# Fourier Analysis - Exercise sheet 7 <br> (discussed on July 9) - including sketches of the solutions 

Important information:
This last exercise class will be held in a slightly different format than what has been the case so far: During the exercise class the participants should work (alone or in groups) on some given exercises and I will assist with problems and difficulties. Some exercises on the topics that are currently discussed in the lecture are already included below. Other exercises - dealing with topics that were already covered by previous exercise sheets - will be provided on Monday.

Ex 7.1: Discuss whether the following objects are tempered distributions:
(a) the functionals

$$
L_{f}: \phi \mapsto \int_{\mathbb{R}} \phi(s) f(s) d s
$$

for the choices of functions $f(x)=c$ for all $x \in \mathbb{R}$ or $f(x)=e^{x^{2}}$.
(b) $L_{f}$ for $f \in L^{p}(\mathbb{R}), p \in[1, \infty]$.
(c) $L_{f}$ for $f \in L_{l o c}^{1}(\mathbb{R})$
(d) the functional $\delta_{t}$ given by $\phi \mapsto \phi(t)$ for fixed $t \in \mathbb{R}$
(e) $L_{\mu}$ for any finite Borel measure $\mu$, where $L_{\mu}$ is defined by

$$
L_{\mu} \phi=\int_{\mathbb{R}} \phi(s) d \mu(s)
$$

(f) $L_{\log |\cdot|}$
(g) the functional given by

$$
\phi \mapsto \lim _{\varepsilon \rightarrow 0^{+}} \int_{|s| \geq \varepsilon} \frac{\phi(s)}{s} d s
$$

Solution: Yes, the functional, call it $u$ is a tempered distribution. To see this, first observe that for $\phi \in S(\mathbb{R})$,

$$
u(\phi)=\lim _{\varepsilon \rightarrow 0^{+}} \int_{|s| \geq \varepsilon} \frac{\phi(s)}{s} d s
$$

is well-defined as the limit exists by the following argument: Since

$$
\left|\int_{|s| \geq \varepsilon} \frac{\phi(s)}{s} d s\right|=\left|\int_{\varepsilon \leq|s| \leq 1} \frac{\phi(s)}{s} d s+\int_{|s| \geq 1} \frac{\phi(s)}{s} d s\right|=\left|\int_{\varepsilon \leq|s| \leq 1} \frac{\phi(s)-\phi(0)}{s} d s+\int_{|s| \geq 1} \frac{\phi(s)}{s} d s\right|
$$

and $\left|\frac{\phi(s)-\phi(0)}{s}\right| \leq\left\|\phi^{\prime}\right\|_{L^{\infty}(\mathbb{R})}$ for all $s \in(0,1)$ by Rolle's theorem, we conclude by dominated convergence that

$$
\left|\int_{|s| \geq \varepsilon} \frac{\phi(s)}{s} d s\right| \leq 2\left\|\phi^{\prime}\right\|_{L^{\infty}(\mathbb{R})}+\sup _{x \in \mathbb{R}}|x \phi(x)| \int_{|s| \geq 1} \frac{d s}{s^{2}}=2 \rho_{0,1}(\phi)+4 \rho_{1,0}(\phi)
$$

(for the first term observe that the factor 2 comes from the integration), and where $\rho_{\alpha, \beta}(\phi)=$ $\sup _{x \in \mathbb{R}}\left|x^{\alpha} \partial^{\beta} \phi(x)\right|$ are the seminorms that define the convergence on $S(\mathbb{R})$. Then it is also clear that if $\phi_{n} \xrightarrow{S} \phi$ as $n \rightarrow \infty$ - which means that $\rho_{\alpha, \beta}\left(\phi_{n}\right) \rightarrow \rho_{\alpha, \beta}(\phi)$ for all indices $\alpha, \beta \in \mathbb{N}_{0}$ - we have that $u\left(\phi_{n}\right) \rightarrow u(\phi)$. Thus, $u \in S^{\prime}(\mathbb{R})$.

