Fourier Analysis - Exercise sheet 4
 (to be discussed on May 28)

Note that we may also discuss Ex. 3.3 from sheet 3.

Ex 4.1: (Local Behavior of Fourier series)

The goal is to show that if two functions $f, g \in L^{1}(\mathbb{T})$ coincide in an open interval of \mathbb{T}, then the Fourier series either both converge pointwise on this interval to the same limit or both diverge. In order to conclude this show the following for functions $f \in L^{1}(\mathbb{T})$
(a) If $\int_{-\varepsilon}^{\varepsilon}\left|\frac{f(s)}{s}\right| d s<\infty$ for some $\varepsilon>0$ then $\lim _{n \rightarrow \infty}\left(D_{n} * f\right)(0) \rightarrow 0$.

Hint: You may want to use the representation of D_{n} in terms of sines and use elementary facts on trigonometric functions.
(b) If $\int_{-\varepsilon}^{\varepsilon}\left|\frac{f(t+s)-f(t)}{s}\right| d s<\infty$ for some $\varepsilon>0$ then $\lim _{n \rightarrow \infty}\left(D_{n} * f\right)(t) \rightarrow f(t)$.
(c) Conclude the above statement.
(d) Refine the statement in the following way: On any compact subinterval of the considered interval the pointwise convergence of the Fourier series of $f-g$ to 0 is uniform.
Hint: this requires a "uniform version" of the Riemann-Lebesgue lemma in the sense that the Fourier coefficients of a compact set of $L^{1}(\mathbb{T})$-functions tend to 0 (at ∞) uniformly).

Ex. 4.2: Show that for $X=C^{k}(\mathbb{T}), k \in \mathbb{N}$, the partial sums of the Fourier series $S(f)$ do not converge to f in X for general $f \in X$.

Ex 4.3: (The Poisson kernel)
(a) Show that

$$
P_{r}(t)=\frac{1}{2 \pi} \sum_{k=-\infty}^{\infty} r^{|k|} \mathrm{e}^{i k t}
$$

defines an approximate identity $\left(P_{r}\right)_{r \in(0,1)} \subset L^{1}(\mathbb{T})$ indexed by $(0,1)^{1}$. Here you may first show that

$$
P_{r}(t)=\frac{1}{2 \pi} \frac{1-r^{2}}{1-2 r \cos (t)+r^{2}}, \quad \forall t \in \mathbb{T}, r \in(0,1) .
$$

(b) Conclude that for any homogeneous Banach space X we have that

$$
P_{r} * f \rightarrow f \text { in } X
$$

as $r \rightarrow 1$ for any $f \in X$ (this is the version of the main result for approximate identities $\left.\left(k_{n}\right)_{n \in \mathbb{N}}\right)$.
(c) Show that $\left(P_{r} * f\right)(t)=\sum_{k=-\infty}^{\infty} r^{|k|} \hat{f}(k) \mathrm{e}^{i k t}$.
(d) Show the following properties (analogous to the Fejér kernel) for all $r \in(0,1), t \in \mathbb{T}$.

$$
P_{r}(t) \geq 0, \quad P_{r}(t)=P_{r}(-t), \quad \lim _{n \rightarrow \infty} \sup _{s \in[\delta, 2 \pi-\delta]}\left|P_{r}(s)\right|=0
$$

Furthermore show that $t \mapsto P_{r}(t)$ is decreasing for $t \in(0, \pi)$.

[^0](e) Show that if $f \in L^{1}(\mathbb{T})$ and $t_{0} \in \mathbb{T}$ such that $L=\lim _{s \rightarrow 0} f\left(t_{0}+s\right)+f\left(t_{0}-s\right)$ exists, it follows that
$$
\lim _{r \rightarrow 1}\left(P_{r} * f\right)\left(t_{0}\right)=\frac{L}{2} .
$$

Hint: Start in a similarly as in the proof for the pointwise convergence of the Fejér means, Section 4), but then exploit the properties from Ex. 4.3(d)

