Universität Hamburg Fachbereich Mathematik Dr. Felix Schwenninger felix.schwenninger[ät]uni-hamburg.de

Fourier Analysis – Exercise sheet 7 (discussed on July 9) — including sketches of the solutions

Important information:

This last exercise class will be held in a slightly different format than what has been the case so far: During the exercise class the participants should work (alone or in groups) on some given exercises and I will assist with problems and difficulties. Some exercises on the topics that are currently discussed in the lecture are already included below. Other exercises — dealing with topics that were already covered by previous exercise sheets — will be provided on Monday.

Ex 7.1: Discuss whether the following objects are tempered distributions:

(a) the functionals

$$L_f: \phi \mapsto \int_{\mathbb{R}} \phi(s) f(s) \, ds$$

for the choices of functions f(x) = c for all $x \in \mathbb{R}$ or $f(x) = e^{x^2}$.

- (b) L_f for $f \in L^p(\mathbb{R}), p \in [1, \infty]$.
- (c) L_f for $f \in L^1_{loc}(\mathbb{R})$
- (d) the functional δ_t given by $\phi \mapsto \phi(t)$ for fixed $t \in \mathbb{R}$
- (e) L_{μ} for any finite Borel measure μ , where L_{μ} is defined by

$$L_{\mu}\phi = \int_{\mathbb{R}} \phi(s) \, d\mu(s)$$

(f) $L_{\log|\cdot|}$

(g) the functional given by

$$\phi \mapsto \lim_{\varepsilon \to 0^+} \int_{|s| \ge \varepsilon} \frac{\phi(s)}{s} \, ds$$

Solution: Yes, the functional, call it u is a tempered distribution. To see this, first observe that for $\phi \in S(\mathbb{R})$,

$$u(\phi) = \lim_{\varepsilon \to 0^+} \int_{|s| \ge \varepsilon} \frac{\phi(s)}{s} \, ds$$

is well-defined as the limit exists by the following argument: Since

$$\left| \int_{|s| \ge \varepsilon} \frac{\phi(s)}{s} \, ds \right| = \left| \int_{\varepsilon \le |s| \le 1} \frac{\phi(s)}{s} \, ds + \int_{|s| \ge 1} \frac{\phi(s)}{s} \, ds \right| = \left| \int_{\varepsilon \le |s| \le 1} \frac{\phi(s) - \phi(0)}{s} \, ds + \int_{|s| \ge 1} \frac{\phi(s)}{s} \, ds \right|$$

and $|\frac{\phi(s)-\phi(0)}{s}| \leq \|\phi'\|_{L^{\infty}(\mathbb{R})}$ for all $s \in (0,1)$ by Rolle's theorem, we conclude by dominated convergence that

$$\left| \int_{|s| \ge \varepsilon} \frac{\phi(s)}{s} \, ds \right| \le 2 \|\phi'\|_{L^{\infty}(\mathbb{R})} + \sup_{x \in \mathbb{R}} |x\phi(x)| \int_{|s| \ge 1} \frac{ds}{s^2} = 2\rho_{0,1}(\phi) + 4\rho_{1,0}(\phi)$$

(for the first term observe that the factor 2 comes from the integration), and where $\rho_{\alpha,\beta}(\phi) = \sup_{x \in \mathbb{R}} |x^{\alpha} \partial^{\beta} \phi(x)|$ are the seminorms that define the convergence on $S(\mathbb{R})$. Then it is also clear that if $\phi_n \xrightarrow{S} \phi$ as $n \to \infty$ — which means that $\rho_{\alpha,\beta}(\phi_n) \to \rho_{\alpha,\beta}(\phi)$ for all indices $\alpha, \beta \in \mathbb{N}_0$ — we have that $u(\phi_n) \to u(\phi)$. Thus, $u \in S'(\mathbb{R})$.

Ex 7.2: (Derivative and Fourier transform of tempered distribution) Let $n \in \mathbb{N}$. We define the n-th derivative $\partial^n u \in S'(\mathbb{R})$ of a tempered distribution $u \in S'(\mathbb{R})$ by

$$\langle \partial^n u, \phi \rangle = \langle u, (-1)^n \partial^n \phi \rangle$$

(recall that by definition $\langle u, \phi \rangle = u(\phi)$). Also, define the Fourier transform $\mathcal{F}u$ by

$$\langle \mathcal{F}u, \phi \rangle = \langle u, \mathcal{F}\phi \rangle$$

and similarly the inverse Fourier transform by

$$\langle \mathcal{F}^{\star} u, \phi \rangle = \langle u, \mathcal{F}^{\star} \phi \rangle$$

Show the following

(a) This definition of the Fourier transform is consistent with the definition we have seen for functions u in L^p for p = 1 and p = 2 (note what we have shown in Ex. 7.1).

