Fourier Analysis - Exercise sheet 5 (to be discussed on June 11)

Ex 5.1: (Pointwise convergence of Dirchlet means for differentiable functions)
Let $f \in L^{1}(\mathbb{T})$ be differentiable at $t_{0} \in \mathbb{T}$. Then the partial sums $D_{n} * f$ of the Fourier series of f converge to $f\left(t_{0}\right)$ at t_{0}.
Hint: Use Ex. 4.1.
Ex 5.2: (The maximum principle for entire functions)
(This exercise may be well-known for those who familiar with basic complex analysis)
A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is called entire if f is a complex power series with radius of convergence equal to ∞, i.e. there exists $\left(a_{n}\right)_{n \in \mathbb{N}}$ such that

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad \forall z \in \mathbb{C}
$$

(a) Show that for any entire f,

$$
\max _{z \in \overline{\mathbb{D}}}|f(z)|=\max _{|z|=1}|f(z)| .
$$

Hint: Follow the steps
(i) Reduce the claim to complex polynomials f of degree larger than 1.
(ii) Let $n>1$ and $z \in \mathbb{D}$. Consider $U \in \mathbb{C}^{(n+1) \times(n+1)}$ defined by

$$
U=\left(\begin{array}{ccccc}
z & 0 & \ldots & 0 & \sqrt{1-|z|^{2}} \\
\sqrt{1-|z|^{2}} & 0 & \ldots & 0 & \bar{z} \\
0 & & & & 0 \\
\vdots & & I_{n-1} & & \vdots \\
0 & & & 0
\end{array}\right)
$$

where I_{n-1} denotes the identity matrix of dimension $(n-1) \times(n-1)$.
Show that U is unitary, i.e. $U^{*} U=U U^{*}=I_{n+1}{ }^{1}$ and that for polynomials f with $\operatorname{deg}(f)=n$,

$$
f(z)=P_{1} f(U) P_{1}^{T}
$$

where $P_{1}=(1,0, \ldots, 0) \in \mathbb{C}^{1 \times(n+1)}$. Conclude that $|f(z)| \leq\|f(U)\|_{2 \rightarrow 2}$ where the operator norm is induced by the Euclidean norm.
(iii) Conclude the assertion by arguing why $\|f(U)\|_{2 \rightarrow 2} \leq \max _{|z|=1}|f(z)|$ (use that U is unitary and the spectral theorem from linear algebra).
(b) Show that in (a) the set \mathbb{D} can be replaced by any bounded, open, connected set Ω in \mathbb{C}, i.e.

$$
\max _{z \in \bar{\Omega}}|f(z)|=\max _{\partial \Omega}|f(z)|
$$

where $\partial \Omega$ denotes the boundary of the open set Ω.
Hint: Assume that there exists $z \in \Omega$ such that $|f(z)| \geq \max _{\tilde{z} \in \bar{\Omega}}|f(\tilde{z})|$.
(c) (for people familiar with basic complex analysis) Show above statements for functions f that are analytic on \mathbb{D} and continuous on $\overline{\mathbb{D}}$ (or Ω and $\bar{\Omega}$ respectively).

[^0]Ex. 5.3: (Isoperimetric inequality in 2D) The goal of this exercise is to show the statement
For any closed, regular, nonself-intersecting, positively orientated C^{1}-curve Γ in \mathbb{R}^{2}
${ }^{2}$ of length L and with enclosing area A the inequality

$$
\begin{equation*}
4 \pi A \leq L^{2} \tag{*}
\end{equation*}
$$

holds with equality if and only if the curve is a circle. Here, regular means that $\gamma^{\prime}(t) \neq 0$ for all $t \in \mathbb{T}$ for any C^{1}-parametrization $\gamma: \mathbb{T} \rightarrow \mathbb{R}^{2}$ of Γ.
For that consider the following steps, where $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}$, with components γ_{1} and γ_{2}, denotes a C^{1}-parametrization of Γ, see ${ }^{1}$.
(a) Show that the area A enclosed by Γ equals

$$
A=\frac{1}{2} \int_{0}^{2 \pi} \gamma_{1}(s) \gamma_{2}^{\prime}(s)-\gamma_{1}^{\prime}(s) \gamma_{2}(s) d s
$$

Hint: Use Green's theorem / Stoke's theorem)
(b) (Poincaré-Wirtinger inequality in 1D)

Show that for $f \in C^{1}(\mathbb{T})$ (or more generally, for f being absolutely continuous with $f^{\prime} \in L^{2}$) it holds that

$$
\|f-\hat{f}(0)\|_{L^{2}(\mathbb{T})} \leq\left\|f^{\prime}\right\|_{L^{2}(\mathbb{T})}
$$

(c) Show $(*)$ in the case that $\left\|\gamma^{\prime}(t)\right\|_{2}=\left(\gamma_{1}(t)^{2}+\gamma_{2}(t)^{2}\right)^{\frac{1}{2}}=1$ for all $t \in \mathbb{T}$.
(Hint: Consider $f(s)=\gamma_{1}(s)+i \gamma_{2}(s)$, show that $A=\frac{1}{2} \operatorname{Im} \int_{\mathbb{T}} f^{\prime}(s) \overline{f(s)}$ ds and note that $\left.\int_{\mathbb{T}} f^{\prime}(s) d s=0\right)$
(d) Show why the assumption in (c) on γ can always be made by reparametrizing.

$$
\text { (Hint: } \left.\gamma \rightsquigarrow \gamma \circ h^{-1} \text { where } h(t)=\frac{1}{L} \int_{0}^{t}\left\|\gamma^{\prime}(s)\right\|_{2} d s .\right)
$$

(e) Show the statement on the equality by investigating when equality holds in (b) and the inequalities in the proof of (c).

Ex. 5.4: (Young's inequality for convolutions) Prove Theorem 2.3 from the lecture for $\Omega=\mathbb{T}$.

> Let $\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r}$ for $p, q, r \in[1, \infty]$ and $f \in L^{p}(\Omega), g \in L^{q}(\Omega)$. Then $f * g \in L^{r}(\Omega)$
> and
$\|f * g\|_{L^{r}} \leq\|f\|_{L^{p}}\|g\|_{L^{q}}$.
Hint: Use Riesz-Thorin's theorem (and also Minkowski's inequality, Ex. 2.4).
Conclude why the statement also holds for $\Omega=\mathbb{R}$.

[^1]
[^0]: $1_{\text {where }} T^{*}=\left(\overline{t_{j, i}}\right)_{i, j}$ denotes the hermitian transpose of the matrix $T=\left(t_{i, j}\right)_{i, j}$.

[^1]: ${ }^{2}$ here we mean that there exists a continuously differentiable $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ such that γ is injective on $[0,2 \pi), \gamma^{\prime}(t) \neq$ 0 for all $t \in \mathbb{T}, \gamma(0)=\gamma(2 \pi)$ and $\Gamma=\gamma(\mathbb{T})$. The length (or perimeter) L of Γ can be expressed as $L=\int_{0}^{2 \pi}\left\|\gamma^{\prime}(t)\right\|_{2} d s$.