Ex 7.2: (Derivative and Fourier transform of tempered distribution)
Let $n \in \mathbb{N}$. We define the $n$-th derivative $\partial^{n} u \in S^{\prime}(\mathbb{R})$ of a tempered distribution $u \in S^{\prime}(\mathbb{R})$ by

$$
\left\langle\partial^{n} u, \phi\right\rangle=\left\langle u,(-1)^{n} \partial^{n} \phi\right\rangle
$$

(recall that by definition $\langle u, \phi\rangle=u(\phi)$ ). Also, define the Fourier transform $\mathcal{F} u$ by

$$
\langle\mathcal{F} u, \phi\rangle=\langle u, \mathcal{F} \phi\rangle
$$

and similarly the inverse Fourier transform by

$$
\left\langle\mathcal{F}^{\star} u, \phi\right\rangle=\left\langle u, \mathcal{F}^{\star} \phi\right\rangle
$$

Show the following
(a) This definition of the Fourier transform is consistent with the definition we have seen for functions $u$ in $L^{p}$ for $p=1$ and $p=2$ (note what we have shown in Ex. 7.1).
Sketch of solution: We have shown in the lecture that up to the identification of elements in $f \in L^{1}(\mathbb{R})$ as elements in $S^{\prime}(\mathbb{R})$ via the functional $L_{f}$, see Ex.7.1., that

$$
L_{\mathcal{F} f}(\psi)=\int_{\mathbb{R}} \mathcal{F}(f)(s) \psi(s) d s=\int_{\mathbb{R}} f(s) \mathcal{F}(\psi)(s) d s=\left\langle L_{f}, \mathcal{F} \psi\right\rangle
$$

Thus, $\left\langle L_{\mathcal{F} f}, \psi\right\rangle=\left\langle L_{f}, \mathcal{F} \psi\right\rangle$ for all $\psi \in S(\mathbb{R})$ which shows that the distributional Fourier transform coincides with the definition on $L^{1}(\mathbb{R})$ and particularly on $S(\mathbb{R})$. For $f \in L^{2}$, we defined $\mathcal{F}$ by the unique bounded extension of the operator

$$
\left.\mathcal{F}\right|_{S(\mathbb{R}) \rightarrow S(\mathbb{R})}: S(\mathbb{R}) \rightarrow S(\mathbb{R}), f \mapsto \mathcal{F}(f),
$$

where boundedness refers to the inequality $\|\mathcal{F}(f)\|_{L^{2}(\mathbb{R})} \leq(2 \pi)^{\frac{1}{2}}\|f\|_{L^{2}(\mathbb{R})}$ for all $f \in S(\mathbb{R})$ and hence all $f \in L^{2}$. Therefore, let $\left(\phi_{n}\right)$ be a sequence of functions in $S(\mathbb{R})$ which converge (in $L^{2}$ ) to a given $f \in L^{2}$. Then by the first part,
$\int_{\mathbb{R}} \mathcal{F}\left(\phi_{n}\right)(s) \psi(s) d s \stackrel{\text { Def }}{=}\left\langle L_{\mathcal{F}\left(\phi_{n}\right)}, \psi\right\rangle=\left\langle L_{\phi_{n}}, \mathcal{F} \psi\right\rangle \stackrel{\text { Def }}{=} \int_{\mathbb{R}} \phi_{n}(s) \mathcal{F}(\psi)(s) d s \quad \forall n \in \mathbb{N}$.
By Cauchy-Schwarz and the fact that $\phi_{n} \xrightarrow{L^{2}} f$ as well as $\mathcal{F} \phi_{n} \xrightarrow{L^{2}} \mathcal{F} f$, we conclude that $\left\langle L_{\mathcal{F} f}, \psi\right\rangle=\left\langle L_{f}, \mathcal{F} \psi\right\rangle$ for all $\psi \in S(\mathbb{R})$ which shows the assertion.
(b) Compute the Fourier transform of $\partial \delta_{0}$ where $\delta_{0}$ is defined as in Ex 7.2