Sketch of solution: We have shown in the lecture that up to the identification of elements in $f \in L^1(\mathbb{R})$ as elements in $S'(\mathbb{R})$ via the functional L_f , see Ex.7.1., that

$$L_{\mathcal{F}f}(\psi) = \int_{\mathbb{R}} \mathcal{F}(f)(s)\psi(s) \, ds = \int_{\mathbb{R}} f(s)\mathcal{F}(\psi)(s) \, ds = \langle L_f, \mathcal{F}\psi \rangle$$

Thus, $\langle L_{\mathcal{F}f}, \psi \rangle = \langle L_f, \mathcal{F}\psi \rangle$ for all $\psi \in S(\mathbb{R})$ which shows that the distributional Fourier transform coincides with the definition on $L^1(\mathbb{R})$ and particularly on $S(\mathbb{R})$. For $f \in L^2$, we defined \mathcal{F} by the unique bounded extension of the operator

$$\mathcal{F}|_{S(\mathbb{R})\to S(\mathbb{R})}: S(\mathbb{R})\to S(\mathbb{R}), f\mapsto \mathcal{F}(f)$$

where boundedness refers to the inequality $\|\mathcal{F}(f)\|_{L^2(\mathbb{R})} \leq (2\pi)^{\frac{1}{2}} \|f\|_{L^2(\mathbb{R})}$ for all $f \in S(\mathbb{R})$ and hence all $f \in L^2$. Therefore, let (ϕ_n) be a sequence of functions in $S(\mathbb{R})$ which converge (in L^2) to a given $f \in L^2$. Then by the first part,

$$\int_{\mathbb{R}} \mathcal{F}(\phi_n)(s)\psi(s) \, ds \stackrel{Def}{=} \langle L_{\mathcal{F}(\phi_n)}, \psi \rangle = \langle L_{\phi_n}, \mathcal{F}\psi \rangle \stackrel{Def}{=} \int_{\mathbb{R}} \phi_n(s)\mathcal{F}(\psi)(s) \, ds \qquad \forall n \in \mathbb{N}.$$

By Cauchy-Schwarz and the fact that $\phi_n \xrightarrow{L^2} f$ as well as $\mathcal{F}\phi_n \xrightarrow{L^2} \mathcal{F}f$, we conclude that $\langle L_{\mathcal{F}f}, \psi \rangle = \langle L_f, \mathcal{F}\psi \rangle$ for all $\psi \in S(\mathbb{R})$ which shows the assertion.

(b) Compute the Fourier transform of ∂δ₀ where δ₀ is defined as in Ex 7.2 Solution: By definition and basics on the Fourier transform for L¹(ℝ)-functions, we have for φ ∈ S(ℝ) that

$$\langle \mathcal{F}\partial\delta_0,\phi\rangle = -\langle\delta_0,\partial\mathcal{F}(\phi)\rangle = -\langle\delta_0,\mathcal{F}(m_{-i\mathbf{t}}\phi)\rangle = -\mathcal{F}(m_{-i\mathbf{t}}\phi)(0) = \int_{\mathbb{R}} (it)\phi(t)\,dt = \langle L_{i\mathbf{t}},\phi\rangle,$$

where we have used the notation $\mathbf{t} = t \mapsto t$ and $m_g f = t \mapsto g(t)f(t)$. Thus, the Fourier transform of $\partial \delta_0$ is given by the function $t \mapsto it$ (up to identification with a tempered distribution).

(c) Compute the derivative of the function step function $f(s) = \begin{cases} 1 & |s| \le 1 \\ 0 & |s| > 1 \end{cases}$ Solution: By definition $\langle \partial f, \phi \rangle = -\langle f, \partial \phi \rangle$ an since $f \in L^1$, this can be rewritten as

$$\langle f, \partial \phi \rangle = \int_{\mathbb{R}} f(s) \partial \phi(s) \, ds = \int_{-1}^{1} \partial \phi(s) \, ds = \phi(1) - \phi(-1) \stackrel{Def}{=} \langle \delta_1 - \delta_{-1}, \phi \rangle$$

for all $\phi \in S(\mathbb{R})$. Thus, $\partial f = \delta_{-1} - \delta_1$.

