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Abstract. We consider sufficient conditions for the existence of k-th powers of Hamil-
tonian cycles in n-vertex graphs G with minimum degree µn for arbitrarily small µ ą 0.
About 20 years ago Komlós, Sarközy, and Szemerédi resolved the conjectures of Pósa and
Seymour and obtained optimal minimum degree conditions for this problem by showing
that µ “ k

k`1 suffices for large n. For smaller values of µ the given graph G must satisfy
additional assumptions. We show that inducing subgraphs of density d ą 0 on linear
subsets of vertices and being inseparable, in the sense that every cut has density at
least µ ą 0, are sufficient assumptions for this problem and, in fact, for a variant of the
bandwidth theorem. This generalises recent results of Staden and Treglown.

§1. Introduction

We study sufficient conditions for the existence of spanning subgraphs in large finite
graphs and begin the discussion with powers of Hamiltonian cycles. For k P N the k-th
power of a given graph H is the graph Hk on the same vertex set with xy being an edge
in Hk if x and y are distinct vertices of H that are connected in H by a path of at most k
edges. For simplicity, we refer to a k-th power of a path with at least k vertices as a k-path.
Moreover, we refer to the ordered k-tuples of the first and last k vertices of a k-path as
ends of the k-path and an páx, áy; kq-path is a k-path with ends áx and áy. Note that every
k ` 1 consecutive vertices of a k-path span a clique and if a graph G “ pV,Eq contains
the k-th power of a Hamiltonian cycle, it also contains t

|V |
k`1u pairwise vertex disjoint copies

of Kk`1 and G contains a Kk`1-factor if |V | is divisible by k ` 1.
Establishing sufficient conditions for the existence of Hamiltonian cycles in graphs has a

long history and Dirac’s well known theorem [4] yields a best possible minimum degree
condition for this problem. The minimum degree of a graph turned out to be an interesting
parameter for enforcing a given spanning subgraph and establishing optimal minimum
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degree conditions for those problems became a fruitful research direction in extremal graph
theory (see, e.g., [1] and the references therein). Already about 50 years ago, the minimum
degree problem for Kk`1-factors was resolved by Corrádi and Hajnal [3] for k “ 2 and by
Hajnal and Szemerédi [7] for every k ě 3. Pósa (see [6]) and Seymour [18] asked for a
common generalisation of those results on factors and Dirac’s theorem and conjectured
that the best possible minimum degree conditions for Kk`1-factors and k-th powers of
Hamiltonian cycles are the same (given that the number of vertices is divisible by k ` 1).
The general conjecture was affirmatively resolved for sufficiently large graphs by Komlós,
Sárközy, and Szemerédi [12] by establishing the following result.

Theorem 1.1 (Komlós, Sarközy & Szemerédi 1998). For every positive integer k there
exists n0 such that if G is a graph on n ě n0 vertices with minimum degree δpGq ě k

k`1n,
then G contains the k-th power of a Hamiltonian cycle. �

Note that for k “ 1 we recover Dirac’s theorem (up to the value of n0) and complete
and nearly balanced pk ` 1q-partite graphs show that the minimum degree condition in
Theorem 1.1 is best possible for every k. Those lower bound constructions are ruled out by
restricting the independence number of the large graph G. Here we consider the following
robust restriction that imposes a uniformly positive edge density for subgraphs induced on
linear sized subsets of vertices.

Definition 1.2. We say that a graph G “ pV,Eq is p%, dq-dense for % ą 0 and d P r0, 1s if

epUq ě d
|U |2

2 ´ %|V |2

for every subset U Ď V , where epUq denotes the number of edges of G contained in U .

In fact, it was shown by Staden and Treglown [19] that such a hereditary density
assumption for any d ą 0 and sufficiently small % ą 0 allows us to reduce the minimum
degree condition for k-th powers of Hamiltonian cycles to

δpGq ě
´1

2 ` µ
¯

|V pGq|, (1.1)

for any µ ą 0 and sufficiently large vertex sets (see also [16] for Kk`1-factors). In
particular, the minimum degree condition becomes independent of k. Moreover, the
graph G consisting of two disjoint cliques on close to n{2 vertices shows that this degree
condition is essentially optimal. Note that this example is ruled out by the following
bipartite version of Definition 1.2, which requires

epX, Y q “
ˇ

ˇ

 

px, yq P X ˆ Y : xy P EpGq
(ˇ

ˇ ě d |X||Y | ´ %|V |2 (1.2)
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for all subsets X, Y Ď V . It was observed by Glock and Joos (see [19, Concluding
Remarks]) that imposing property (1.2) on G allows a further relaxation of the minimum
degree condition for G from (1.1) to µ|V | for arbitrary µ ą 0. We show that requiring
property (1.2) for all subsets X and Y is not needed. It already suffices to assume it only
for vertex bipartitions of G.

