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Fourier Analysis – Exercise sheet 7
(discussed on July 9) — including sketches of the solutions

Important information:
This last exercise class will be held in a slightly different format than what has been the case so far:
During the exercise class the participants should work (alone or in groups) on some given exercises and
I will assist with problems and difficulties. Some exercises on the topics that are currently discussed in
the lecture are already included below. Other exercises — dealing with topics that were already covered
by previous exercise sheets — will be provided on Monday.

Ex 7.1: Discuss whether the following objects are tempered distributions:

(a) the functionals

Lf : φ 7→
∫
R
φ(s)f(s) ds

for the choices of functions f(x) = c for all x ∈ R or f(x) = ex
2

.

(b) Lf for f ∈ Lp(R), p ∈ [1,∞].

(c) Lf for f ∈ L1
loc(R)

(d) the functional δt given by φ 7→ φ(t) for fixed t ∈ R

(e) Lµ for any finite Borel measure µ, where Lµ is defined by

Lµφ =

∫
R
φ(s) dµ(s)

(f) Llog |·|

(g) the functional given by

φ 7→ lim
ε→0+

∫
|s|≥ε

φ(s)

s
ds

Solution: Yes, the functional, call it u is a tempered distribution. To see this, first observe that
for φ ∈ S(R),

u(φ) = lim
ε→0+

∫
|s|≥ε

φ(s)

s
ds

is well-defined as the limit exists by the following argument: Since∣∣∣∣∣
∫
|s|≥ε

φ(s)

s
ds

∣∣∣∣∣ =

∣∣∣∣∣
∫
ε≤|s|≤1

φ(s)

s
ds+

∫
|s|≥1

φ(s)

s
ds

∣∣∣∣∣ =

∣∣∣∣∣
∫
ε≤|s|≤1

φ(s)− φ(0)

s
ds+

∫
|s|≥1

φ(s)

s
ds

∣∣∣∣∣
and |φ(s)−φ(0)s | ≤ ‖φ′‖L∞(R) for all s ∈ (0, 1) by Rolle’s theorem, we conclude by dominated

convergence that∣∣∣∣∣
∫
|s|≥ε

φ(s)

s
ds

∣∣∣∣∣ ≤ 2‖φ′‖L∞(R) + sup
x∈R
|xφ(x)|

∫
|s|≥1

ds

s2
= 2ρ0,1(φ) + 4ρ1,0(φ)

(for the first term observe that the factor 2 comes from the integration), and where ρα,β(φ) =
supx∈R |xα∂βφ(x)| are the seminorms that define the convergence on S(R). Then it is also clear

that if φn
S→ φ as n → ∞ — which means that ρα,β(φn) → ρα,β(φ) for all indices α, β ∈ N0

— we have that u(φn)→ u(φ). Thus, u ∈ S′(R).
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Ex 7.2:(Derivative and Fourier transform of tempered distribution)
Let n ∈ N. We define the n-th derivative ∂nu ∈ S′(R) of a tempered distribution u ∈ S′(R) by

〈∂nu, φ〉 = 〈u, (−1)n∂nφ〉

(recall that by definition 〈u, φ〉 = u(φ)). Also, define the Fourier transform Fu by

〈Fu, φ〉 = 〈u,Fφ〉

and similarly the inverse Fourier transform by

〈F?u, φ〉 = 〈u,F?φ〉

Show the following

(a) This definition of the Fourier transform is consistent with the definition we have seen for
functions u in Lp for p = 1 and p = 2 (note what we have shown in Ex. 7.1).
Sketch of solution: We have shown in the lecture that up to the identification of elements in
f ∈ L1(R) as elements in S′(R) via the functional Lf , see Ex.7.1., that

LFf (ψ) =

∫
R
F(f)(s)ψ(s) ds =

∫
R
f(s)F(ψ)(s) ds = 〈Lf ,Fψ〉

Thus, 〈LFf , ψ〉 = 〈Lf ,Fψ〉 for all ψ ∈ S(R) which shows that the distributional Fourier
transform coincides with the definition on L1(R) and particularly on S(R). For f ∈ L2, we
defined F by the unique bounded extension of the operator

F|S(R)→S(R) : S(R)→ S(R), f 7→ F(f),

where boundedness refers to the inequality ‖F(f)‖L2(R) ≤ (2π)
1
2 ‖f‖L2(R) for all f ∈ S(R) and

hence all f ∈ L2. Therefore, let (φn) be a sequence of functions in S(R) which converge (in
L2) to a given f ∈ L2. Then by the first part,∫
R
F(φn)(s)ψ(s) ds

Def
= 〈LF(φn), ψ〉 = 〈Lφn ,Fψ〉

Def
=

∫
R
φn(s)F(ψ)(s) ds ∀n ∈ N.