(d) Compute the Fourier transform of the distributions defined by the functions sin and cos. Use that $\sin(t) = \frac{1}{2i}(e^{it} - e^{-it})$ and show first that $\mathcal{F}(e^{ikt}) = \delta_k$ for all $k \in \mathbb{R}$. Then, by linearity if follows that $\mathcal{F}(\sin) = \frac{1}{2i}(\delta_1 - \delta_{-1})$. For cos one can proceed analogously or use the following argument. Since $\cos(t) = \sin(t + \frac{\pi}{2}) \stackrel{Def}{=} \tau_{\frac{\pi}{2}} \sin$ we have by basics of the Fourier transform (of $L^1(\mathbb{R})$ -functions) that

$$\langle \mathcal{F}L_{\cos}, \phi \rangle = \langle L_{\cos}, \mathcal{F}\phi \rangle = \langle L_{\tau_{\frac{\pi}{3}}\sin}, \mathcal{F}\phi \rangle \stackrel{*}{=} \langle L_{\sin}, \tau_{-\frac{\pi}{2}}\mathcal{F}\phi \rangle = \langle L_{\sin}, \mathcal{F}(m_{e^{i\frac{\pi}{2}t}}\phi) \rangle$$

where (*) follows from $\int_{\mathbb{R}} f(t)[\tau_s g](t) dt = \int_{\mathbb{R}} [\tau_{-s} f](t)g(t) dt$. By what we have shown for sin, we get

$$\langle L_{\sin}, \mathcal{F}(m_{e^{i\frac{\pi}{2}t}}\phi) \rangle = \frac{1}{2i} (e^{i\frac{\pi}{2}}\phi(1) - e^{-i\frac{\pi}{2}}\phi(-1)) = \frac{1}{2} (\phi(1) + \phi(-1)) = \langle \frac{1}{2} (\delta_1 + \delta_{-1}), \phi \rangle.$$

Hence, $\mathcal{F}(\cos) = \frac{1}{2} (\delta_1 + \delta_{-1}).$

Solutions to the additional exercises discussed in the Exercise class

<u>Ex 7.3</u>: Prove that $||f||_{L^{\infty}(\mathbb{R})}^{2} \leq 2||f||_{L^{p}(\mathbb{R})}||f'||_{L^{q}(\mathbb{R})}$ for all $f \in S(\mathbb{R})$, $p, q \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$. Hint: Use the identity $f(t) = \int_{-\infty}^{t} \frac{\partial}{\partial s} (f(s)^2) ds$, and apply the chain rule, as well Holder inequality.

Ex 7.4: (Show that the Fourier transform is not surjective as mapping from $L^1(\mathbb{R})$ to $C_0(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R}\}$ $\mathbb{C} \mid f \text{ continuous and } \lim_{t \to \pm \infty} f(t) = 0 \}$ To do so prove the following steps

(1) For all $0 < \epsilon < T < \infty$, $\left| \int_{\epsilon}^{T} \frac{\sin t}{t} dt \right| \le 4$ Solution: Since $\sin t \le t$ for all $t \ge 0$, we have that $0 \le \int_{0}^{\pi} \frac{\sin t}{t} dt \le \pi$. It is also (geometrically) clear that $-2 \leq \int_{\pi}^{T} \frac{\sin t}{t} dt \leq 0$ for all $T > \pi$. This directly gives the assertion as $\pi \leq 4$.

(2) For all $0 < \epsilon < T < \infty$ and $f \in L^1(\mathbb{R})$ with f(t) = -f(-t) for a.e. $t \in \mathbb{R}$, it holds that

 $\left| \int_{\epsilon}^{T} \frac{\mathcal{F}(f)(t)}{t} dt \right| \leq 4 \|f\|_{L^{1}(\mathbb{R})}.$ Solution: By definition of the Fourier transform and the property that f is odd, it follows that $\mathcal{F}(f)(t) = 2\int_0^\infty \sin(ts)f(s)\,ds$. Inserting this in $\left|\int_{\epsilon}^T \frac{\mathcal{F}(t)}{t}\,dt\right|$ and applying Fubini, as well as noting that $\sin(t)\frac{dt}{t}$ is invariant under scaling $t \rightsquigarrow \alpha t$, readily leads to the assertion (also note that $2\int_0^\infty |f(s)| ds = ||f||_{L^1(\mathbb{R})}$ since f is odd).

(3) Conclude that there exists no function $f \in L^1(\mathbb{R})$ such that $\mathcal{F}(f)(s) = g(s)$ for all $s \in \mathbb{R}$ where g is a continuous, odd function such that $g(s) = \frac{1}{\log(s)}$ for all $s \ge 2$.