Definition 1.3. We say that a graph G “ pV,Eq is µ-inseparable for some µ ą 0 if

epX, V rXq ě µ |X||V rX|

for every subset X Ď V .

Invoking this assumption to subsets X consisting of one vertex only, yields a linear
minimum degree for µ-inseparable graphs G. It is not hard to show that µ-inseparable
graphs are “well connected” (see, e.g., Lemma 2.4). Our first result asserts that graphs
satisfying the properties of Definitions 1.2 and 1.3 contain k-th powers of Hamiltonian
cycles for every fixed integer k ě 1.

Theorem 1.4. For every d, µ P p0, 1s, and k P N there exist % ą 0 and n0 such that every
p%, dq-dense and µ-inseparable graph G on n ě n0 vertices contains the k-th power of a
Hamiltonian cycle.

It is easy to see that every graph G “ pV,Eq with minimum degree δpGq ě p1{2` µq|V |
is µ-inseparable and, consequently, Theorem 1.4 strengthens the result of Staden and
Treglown for powers of Hamiltonian cycles [19].

Moreover, the n-vertex graph G obtained from two cliques of size p1{2` µ{2qn which
intersect in µn vertices is µ-inseparable and p%, 1{2q-dense (for any fixed % ą 0), while it
fails to satisfy property (1.2) for arbitrary subsets X and Y . This shows that our result is
not covered by the observation of Glock and Joos [19, Concluding Remarks].

Staden and Treglown and also Glock and Joos not only considered the embedding
problem for powers of Hamiltonian cycles, but more generally for bounded degree graphs
(with and without small bandwidth, see [19] for details). We also obtain a generalisation
in that direction and establish the following version of the bandwidth theorem from [1] for
inseparable and uniformly dense graphs (see Theorem 1.5 below).

We recall that the bandwidth bwpHq of an n-vertex graph H is the maximum distance
of two adjacent vertices minimised over all possible orderings of the vertex set of H, i.e.,

bwpHq “ min
σ

max
xyPEpHq

ˇ

ˇσpxq ´ σpyq
ˇ

ˇ ,

where the minimum is taken over all possible bijections σ : V pHq ÝÑ rns. We may refer to
an ordering σ of V pHq achieving this minimum bwpHq as a bandwidth ordering of H.



4 O. EBSEN, G. S. MAESAKA, CHR. REIHER, M. SCHACHT, AND B. SCHÜLKE

Theorem 1.5. For every d, µ P p0, 1s, and ∆ P N there exist %, β ą 0 and n0 such that
every p%, dq-dense and µ-inseparable graph G on n ě n0 vertices contains every n-vertex
graph H satisfying ∆pHq ď ∆ and bwpHq ď βn.

Organisation. The proof of Theorem 1.4 utilises the absorption method of Rödl, Ruciński,
and Szemerédi [17]. We discuss this approach in Section 3 and give the details of the proof
in Section 3.3. For the proof we use some observations on uniformly dense and inseparable
graphs, which we collect in Section 2.

Theorem 1.5 follows from Theorem 1.4 combined with Szemerédi’s regularity lemma [20]
and the accompanying blow-up lemma [11]. Similar reductions appeared in the proofs of
the bandwidth theorems in [1,19]. However, the main challenge in that approach is to deal
with the vertices in the exceptional class of the regular partition and here we introduce
new ideas. We sketch this proof in Section 4. Finally, in Section 5 we discuss some possible
directions for future work.

§2. Uniformly dense and inseparable graphs

In this section we shall explore some properties of uniformly dense and inseparable
graphs that are crucial for the proof of Theorem 1.4.

2.1. Properties of uniformly dense graphs. We start with the following well known
fact that uniformly dense graphs contain many cliques of given size.

Lemma 2.1. For every k P N, d P r0, 1s, and % ą 0, every p%, dq-dense graph G on n

vertices contains at least
`

dp
k
2q ´ pk ´ 1qk%

˘

nk ordered copies of Kk.

Proof. Let G “ pV,Eq be a p%, dq-dense graph and |V | “ n. For k “ 1, the assertion is
trivial. For k “ 2, we are counting the number of edges twice. Since G is p%, dq-dense, we
have 2|E| ě 2pd{2´ %qn2 and the lemma follows.

