Universität Hamburg Fachbereich Mathematik Dr. Felix Schwenninger felix.schwenninger[ät]uni-hamburg.de

Fourier Analysis – Exercise sheet 5 (to be discussed on June 11)

Ex 5.1: (Pointwise convergence of Dirchlet means for differentiable functions) Let $f \in L^1(\mathbb{T})$ be differentiable at $t_0 \in \mathbb{T}$. Then the partial sums $D_n * f$ of the Fourier series of f converge to $f(t_0)$ at t_0 . Hint: Use Ex. 4.1.

<u>Ex 5.2</u>: (The maximum principle for entire functions)

(This exercise may be well-known for those who familiar with basic complex analysis) A function $f : \mathbb{C} \to \mathbb{C}$ is called *entire* if f is a complex power series with radius of convergence equal to ∞ , i.e. there exists $(a_n)_{n \in \mathbb{N}}$ such that

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \qquad \forall z \in \mathbb{C}.$$

(a) Show that for any entire f,

$$\max_{z\in\overline{\mathbb{D}}}|f(z)|=\max_{|z|=1}|f(z)|.$$

Hint: Follow the steps

- (i) Reduce the claim to complex polynomials f of degree larger than 1.
- (ii) Let n > 1 and $z \in \mathbb{D}$. Consider $U \in \mathbb{C}^{(n+1) \times (n+1)}$ defined by

$$U = \begin{pmatrix} z & 0 & \dots & 0 & \sqrt{1 - |z|^2} \\ \sqrt{1 - |z|^2} & 0 & \dots & 0 & \bar{z} \\ 0 & & & 0 \\ \vdots & & I_{n-1} & & \vdots \\ 0 & & & 0 \end{pmatrix}$$

where I_{n-1} denotes the identity matrix of dimension $(n-1) \times (n-1)$. Show that U is unitary, i.e. $U^*U = UU^* = I_{n+1}^{-1}$ and that for polynomials f with deg(f) = n,

$$f(z) = P_1 f(U) P_1^T$$

where $P_1 = (1, 0, ..., 0) \in \mathbb{C}^{1 \times (n+1)}$. Conclude that $|f(z)| \leq ||f(U)||_{2 \to 2}$ where the operator norm is induced by the Euclidean norm.

- (iii) Conclude the assertion by arguing why $||f(U)||_{2\to 2} \le \max_{|z|=1} |f(z)|$ (use that U is unitary and the spectral theorem from linear algebra).
- (b) Show that in (a) the set \mathbb{D} can be replaced by any bounded, open, connected set Ω in \mathbb{C} , i.e.

$$\max_{z\in\overline{\Omega}}|f(z)| = \max_{\partial\Omega}|f(z)|,$$

where $\partial\Omega$ denotes the boundary of the open set Ω . Hint: Assume that there exists $z \in \Omega$ such that $|f(z)| \ge \max_{\tilde{z} \in \overline{\Omega}} |f(\tilde{z})|$.

(c) (for people familiar with basic complex analysis) Show above statements for functions f that are analytic on \mathbb{D} and continuous on $\overline{\mathbb{D}}$ (or Ω and $\overline{\Omega}$ respectively).

¹where $T^* = (\overline{t_{j,i}})_{i,j}$ denotes the hermitian transpose of the matrix $T = (t_{i,j})_{i,j}$.

Ex. 5.3: (Isoperimetric inequality in 2D) The goal of this exercise is to show the statement

For any closed, regular, nonself-intersecting, positively orientated C^1 -curve Γ in \mathbb{R}^2 ² of length L and with enclosing area A the inequality

(*)

holds with equality if and only if the curve is a circle. Here, **regular** means that $\gamma'(t) \neq 0$ for all $t \in \mathbb{T}$ for any C^1 -parametrization $\gamma : \mathbb{T} \to \mathbb{R}^2$ of Γ .

 $4\pi A < L^2$

For that consider the following steps, where $\gamma : [0, 2\pi] \to \mathbb{R}^2$, with components γ_1 and γ_2 , denotes a C^1 -parametrization of Γ , see ¹.

(a) Show that the area A enclosed by Γ equals

$$A = \frac{1}{2} \int_0^{2\pi} \gamma_1(s) \gamma_2'(s) - \gamma_1'(s) \gamma_2(s) \, ds.$$

Hint: Use Green's theorem / Stoke's theorem)

(b) (Poincaré–Wirtinger inequality in 1D) Show that for $f \in C^1(\mathbb{T})$ (or more generally, for f being absolutely continuous with $f' \in L^2$) it holds that

$$||f - \hat{f}(0)||_{L^2(\mathbb{T})} \le ||f'||_{L^2(\mathbb{T})}.$$

- (c) Show (*) in the case that $\|\gamma'(t)\|_2 = (\gamma_1(t)^2 + \gamma_2(t)^2)^{\frac{1}{2}} = 1$ for all $t \in \mathbb{T}$. (*Hint: Consider* $f(s) = \gamma_1(s) + i\gamma_2(s)$, show that $A = \frac{1}{2} \operatorname{Im} \int_{\mathbb{T}} f'(s) \overline{f(s)} \, ds$ and note that $\int_{\mathbb{T}} f'(s) \, ds = 0$)
- (d) Show why the assumption in (c) on γ can always be made by reparametrizing. (*Hint:* $\gamma \rightsquigarrow \gamma \circ h^{-1}$ where $h(t) = \frac{1}{L} \int_0^t \|\gamma'(s)\|_2 ds.$)
- (e) Show the statement on the equality by investigating when equality holds in (b) and the inequalities in the proof of (c).

Ex. 5.4: (Young's inequality for convolutions) Prove Theorem 2.3 from the lecture for $\Omega = \mathbb{T}$. Let $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$ for $p, q, r \in [1, \infty]$ and $f \in L^p(\Omega), g \in L^q(\Omega)$. Then $f * g \in L^r(\Omega)$ and

 $||f * g||_{L^r} \le ||f||_{L^p} ||g||_{L^q}.$

Hint: Use Riesz-Thorin's theorem (and also Minkowski's inequality, Ex. 2.4). Conclude why the statement also holds for $\Omega = \mathbb{R}$.

²here we mean that there exists a continuously differentiable $\gamma : [0, 2\pi] \to \mathbb{R}^2$ such that γ is injective on $[0, 2\pi), \gamma'(t) \neq 0$ for all $t \in \mathbb{T}, \gamma(0) = \gamma(2\pi)$ and $\Gamma = \gamma(\mathbb{T})$. The length (or perimeter) L of Γ can be expressed as $L = \int_0^{2\pi} \|\gamma'(t)\|_2 ds$.