Solution: By definition and basics on the Fourier transform for $L^{1}(\mathbb{R})$-functions, we have for $\phi \in S(\mathbb{R})$ that
$\left\langle\mathcal{F} \partial \delta_{0}, \phi\right\rangle=-\left\langle\delta_{0}, \partial \mathcal{F}(\phi)\right\rangle=-\left\langle\delta_{0}, \mathcal{F}\left(m_{-i \mathbf{t}} \phi\right)\right\rangle=-\mathcal{F}\left(m_{-i \mathbf{t}} \phi\right)(0)=\int_{\mathbb{R}}(i t) \phi(t) d t=\left\langle L_{i \mathbf{t}}, \phi\right\rangle$, where we have used the notation $\mathbf{t}=t \mapsto t$ and $m_{g} f=t \mapsto g(t) f(t)$. Thus, the Fourier transform of $\partial \delta_{0}$ is given by the function $t \mapsto i t$ (up to identification with a tempered distribution).
(c) Compute the derivative of the function step function $f(s)= \begin{cases}1 & |s| \leq 1 \\ 0 & |s|>1\end{cases}$

Solution: By definition $\langle\partial f, \phi\rangle=-\langle f, \partial \phi\rangle$ an since $f \in L^{1}$, this can be rewritten as

$$
\langle f, \partial \phi\rangle=\int_{\mathbb{R}} f(s) \partial \phi(s) d s=\int_{-1}^{1} \partial \phi(s) d s=\phi(1)-\phi(-1) \stackrel{D e f}{=}\left\langle\delta_{1}-\delta_{-1}, \phi\right\rangle
$$

for all $\phi \in S(\mathbb{R})$. Thus, $\partial f=\delta_{-1}-\delta_{1}$.
(d) Compute the Fourier transform of the distributions defined by the functions sin and cos. Use that $\sin (t)=\frac{1}{2 i}\left(\mathrm{e}^{i t}-\mathrm{e}^{-i t}\right)$ and show first that $\mathcal{F}\left(\mathrm{e}^{i k \mathbf{t}}\right)=\delta_{k}$ for all $k \in \mathbb{R}$. Then, by linearity if follows that $\mathcal{F}(\sin )=\frac{1}{2 i}\left(\delta_{1}-\delta_{-1}\right)$. For $\cos$ one can proceed analogously or use the following argument. Since $\cos (t)=\sin \left(t+\frac{\pi}{2}\right) \stackrel{\text { Def }}{=} \tau_{\frac{\pi}{2}} \sin$ we have by basics of the Fourier transform (of $L^{1}(\mathbb{R})$-functions) that

$$
\left\langle\mathcal{F} L_{\mathrm{cos}}, \phi\right\rangle=\left\langle L_{\mathrm{cos}}, \mathcal{F} \phi\right\rangle=\left\langle L_{\tau_{\frac{\pi}{2}} \sin }, \mathcal{F} \phi\right\rangle \stackrel{*}{=}\left\langle L_{\mathrm{sin}}, \tau_{-\frac{\pi}{2}} \mathcal{F} \phi\right\rangle=\left\langle L_{\sin }, \mathcal{F}\left(m_{\mathrm{e}^{i \frac{\pi}{2} \mathrm{t}}} \phi\right)\right\rangle
$$

where $(*)$ follows from $\int_{\mathbb{R}} f(t)\left[\tau_{s} g\right](t) d t=\int_{\mathbb{R}}\left[\tau_{-s} f\right](t) g(t) d t$. By what we have shown for $\sin$, we get
$\left\langle L_{\sin }, \mathcal{F}\left(m_{\mathrm{e}^{i \frac{\pi}{2} \mathrm{t}}} \phi\right)\right\rangle=\frac{1}{2 i}\left(\mathrm{e}^{i \frac{\pi}{2}} \phi(1)-\mathrm{e}^{-i \frac{\pi}{2}} \phi(-1)\right)=\frac{1}{2}(\phi(1)+\phi(-1))=\left\langle\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right), \phi\right\rangle$.
Hence, $\mathcal{F}(\cos )=\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right)$.