We continue by induction. Let k ě 2 and assume that for every %1, d1, it is true that
every p%1, d1q-dense graph H contains at least

`

d1p
k
2q ´ pk ´ 1qk%1

˘

|V pHq|k ordered copies
of Kk. For counting the ordered copies of Kk`1 in G, consider the subset V ˚ Ď V of the
vertices v P V with |Npvq| ě 1. Let hompKk`1, Gq denote the number of ordered copies
of Kk`1 in G. Consequently, we have that

hompKk`1, Gq “
ÿ

vPV ˚

hompKk, GrNpvqsq.

Since G is p%, dq-dense, for every v P V ˚ and X Ď Npvq we have

epXq ě
d

2 |X|
2
´ %n2

“
d

2 |X|
2
´ %v|Npvq|

2 ,
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for %v “ %n2{|Npvq|2. Thus GrNpvqs is p%v, dq-dense and we can apply the induction
hypothesis to get

hompKk`1, Gq ě
ÿ

vPV ˚

`

dp
k
2q ´ pk ´ 1qk%v

˘

|Npvq|k

“ dp
k
2q

ÿ

vPV ˚

|Npvq|k ´ pk ´ 1qk
ÿ

vPV ˚

%v|Npvq|
k

ě dp
k
2q|V ˚|

ˆ

pd´ 2%qn2

|V ˚|

˙k

´ pk ´ 1qk
ÿ

vPV ˚

%n2

|Npvq|2
|Npvq|k,

where the last estimate employed Jensen’s inequality and
ř

vPV ˚ Npvq “ 2|E| ě pd´ 2%qn2.
Hence, from k ě 2 we derive

hompKk`1, Gq ě dp
k
2qpd´ 2%qknk`1

´ pk ´ 1qk%nk`1

ě dp
k
2qpdk ´ 2k%qnk`1

´ pk ´ 1qk%nk`1

ě
`

dp
k`1

2 q ´ kpk ` 1q%
˘

nk`1 ,

which concludes the proof of the lemma. �

As a corollary, we obtain the following result, which ensures the existence of fairly long
k-paths in uniformly dense graphs. These k-paths will be the building blocks for an almost
perfect k-path cover in the proof of Theorem 1.4. In that proof, we will connect these
k-paths to an almost spanning k-path. For the connection, it will be convenient to insist
that the ends of the k-paths are contained in many Kk`1’s. For that we say a clique Kk is
ζ-connectable in G if it is contained in at least ζ|V pGq| cliques of order k ` 1.

Corollary 2.2 (Path Lemma). For every d P p0, 1s and positive integer k, there exist %,
ζ ą 0, and n0 such that if G is a p%, dq-dense graph on n ě n0 vertices, then G contains a
k-path P with ζn vertices, where every consecutive Kk in P is ζ-connectable.

Proof. Given d P p0, 1s and a positive integer k we define the constants

% “
dp

k`1
2 q

2kpk ` 1q and ζ “
dp

k`1
2 q

3pk ` 1q . (2.1)

Let G “ pV,Eq be a p%, dq-dense graph with |V | “ n sufficiently large. Applying
Lemma 2.1 and considering the choice of constants in (2.1) show that the number of
ordered copies of Kk`1 in G is at least

`

dp
k`1

2 q ´ kpk ` 1q%
˘

nk`1
“
dp

k`1
2 q

2 nk`1 . (2.2)

Define the auxiliary pk ` 1q-uniform hypergraph H0 with V pH0q “ V and

EpH0q “
 

e P V pk`1q : e spans a Kk`1 in G
(

.
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Successively remove the hyperedges of H0 which contain a k-tuple that is in at most ζn
hyperedges and let H be the resulting subhypergraph. Note that the number of erased
edges is at most

ˆ

n

k

˙

¨ ζn
(2.1)
ă

dp
k`1

2 q

2pk ` 1q!n
k`1 (2.2)

ď |EpH0q| .

Every k-tuple of vertices of G which is contained in some edge of H is now ζ-connectable
in G.

Consider tight paths in H, which are subhypergraphs P with V pP q “ tx1, . . . , x`u

and e P EpP q if and only if e “ txi, xi`1, . . . , xi`ku for every i “ 1, . . . , `´ k. In particular,
consecutive hyperedges in such a path intersect in k vertices. Observe that any tight path
in H induces a k-path in G with every consecutive Kk being ζ-connectable.

Take the longest tight path P0 in H. Let K be the set of the last k vertices in P0.
If e P EpHq is of the form e “ K Y tuu for some u P V , then u is already contained
in P0, otherwise the tight path could be enlarged. Since every k-tuple contained in some
hyperedge of H is in at least ζn hyperedges, we know that P0 has at least ζn vertices. �

2.2. Properties of inseparable graphs. In this section we consider inseparable graphs.
First we note that removing a small set of vertices has only little effect on the inseparability.

