ (2π)
1
2 ‖f‖L2 ,

see the basics of the Fourier transform and Theorem 2.1. This thus implies that ‖Tf‖Lp ≤
Cp‖f‖Lq for simple functions f with finite measure support and p, q, θ linked through (5.6). The

constant Cp can be computed from Cp = 11−θ(2π)
θ
2 where θ is given through 1

p = 1−θ
1 + θ

2 . Thus

C = (2π)
θ
2 = (2π)1− 1

p . By density of the simple functions with finite measure support in Lp,
p <∞, the assertion follows. �

3. Tempered distributions

In the previous section we have seen how to define the Fourier transform of a function f ∈ Lp
for p ∈ [1, 2]. This approach, however, can be seen to fail if p > 2.

Definition 3.1. Any linear functional u : S(R) → C which is continuous with respect to
sequential convergence on S(R), i.e.

fn
S→ f =⇒ u(fn − f)→ 0,

as n → ∞ is called tempered distribution. The set of all tempered distributions is denoted by
S′(R).

Proposition 3.2. A linear functional4 u : S(R)→ C is a tempered distribution if and only
if there exists k,m ∈ N0 and C > 0 such that

|u(f)| ≤ C
∑

β≤m,α≤k

ρα,β(f)

Proof. If a linear functional u satisfies such an estimate, we trivially have that u is con-
tinuous in the sense of Definition 3.1. Conversely, let u be a tempered distribution. Let us first
prove the statement

(3.1) ∃m, k ∈ N0, δ > 0∀g ∈ S(R) : (ρα,β(g) ≤ δ ∀α ≤ m,β ≤ k =⇒ |u(g)| < 1)

To do so, assume conversely that the statement was false:

∀m, k ∈ N0, δ > 0∃g ∈ S(R) : ρα,β(g) ≤ δ ∀α ≤ m,β ≤ k ∧ |u(g)| > 1

But this implies that (setting δ = 1
n ) there exists a sequence gn (gn) in S(R) such that

∀m, k ∈ N0 : ρm,k(gn) ≤ 1

n
∧ |u(gn)| > 1

4Here “linear functional” simply refers to a linear mapping that maps to the field of complex numbers.



28 2. THE FOURIER TRANFORM

This, however, contradicts the continuity of u. Hence, (3.1) holds. For general f ∈ S(R) let
g = f δ∑

α≤m,β≤k ρα,β(f) . Clearly, ρα,β(g) ≤ δ for α ≤ m,β ≤ k and hence |u(g)| < 1. By linearity

of u, this rewrites to

|u(f)| < 1

δ

∑
α≤m,β≤k

ρα,β(f),

which shows the assertion for C = 1
δ . �

Clearly, S′(R) is a vector space. We can equip it with a topology in a natural way:

Definition 3.3. A sequence of tempered distributions un ∈ S′(R) converges to u ∈ S′(R) if

un(f) = 〈un, f〉 → 〈u, f〉 = u(f) (n→∞) ∀f ∈ S(R).

Example 3.4 ((see Exercise sheet 7). (1) Dirac δ0 is in S′(R).
(2) Lp(R) functions, p ∈ [1,∞] are in S′(R) via the identification f 7→

∫
R u(t)f(t) dt.

(3) Finite Borel measures µ on R via f 7→
∫
R f(x)dµ(x).

(4) u(x) = log |x|.
(5) 〈u, φ〉 = limε→0+

∫
|x|≥ε

φ(x)
x dx

Remark 3.5 (Motivation for Fourier transform of more general functions). We have seen
that the definition of the Fourier transform — a-priori only made on L1(R) — can be lifted to
Lp, p ∈ [1, 2] with the help of special properties of the transform (boundedness in the L2-norm
 Parseval’s identity) and basic functional analysis (extension of a bounded operator as well as
interpolation). It can be shown (by means of examples) that this procedure can not be extended
to Lp for p > 2, and hence particularly not for functions in L∞. However, a (‘version’ of the)
Fourier transform in the latter cases is desirable: for instance to obtain an analogy to the theory
we have encountered on Fourier series and on the other hand since signals, which we would like
to regard in the “frequency domain” (that is, as Fourier transforms of other functions/objects)
in application. Let us elaborate on this in more detail: Coming back to the “thresholding” we
have already touched in the introduction of this course, consider an input–output behavior of a
signal u given by

y = F−1(h · Fu)

where h is a fixed function. For example, h may be an indicator function that ‘selects’ only
specific frequency values ω ∈ R, h(ω) = 1, and sets the others to zero, h(ω) = 0. Formally, we
would expect from the convolution theorem that y can be rewritten as

y = F−1(h) ∗ u,

which, however, may not be well-defined as F−1 = F? is only defined for h ∈ Lp(R), p ∈ [1, 2].
But do we get if e.g. h = χ[0,∞) ? Shortly, we will see how to abstractly circumvent this problem,
but before let us approach the answer intuitively. For that let h ≡ 1 and we would like to find a
suitable definition for Fh.