Ex 4.4: Let $\left(P_{r}\right)_{r \in(0,1)}$ be the Poisson kernel from Ex. 4.3. We want to show that for $f \in L^{1}(\mathbb{T})$

$$
\lim _{r \rightarrow 1^{-}} \sum_{k=-\infty}^{\infty} r^{|k|} \hat{f}(k) \mathrm{e}^{i k t}=\lim _{r \rightarrow 1^{-}}\left(P_{r} * f\right)(t)=f(t) \quad \text { for a.e. } t \in \mathbb{T} \text {. }
$$

For that consider the steps:
(a) Show that if $f \in L^{1}(\mathbb{T}), t_{0} \in \mathbb{T}$ and $L_{t_{0}} \in \mathbb{C}$ are such that

$$
\begin{equation*}
\lim _{h \rightarrow 0^{+}} \frac{1}{h} \int_{0}^{h} \frac{1}{2}\left(f\left(t_{0}+s\right)+f\left(t_{0}-s\right)\right)-L_{t_{0}} d s=0 \tag{*}
\end{equation*}
$$

then $\left(P_{r} * f\right)\left(t_{0}\right) \rightarrow L_{t_{0}}$ as $r \rightarrow 1$. Note that in the corresponding result on the pointwise convergence of the Fejér means $F_{n} * f$ from the lecture, Section 4, we have assumed a slightly stronger assumption than $(*)$.
(Hint: This follows the same lines as the proof for the Fejér kernel - however, fill the "gap" we have left in the lecture and observe why we can use this weaker condition here..)
(b) Show that for any $f \in L^{1}(\mathbb{T})$ it holds that $(*)$ is satisfied with $L_{t_{0}}=f\left(t_{0}\right)$ for almost every t_{0}.

Ex 4.5: Fourier coefficients of bounded linear functionals.
For a homogeneous Banach space X consider the dual space X^{\prime} of bounded linear functionals $\mu: X \rightarrow \mathbb{C}$. Let us assume that $\mathrm{e}^{i n \cdot} \in X$ for all $n \in \mathbb{Z}$. For $\mu \in X^{\prime}$ define

$$
\hat{\mu}(n)=\frac{1}{2 \pi} \overline{\left\langle\mathrm{e}^{i n \cdot}, \mu\right\rangle_{X^{\prime}, X}}:=\frac{1}{2 \pi} \overline{\mu\left(\mathrm{e}^{i n \cdot}\right)} \quad n \in \mathbb{Z}
$$

(a) Show that $|\hat{\mu}(n)| \leq \frac{1}{2 \pi}\|\mu\|_{X^{\prime}}\left\|\mathrm{e}^{i n \cdot}\right\|_{B}$ for all $n \in \mathbb{Z}$ and $\mu \in X^{\prime}$.
(b) Show that this definition is consistent with our definition of Fourier coefficients in the case of $X=L^{p}\left(\mathbb{T}, p \in[1, \infty)\right.$ (in which case X^{\prime} is isomorphic to $L^{q}(\mathbb{T})$ with the Hölder conjugate q).
(c) Show that the following holds for $f \in X$ and $\mu \in X^{\prime}$. The limit

$$
\lim _{N \rightarrow \infty} \frac{1}{2 \pi} \sum_{k=-N}^{N}\left(1-\frac{|k|}{N+1}\right) \hat{f}(k) \hat{\mu}(k)
$$

exists and equals $\langle f, \mu\rangle_{X, X^{\prime}}$.
(d) Show that if $\hat{\mu}(n)=0$ for all $n \in \mathbb{Z}$ then $\mu=0 \in X^{\prime}$.

[^0]: ${ }^{1}$ this means that in the definition of an approximate identity we replace the sequence $\left(k_{n}\right)_{n}$ by the function k : $(0,1) \rightarrow L^{1}(\mathbb{T}), r \mapsto k_{r}$ where the conditions " $\forall n$ " get replaced by $\forall r \in(0,1)$ and $\lim _{n \rightarrow \infty}$ by $\lim _{r \rightarrow 1}$.