By Cauchy-Schwarz and the fact that φn
L2

→ f as well as Fφn
L2

→ Ff , we conclude that
〈LFf , ψ〉 = 〈Lf ,Fψ〉 for all ψ ∈ S(R) which shows the assertion.

(b) Compute the Fourier transform of ∂δ0 where δ0 is defined as in Ex 7.2
Solution: By definition and basics on the Fourier transform for L1(R)-functions, we have for
φ ∈ S(R) that

〈F∂δ0, φ〉 = −〈δ0, ∂F(φ)〉 = −〈δ0,F(m−itφ)〉 = −F(m−itφ)(0) =

∫
R
(it)φ(t) dt = 〈Lit, φ〉,

where we have used the notation t = t 7→ t and mgf = t 7→ g(t)f(t). Thus, the Fourier trans-
form of ∂δ0 is given by the function t 7→ it (up to identification with a tempered distribution).

(c) Compute the derivative of the function step function f(s) =

{
1 |s| ≤ 1
0 |s| > 1

Solution: By definition 〈∂f, φ〉 = −〈f, ∂φ〉an since f ∈ L1, this can be rewritten as

〈f, ∂φ〉 =

∫
R
f(s)∂φ(s) ds =

∫ 1

−1
∂φ(s) ds = φ(1)− φ(−1)

Def
= 〈δ1 − δ−1, φ〉

for all φ ∈ S(R). Thus, ∂f = δ−1 − δ1.

(d) Compute the Fourier transform of the distributions defined by the functions sin and cos.
Use that sin(t) = 1

2i (e
it − e−it) and show first that F(eikt) = δk for all k ∈ R. Then, by

linearity if follows that F(sin) = 1
2i (δ1 − δ−1). For cos one can proceed analogously or use

the following argument. Since cos(t) = sin(t + π
2 )

Def
= τπ

2
sin we have by basics of the Fourier

transform (of L1(R)-functions) that

〈FLcos, φ〉 = 〈Lcos,Fφ〉 = 〈Lτπ
2
sin,Fφ〉

∗
= 〈Lsin, τ−π2 Fφ〉 = 〈Lsin,F(m

ei
π
2

tφ)〉



where (∗) follows from
∫
R f(t)[τsg](t) dt =

∫
R[τ−sf ](t)g(t) dt. By what we have shown for sin,

we get

〈Lsin,F(m
ei
π
2

tφ)〉 =
1

2i
(ei

π
2 φ(1)− e−i

π
2 φ(−1)) =

1

2
(φ(1) + φ(−1)) = 〈1

2
(δ1 + δ−1), φ〉.

Hence, F(cos) = 1
2 (δ1 + δ−1).

Solutions to the additional exercises discussed in the Exercise class

Ex 7.3: Prove that ‖f‖2L∞(R) ≤ 2‖f‖Lp(R)‖f ′‖Lq(R) for all f ∈ S(R), p, q ∈ [1,∞] with 1
p + 1

q = 1.

Hint: Use the identity f(t) =
∫ t
−∞

∂
∂s (f(s)2) ds, and apply the chain rule, as well Holder inequality.

Ex 7.4:(Show that the Fourier transform is not surjective as mapping from L1(R) to C0(R) = {f : R→
C | f continuous and limt→±∞ f(t) = 0})
To do so prove the following steps

(1) For all 0 < ε < T <∞,
∣∣∣∫ Tε sin t

t dt
∣∣∣ ≤ 4

Solution: Since sin t ≤ t for all t ≥ 0, we have that 0 ≤
∫ π
0

sin t
t dt ≤ π. It is also

(geometrically) clear that −2 ≤
∫ T
π

sin t
t dt ≤ 0 for all T > π. This directly gives the assertion

as π ≤ 4.
(2) For all 0 < ε < T < ∞ and f ∈ L1(R) with f(t) = −f(−t) for a.e. t ∈ R, it holds that∣∣∣∫ Tε F(f)(t)

t dt
∣∣∣ ≤ 4‖f‖L1(R).