Definition 3.6 (The Fourier transform for tempered distributions). For a tempered
distribution u ∈ S′(R), we define the Fourier transform F(u) as the tempered distribution given
by

〈Fu, φ〉 = 〈u,Fφ〉 ∀φ ∈ S(R).

Note that the Fu is indeed well-defined as a distribution since F maps S(R) to S(R),
Theorem 1.10.
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Proposition 3.7. The distributional definition of the Fourier transform is consistent with
the one for Lp(R), p ∈ [1, 2], where we identify functions f with tempered distributions uf by
means of

f 7→ 〈uf , ψ〉 =

∫
R
f(s)ψ(s) ds.

Proof. In Exercise 7.1 we showed that uf ∈ S′(R) for f ∈ Lp(R), p ∈ [1,∞]. To show the
assertion consider �

Definition 3.8 (Modulation, translation, reflection, dilation, convolution on S′(R)). Let
u ∈ S′(R), f ∈ S(R), w ∈ R \ {0}, α ∈ N. We extend the definitions of the following operators
to S′(R):

τw, mf , R, Dω

by

(1) 〈τwu, φ〉 = 〈u, τ−wφ〉
(2) 〈mfu, φ〉 = 〈u,mfφ〉
(3) 〈Ru, φ〉 = 〈u,Rφ〉
(4) 〈Dwu, φ〉 = 〈u,m 1

|ω|
D 1

ω
φ〉

(5) 〈u ∗ f, φ〉 = 〈u,Rf ∗ φ〉
(6) 〈∂αu, φ〉 = 〈u, (−1)α∂φ〉

for all φ ∈ S(R).

It is easy to see that Definition 3.8 indeed extends the definition of the operators on L1(R).
Note that the convolution u ∗ f of a tempered distribution and a function f is in general not
well-defined if f /∈ S(R) as Rf ∗ φ may not be in S(R) for all φ ∈ S(R) then.

Proposition 3.9 (Convolution of tempered distribution with Schwartz function). Let φ ∈
S(R) and u ∈ S′(R). Then u ∗ φ ∈ C∞(R) and

(u ∗ φ)(t) = 〈u, τ−tRφ〉,

where we identify a function with its corresponding tempered distribution. (Note that the u ∗ φ
was defined by 〈u ∗ φ, ψ〉 = 〈u,Rφ ∗ ψ〉.)

Proof. We only prove the identity (which is clear in the special case where u ∈ S(R)). Let
u ∈ S′(R) and ψ ∈ S(R).

〈u ∗ φ, ψ〉 = 〈u,Rφ ∗ ψ〉 = 〈u,
∫
R
(Rφ)(· − s)ψ(s) ds〉

= 〈u,
∫
R
τ−sRφ(·)ψ(s) ds

!
=

∫
R
〈u, τ−sRφ(·)〉ψ(s) ds

where the last step follows since it can be shown that the Riemann sums of the S(R)-valued
integral converge in S(R), for a detailed argument see e.g. [1, Thm. 2.3.20]. This shows the
identity. To show that (u ∗ φ) ∈ C∞, one explicitly shows that t 7→ 〈u, τ−tRφ〉 is C∞ which
follows since t 7→ τ−tRφ is continuous from R to S(R) (which in turn holds as the translation
operator t 7→ τ−t is strongly continuous). �

Theorem 3.10 (Fourier transform on tempered distributions). (1) F : S′(R)→ S′(R)
is continuous.
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(2) We have that

Fme−iω = τωF (Modulation)

Fτω = meiωF (Translation)

FR = RF (Reflection)

F · = RF (Conjugation)

FDω = m1/|ω|D 1
ω
F (Dilation)

where the corresponding operators are defined in Def. 3.8.
(3) Let u ∈ S′(R) and φ ∈ S(R), then

F(u ∗ φ) = F(u) · F(φ) and F(uφ) = F(u)F(φ)

(Convolution Theorem)
(4) for any u ∈ S′(R), α ∈ N we have that

F(∂αu) = m(is)αF(u), and ∂αF(u) = F(m(−is)αu)

Proof. The assertions follow directly by the definition of the considered operators via du-
ality and the basics of the Fourier transform (for L1- and hence S(R)-functions). �

Remark 3.11. It can be shown that Schwartz functions lie dense in tempered distributions.