Solutions to the additional exercises discussed in the Exercise class
Ex 7.3: Prove that $\|f\|_{L^{\infty}(\mathbb{R})}^{2} \leq 2\|f\|_{L^{p}(\mathbb{R})}\left\|f^{\prime}\right\|_{L^{q}(\mathbb{R})}$ for all $f \in S(\mathbb{R})$, $p, q \in[1, \infty]$ with $\frac{1}{p}+\frac{1}{q}=1$. Hint: Use the identity $f(t)=\int_{-\infty}^{t} \frac{\partial}{\partial s}\left(f(s)^{2}\right) d s$, and apply the chain rule, as well Holder inequality.

Ex 7.4: (Show that the Fourier transform is not surjective as mapping from $L^{1}(\mathbb{R})$ to $C_{0}(\mathbb{R})=\{f: \mathbb{R} \rightarrow$ $\mathbb{C} \mid f$ continuous and $\left.\lim _{t \rightarrow \pm \infty} f(t)=0\right\}$ )
To do so prove the following steps
(1) For all $0<\epsilon<T<\infty,\left|\int_{\epsilon}^{T} \frac{\sin t}{t} d t\right| \leq 4$

Solution: Since $\sin t \leq t$ for all $t \geq 0$, we have that $0 \leq \int_{0}^{\pi} \frac{\sin t}{t} d t \leq \pi$. It is also (geometrically) clear that $-2 \leq \int_{\pi}^{T} \frac{\sin t}{t} d t \leq 0$ for all $T>\pi$. This directly gives the assertion as $\pi \leq 4$.
(2) For all $0<\epsilon<T<\infty$ and $f \in L^{1}(\mathbb{R})$ with $f(t)=-f(-t)$ for a.e. $t \in \mathbb{R}$, it holds that $\left|\int_{\epsilon}^{T} \frac{\mathcal{F}(f)(t)}{t} d t\right| \leq 4\|f\|_{L^{1}(\mathbb{R})}$.

Solution: By definition of the Fourier transform and the property that $f$ is odd, it follows that $\mathcal{F}(f)(t)=2 \int_{0}^{\infty} \sin (t s) f(s) d s$. Inserting this in $\left|\int_{\epsilon}^{T} \frac{\mathcal{F}(t)}{t} d t\right|$ and applying Fubini, as well as noting that $\sin (t) \frac{d t}{t}$ is invariant under scaling $t \rightsquigarrow \alpha t$, readily leads to the assertion (also note that $2 \int_{0}^{\infty}|f(s)| d s=\|f\|_{L^{1}(\mathbb{R})}$ since $f$ is odd).
(3) Conclude that there exists no function $f \in L^{1}(\mathbb{R})$ such that $\mathcal{F}(f)(s)=g(s)$ for all $s \in \mathbb{R}$ where $g$ is a continuous, odd function such that $g(s)=\frac{1}{\log (s)}$ for all $s \geq 2$.

Solution: This follows by contraction. If such $f$ exists, then consider the odd function $\tilde{f}$ defined by $\tilde{f}(t)=\frac{1}{2}(f(t)-f(-t))$. Since $R \mathcal{F}=\mathcal{F} R$, where $R$ denotes the reflection operator $R h=h(-\cdot)$, we have by linearity of $\mathcal{F}$ that $\mathcal{F}(\tilde{f})(s)=\frac{1}{2}(g(s)-g(-s))=g(s)$ since $g$ was assumed to be odd. Now apply part (2) for $\epsilon=2$ and conclude that for all $T>2$,

$$
\left|\int_{2}^{T} \frac{g(t)}{t} d t\right|=\left|\int_{2}^{T} \frac{\mathcal{F}(f)(t)}{t} d t\right| \leq 4\|f\|_{L^{1}(\mathbb{R})}
$$

But, $g(t)=\frac{1}{\log (t)}$ for $t \geq 2$ by assumption which implies that $\lim _{T \rightarrow \infty} \int_{2}^{T} \frac{d t}{t \log (t)}=\infty$ (the latter follows for instance by the fact that $t \mapsto t \log (t)$ is strictly increasing on $(2, \infty)$ and hence $\int_{2}^{T} \frac{d t}{t \log (t)} \geq \sum_{n=2} \frac{1}{n \log (n)}=\infty$ where the last identity holds by Cauchy's condensation test)