Solution: By definition of the Fourier transform and the property that f is odd, it follows

that F(f)(t) = 2
∫∞
0

sin(ts)f(s) ds. Inserting this in
∣∣∣∫ Tε F(t)

t dt
∣∣∣ and applying Fubini, as well

as noting that sin(t)dtt is invariant under scaling t  αt, readily leads to the assertion (also

note that 2
∫∞
0
|f(s)|ds = ‖f‖L1(R) since f is odd).

(3) Conclude that there exists no function f ∈ L1(R) such that F(f)(s) = g(s) for all s ∈ R where
g is a continuous, odd function such that g(s) = 1

log(s) for all s ≥ 2.

Solution: This follows by contraction. If such f exists, then consider the odd function f̃
defined by f̃(t) = 1

2 (f(t)− f(−t)). Since RF = FR, where R denotes the reflection operator

Rh = h(−·), we have by linearity of F that F(f̃)(s) = 1
2 (g(s) − g(−s)) = g(s) since g was

assumed to be odd. Now apply part (2) for ε = 2 and conclude that for all T > 2,∣∣∣∣∣
∫ T

2

g(t)

t
dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

2

F(f)(t)

t
dt

∣∣∣∣∣ ≤ 4‖f‖L1(R)

But, g(t) = 1
log(t) for t ≥ 2 by assumption which implies that limT→∞

∫ T
2

dt
t log(t) = ∞ (the

latter follows for instance by the fact that t 7→ t log(t) is strictly increasing on (2,∞) and hence∫ T
2

dt
t log(t) ≥

∑
n=2

1
n log(n) =∞ where the last identity holds by Cauchy’s condensation test)

Ex 7.5: Show that the sequence (ein·)n∈N converges to 0 in S′(R).
Solution: We have to show that for any φ ∈ S(R), 〈Leint , φ〉 =

∫
R eintφ(t) dt converge to 0 as n → ∞.

This, however, follows since
∫
R eintφ(t) dt = F(φ)(−n) and F(φ) ∈ C0(R) — the latter being a basic on

the Fourier transform (in fact, it even holds that F(φ) ∈ S(R) since φ ∈ S(R)).
Note that the sequence does not converge with respect to any Lp-norm and hence also not in the topology
of S(R).

Ex 7.6:(Uncertainty principle) Let f ∈ S(R). Show that the following inequality holds

‖f‖2L2(R) ≤ C inf
x∈R
‖(· − x)f(·)‖L2(R) · inf

y∈R
‖(· − y)F(f)(·)‖L2(R)

where C is an absolute constant.



Solution: Fix x ∈ R and write |f(t)|2 = f(t)f(t)∂t(t− x) and use integration by parts to obtain

‖f‖2L2 = −
∫
R

2<[f(t)∂tf(t)](t− x) dt

Estimating the real part by the modulus and using Cauchy-Schwarz gives

‖f‖2L2 ≤ 2‖(· − x)f(·)‖L2‖∂tf‖L2(R).

By Parseval’s identity, Lem. II.2.9, we have that

‖∂tf‖L2(R) =

√
1

2π
‖F(∂tf)‖L2 =

√
1

2π
‖s 7→ isF(f)(s)‖L2 =

√
1

2π
‖s 7→ sF(f)(s)‖L2

where the latter identity follows by basics of the Fourier transform. Altogether this gives

‖f‖2L2(R) ≤ 2

√
1

2π
‖(· − x)f(·)‖L2‖s 7→ sF(f)(s)‖L2 .

Now let y ∈ R and apply this inequality to the function t 7→ f(t)e−iyt instead of f . This only chances
the last term on the right-hand side: By basics of the Fourier transform we have that F(e−iy·f)(s) =
F(f)(s+ y) and hence

‖s 7→ sF(eiy·f)(s)‖L2 = ‖(· − y)F(f)(·)‖L2 ,

which yields the assertion.