4. Operators that commute with translations

At several occasions we have already encountered linear operators defined by convolution
with fixed functions h, i.e.

Th = h ∗ ·
acting from Lp to Lq for some p, q. Thinking of the respective results on (partial sums of) Fourier
series, the following fact does not come as a surprise.

Proposition 4.1. Let p, q, r ∈ [1,∞] with 1
p + 1

q = 1
r + 1 and h ∈ Lq(R). Let Th : Lp → Lr

be defined by Thf = h ∗ f . Then Th ∈ B(Lp, Lq) and

Thτs = τsTh,

where τsf = f(·+ s).

This motivates the following definition.

Definition 4.2. We say that an operator T ∈ B(Lp(R), Lq(R)) commutes with translations
if

Tτs = τsT s ∈ R.
Such operators appear quite naturally when studying transformation of signals and the goal

of this section is to characterize when an operator is translation-invariant. Note that although
we will be concerned with the “continuous” version here, that is, with functions defined on the
whole real line, there exist corresponding results for the torus T.

Theorem 4.3 (Characterization of operators which commute with translations). Let T be
an operator from Lp to Lq which commutes with translations. Then there exists h ∈ S′(R) such
that

Tφ = h ∗ φ a.e. ∀φ ∈ S(R).

This h is unique.

Proof. (Sketch) The proof relies on two facts which we will take for granted here5.

5a detailed proof can be found in [1, Theorem ??]
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(1) The assumptions made imply that T commutes with (distributional) derivatives, i.e.
T∂αf = ∂αTf for f ∈ S(R) where it is implicit that ∂αTf ∈ Lq for all α.

(2) (Sobolev embedding): If g ∈ Lq(R) is such that the distributional derivatives ∂αh are
in Lq for all α ∈ N0, then g is continuous6 and

|g(0)| ≤ Cq ≤
∑

|α|≤n+1

‖∂αg‖Lq

Approach: set gφ := T (φ) for φ ∈ S(R) where g can be chosen to be continuous by (2), and
define the functional u by

〈u, φ〉 = gφ(0)

It is easy to see that u is well-defined. Next we show that u ∈ S′(R). This follows by the
inequality in (2), (1), the boundedness of T and the fact that S(R) is continuously embedded in
Lp. Now let h = Ru. To show that T = h ∗ · on S(R), we first show that for all s ∈ R,

〈u, τsφ〉 = gφ(s).

Let g[s] = T (τsφ) be continuous (via (2)). Then

g[s](t) = T (τsφ)(t) = τsT (φ)(t) = T (φ)(t+ s) = g(t+ s) = τsg(t)

holds for a.e. t ∈ R, but since the left and the right-hand side are continuous in t, even for all
t ∈ R. Hence, g[s](0) = τsg(0) which shows 〈u, τsφ〉 = gφ(s). We conclude the proof by

(h ∗ φ)(t) = 〈Ru, τ−tRφ〉 = 〈u, τtφ〉 = gφ(t) = T (φ)(t)

which holds for a.e. t ∈ R. �

For special choices of the parameters p, q, we can expect more specific information on the
tempered distribution given by Theorem 4.3. We state these results without proof and refer the
interested reader to [1].

Theorem 4.4. Let T : L2(R) → L2(R) commute with translations. Then there exists h ∈
L∞(R) such that Th = T (more precisely, Th is the unique bounded extension of the operator
φ 7→ h ∗ φ defined on S(R)).

Theorem 4.5. Let T : L1(R) → L1(R) commute with translations. Then there exists h ∈
M(R) such that Th = T (more precisely, Th is the unique bounded extension of the operator
φ 7→ h ∗ φ defined on S(R)).

5. The Hilbert transform

Definition 5.1. The convolution operator Th = h ∗ · with h given by

〈h, φ〉 = lim
ε→0+

∫
|x|≥ε

φ(x)

x
dx

is called Hilbert transform, see also Exercise 7.1 for a proof that h ∈ S′(R).

Theorem 5.2. The Hilbert transform is bounded from Lp(R) to Lp(R) for p ∈ (1,∞).

Proof. The proof is omitted, but can be done in a similar spirit as the proof of Theorem
5.11. �

6up to identification in Lq
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