Solution: This follows by contraction. If such f exists, then consider the odd function \hat{f} defined by $\tilde{f}(t) = \frac{1}{2}(f(t) - f(-t))$. Since $R\mathcal{F} = \mathcal{F}R$, where R denotes the reflection operator $Rh = h(-\cdot)$, we have by linearity of \mathcal{F} that $\mathcal{F}(\tilde{f})(s) = \frac{1}{2}(g(s) - g(-s)) = g(s)$ since g was assumed to be odd. Now apply part (2) for $\epsilon = 2$ and conclude that for all T > 2,

$$\left| \int_2^T \frac{g(t)}{t} \, dt \right| = \left| \int_2^T \frac{\mathcal{F}(f)(t)}{t} \, dt \right| \le 4 \|f\|_{L^1(\mathbb{R})}$$

But, $g(t) = \frac{1}{\log(t)}$ for $t \ge 2$ by assumption which implies that $\lim_{T\to\infty} \int_2^T \frac{dt}{t\log(t)} = \infty$ (the latter follows for instance by the fact that $t \mapsto t\log(t)$ is strictly increasing on $(2,\infty)$ and hence $\int_{2}^{T} \frac{dt}{t \log(t)} \geq \sum_{n=2} \frac{1}{n \log(n)} = \infty$ where the last identity holds by Cauchy's condensation test)

<u>Ex 7.5</u> Show that the sequence $(e^{in})_{n\in\mathbb{N}}$ converges to 0 in $S'(\mathbb{R})$. Solution: We have to show that for any $\phi \in S(\mathbb{R})$, $\langle L_{e^{int}}, \phi \rangle = \int_{\mathbb{R}} e^{int} \phi(t) dt$ converge to 0 as $n \to \infty$. This, however, follows since $\int_{\mathbb{R}} e^{int} \phi(t) dt = \mathcal{F}(\phi)(-n)$ and $\mathcal{F}(\phi) \in C_0(\mathbb{R})$ — the latter being a basic on the Fourier transform (in fact, it even holds that $\mathcal{F}(\phi) \in S(\mathbb{R})$ since $\phi \in S(\mathbb{R})$).

Note that the sequence does not converge with respect to any L^p -norm and hence also not in the topology of $S(\mathbb{R})$.

<u>Ex 7.6</u> (Uncertainty principle) Let $f \in S(\mathbb{R})$. Show that the following inequality holds

$$\|f\|_{L^2(\mathbb{R})}^2 \le C \inf_{x \in \mathbb{R}} \|(\cdot - x)f(\cdot)\|_{L^2(\mathbb{R})} \cdot \inf_{y \in \mathbb{R}} \|(\cdot - y)\mathcal{F}(f)(\cdot)\|_{L^2(\mathbb{R})}$$

where C is an absolute constant.

Solution: Fix $x \in \mathbb{R}$ and write $|f(t)|^2 = f(t)\overline{f(t)}\partial_t(t-x)$ and use integration by parts to obtain

$$||f||_{L^2}^2 = -\int_{\mathbb{R}} 2\Re[f(t)\partial_t \overline{f(t)}](t-x) dt$$

Estimating the real part by the modulus and using Cauchy-Schwarz gives

$$||f||_{L^2}^2 \le 2||(\cdot - x)f(\cdot)||_{L^2} ||\partial_t f||_{L^2(\mathbb{R})}.$$

By Parseval's identity, Lem. II.2.9, we have that

$$\|\partial_t f\|_{L^2(\mathbb{R})} = \sqrt{\frac{1}{2\pi}} \|\mathcal{F}(\partial_t f)\|_{L^2} = \sqrt{\frac{1}{2\pi}} \|s \mapsto is \mathcal{F}(f)(s)\|_{L^2} = \sqrt{\frac{1}{2\pi}} \|s \mapsto s \mathcal{F}(f)(s)\|_{L^2}$$

where the latter identity follows by basics of the Fourier transform. Altogether this gives

$$||f||_{L^{2}(\mathbb{R})}^{2} \leq 2\sqrt{\frac{1}{2\pi}} ||(\cdot - x)f(\cdot)||_{L^{2}} ||s \mapsto s\mathcal{F}(f)(s)||_{L^{2}}.$$

Now let $y \in \mathbb{R}$ and apply this inequality to the function $t \mapsto f(t)e^{-iyt}$ instead of f. This only chances the last term on the right-hand side: By basics of the Fourier transform we have that $\mathcal{F}(e^{-iy}f)(s) = \mathcal{F}(f)(s+y)$ and hence

$$\|s \mapsto s\mathcal{F}(e^{iy \cdot}f)(s)\|_{L^2} = \|(\cdot - y)\mathcal{F}(f)(\cdot)\|_{L^2},$$

which yields the assertion.