Lemma 2.3. For every µ ą 0 and β P p0, 1{2q, the following holds. If G “ pV,Eq is
µ-inseparable and U Ď V with |U | ď βµn, then GrV r U s is p1´ 2βqµ-inseparable.

Proof. Suppose by contradiction that GrV r U s “ pV 1, E 1q is not p1 ´ 2βqµ-inseparable.
Thus, there exists X Ď V 1 with |X| ď n{2 such that epX, V 1rXq ă p1´ 2βqµ|X||V 1rX|.
Consider the partition of V into the sets X and pV 1 rXq Y U “ V rX. We have that

epX, V rXq ă p1´ 2βqµ|X||V 1 rX| ` |U ||X|

“ p1´ 2βqµ|X|p|V | ´ |U | ´ |X|q ` |U ||X|

“ µ|X||V rX| ´ 2βµ|X||V rX| ` p1´ p1´ 2βqµq|U ||X| . (2.3)

Since |V rX| ě n{2, βµn ě |U |, and β ă 1{2 we have

2βµ|X||V rX| ě βµn|X| ě |U ||X| ě p1´ p1´ 2βqµq|U ||X| .

Together with (2.3), we derive that epX, V rXq ă µ|X||V rX|, which contradicts the
assumption that G is µ-inseparable. �

The key property of inseparable graphs is that between any pair of vertices there exist
many paths of bounded length.
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Lemma 2.4. For every µ P p0, 1s, there exist c ą 0 and integers L, n0 such that every
µ-inseparable graph G “ pV,Eq on |V | “ n ě n0 vertices satisfies the following.
For every two distinct vertices x, y P V , there is some integer ` with 0 ď ` ď L such

that the number of px, yq-walks with ` inner vertices in G is at least cn`.

Proof. Given µ we define

L “

Z

8
µ

^

, δi “

ˆ

µ2

3

˙iˆ1
2

˙pi`1
2 q

, and c “
µ2

48δ
2
t4{µu . (2.4)

Let G be a sufficiently large µ-inseparable graph on n vertices and x, y be two distinct
vertices of G. Consider for each i ě 0 the set of vertices v that can be reached from x by
“many” walks in G with i inner vertices. For that we define

Xi “
 

v P V : there are δini px, vq-walks with i inner vertices
(

and X i
“

ď

0ďjďi
Xj .

Analogously, consider the vertices v that can be reached from y by δini walks in G with i
inner vertices and define the sets Yi and Y i in the same way.

Observe that X0 “ X0 “ Npxq and since G is µ-inseparable, |Npxq| ě µpn ´ 1q.
Moreover, X i Ď X i`1 and we shall show that as long as |X i| is not too large, then |X i`1|

is substantially larger than |X i|. More precisely, we show for every i ě 0 that

|X i
| ď

2
3n ùñ |X i`1 rX i

| ě
µ

6n . (2.5)

Before verifying (2.5), we conclude the proof of Lemma 2.4. In fact, (2.5) implies that
there is some i0 ă t4{µu such that |X i0 | ą 2n{3. Applying the same argument for Y i, we
get some j0 ă t4{µu such that |Y j0 | ą 2n{3 and, hence, |X i0 X Y j0 | ě n{3.

Each vertex v P X i0XY j0 can be used to create many py, xq-walks with possibly different
number of inner vertices. However, by the pigeonhole principle there are integers a, b
with 0 ď a ď i0 and 0 ď b ď j0 such that

|Xa X Yb| ě
|X i0 X Y j0 |

pi0 ` 1qpj0 ` 1q ě
µ2n

48 . (2.6)

For each v P Xa X Yb there exist δana px, vq-walks and δbn
b pv, yq-walks with a and b

inner vertices, respectively. Concatenating these walks leads to at least

δaδbn
a`b
¨ |Xa X Yb|

px, yq-walks, with ` “ a` b` 1 inner vertices. The choice of constants in (2.4) and (2.6)
conclude the proof.
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It is left to verify (2.5). Suppose |X i| ď 2n{3 and consider the complement Z “ V rX i.
Owing to the µ-inseparability of G we have

epX i, Zq ě µ|X i
||Z| . (2.7)

Note that each vertex v with at least δj`1n{δj neighbours in Xj belongs to Xj`1. Since Z
is disjoint from X i, we have

epX i´1, Zq ă |Z| ¨
i´1
ÿ

j“0

δj`1

δj
n . (2.8)