Ex 7.5: Show that the sequence $\left(\mathrm{e}^{i n \cdot}\right)_{n \in \mathbb{N}}$ converges to 0 in $S^{\prime}(\mathbb{R})$.
Solution: We have to show that for any $\phi \in S(\mathbb{R}),\left\langle L_{\mathrm{e}^{i n t}}, \phi\right\rangle=\int_{\mathbb{R}} \mathrm{e}^{i n t} \phi(t) d t$ converge to 0 as $n \rightarrow \infty$. This, however, follows since $\int_{\mathbb{R}} \mathrm{e}^{i n t} \phi(t) d t=\mathcal{F}(\phi)(-n)$ and $\mathcal{F}(\phi) \in C_{0}(\mathbb{R})$ - the latter being a basic on the Fourier transform (in fact, it even holds that $\mathcal{F}(\phi) \in S(\mathbb{R})$ since $\phi \in S(\mathbb{R})$ ).
Note that the sequence does not converge with respect to any $L^{p}$-norm and hence also not in the topology of $S(\mathbb{R})$.

Ex 7.6: (Uncertainty principle) Let $f \in S(\mathbb{R})$. Show that the following inequality holds

$$
\|f\|_{L^{2}(\mathbb{R})}^{2} \leq C \inf _{x \in \mathbb{R}}\|(\cdot-x) f(\cdot)\|_{L^{2}(\mathbb{R})} \cdot \inf _{y \in \mathbb{R}}\|(\cdot-y) \mathcal{F}(f)(\cdot)\|_{L^{2}(\mathbb{R})}
$$

where $C$ is an absolute constant.

Solution: Fix $x \in \mathbb{R}$ and write $|f(t)|^{2}=f(t) \overline{f(t)} \partial_{t}(t-x)$ and use integration by parts to obtain

$$
\|f\|_{L^{2}}^{2}=-\int_{\mathbb{R}} 2 \Re\left[f(t) \partial_{t} \overline{f(t)}\right](t-x) d t
$$

Estimating the real part by the modulus and using Cauchy-Schwarz gives

$$
\|f\|_{L^{2}}^{2} \leq 2\|(\cdot-x) f(\cdot)\|_{L^{2}}\left\|\partial_{t} f\right\|_{L^{2}(\mathbb{R})}
$$

By Parseval's identity, Lem. II.2.9, we have that

$$
\left\|\partial_{t} f\right\|_{L^{2}(\mathbb{R})}=\sqrt{\frac{1}{2 \pi}}\left\|\mathcal{F}\left(\partial_{t} f\right)\right\|_{L^{2}}=\sqrt{\frac{1}{2 \pi}}\|s \mapsto i s \mathcal{F}(f)(s)\|_{L^{2}}=\sqrt{\frac{1}{2 \pi}}\|s \mapsto s \mathcal{F}(f)(s)\|_{L^{2}}
$$

where the latter identity follows by basics of the Fourier transform. Altogether this gives

$$
\|f\|_{L^{2}(\mathbb{R})}^{2} \leq 2 \sqrt{\frac{1}{2 \pi}}\|(\cdot-x) f(\cdot)\|_{L^{2}}\|s \mapsto s \mathcal{F}(f)(s)\|_{L^{2}}
$$

Now let $y \in \mathbb{R}$ and apply this inequality to the function $t \mapsto f(t) \mathrm{e}^{-i y t}$ instead of $f$. This only chances the last term on the right-hand side: By basics of the Fourier transform we have that $\mathcal{F}\left(\mathrm{e}^{-i y} \cdot f\right)(s)=$ $\mathcal{F}(f)(s+y)$ and hence

$$
\left\|s \mapsto s \mathcal{F}\left(\mathrm{e}^{i y \cdot} f\right)(s)\right\|_{L^{2}}=\|(\cdot-y) \mathcal{F}(f)(\cdot)\|_{L^{2}},
$$

which yields the assertion.