Moreover, supposing by contradiction that (2.5) fails, we also have

epXi, Zq ă |Z| ¨
δi`1

δi
n`

µ

6 |Xi|n . (2.9)

Combining (2.8) and (2.9) we arrive at

epX i, Zq ă |Z| ¨
i´1
ÿ

j“0

δj`1

δj
n` |Z| ¨

δi`1

δi
n`

µ

6n|Xi| “ |Z| ¨
i
ÿ

j“0

δj`1

δj
n`

µ

6n|Xi| . (2.10)

Owing to the choice of δj in (2.4) we have
i
ÿ

j“0

δj`1

δj
“
µ2

3

i
ÿ

j“0

ˆ

1
2

˙j`1

ď
µ2

3 .

Furthermore, since |X i| ě |X0| “ |Npxq| ě µpn´ 1q and |Z| “ |V rX i| ě n{3, we derive
for sufficiently large n from (2.10) that

epX i, Zq ă
µ2

3 |Z|n`
µ

6 |Xi|n ď
µ

2 |Z||X
i
| `

µ

2 |Xi||Z| ď µ|X i
||Z| ,

which contradicts (2.7). �

§3. Absorption method and powers of Hamiltonian cycles

The proof of Theorem 1.4 is based on the absorption method and follows the strategy
from [17]. Roughly speaking, this method splits the problem of finding a k-th power of a
Hamiltonian cycle into the following three parts:

(1) finding an almost perfect cover with only “few” k-paths,
(2) ensuring the abundant existence of so-called absorbers, and
(3) connecting those absorbers and paths to an almost spanning k-th power of a cycle.

The first part is achieved by Corollary 2.2 and only makes use of the p%, dq-denseness
of G. For the second part of the absorption method again the p%, dq-denseness of G suffices.
However, for the connection of these absorbers the µ-inseparability is required. The
appropriate connecting lemma, which is also utilised for connecting the paths of the almost
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perfect cover from the first part, is given in Section 3.1. In Section 3.2 we establish the
absorbing path lemma and in Section 3.3 we combine these results and deduce Theorem 1.4.

3.1. Connecting Lemma. The connecting lemma asserts that any two connectable Kk’s
in a uniformly dense and inseparable graph G are connected by “many” k-paths of bounded
length. As shown in Lemma 2.4, for k “ 1 this is a direct consequence of the inseparability.
For k ě 2 we combine Lemma 2.4 with Lemma 2.1 by a standard supersaturation argument
to obtain the desired k-paths.

Lemma 3.1 (Connecting Lemma). For every d, µ P p0, 1s, ζ ą 0, and every integer k ě 1,
there exist %, ξ ą 0 and integers M , n0 P N such that every p%, dq-dense and µ-inseparable
graph G “ pV,Eq on |V | “ n ě n0 vertices satisfies the following.

For every pair áx, áy P V k of disjoint ζ-connectable Kk in G, there is some integer m ďM

such that the number of páx, áy; kq-paths with m inner vertices in G is least ξnm.

Proof. Given d, µ, ζ and k, we shall fix constants %, ξ, M and n0. For that we first apply
Lemma 2.4 for µ and obtain L and c. Next we define auxiliary constants ξi for integers i ě 0
inductively through

ξ0 “
ζ2c

L` 1 and ξi`1 “
dp

k
2q

2k!

ˆ

ξi
2

˙k`1

. (3.1)

Finally, we set

ξ “
ξL`2

2 , % “
dp

k
2qξ2

8k2 , and M “ pL` 2qk , (3.2)

and let n be sufficiently large.
Let G be a p%, dq-dense and µ-inseparable graph on n vertices and let áx “ px1, . . . , xkq

and áy “ py1, . . . , ykq be two disjoint ζ-connectable Kk in G.
We consider the following type of graphs that will be useful to obtain the desired

p
áx, áy; kq-paths. For integers k ě 1, ` ě 0 and 0 ď a ď `, a graph R is a pk, `, aq-rope if it
can be obtained from a path on ` ` 2 vertices by blowing up the first, the last, and the
first a inner vertices into Kk. More precisely, the vertex set of R is

V pRq “ Z0 Y ¨ ¨ ¨ Y Z``1

such that

|Z0| “ |Z``1| “ k “ |Z1| “ ¨ ¨ ¨ “ |Za| and |Za`1| “ ¨ ¨ ¨ “ |Z`| “ 1 .

The edges of R are such that Z0, Z1, . . . , Za, and Z``1 each induce a Kk and between any
consecutive pair pZi, Zi`1q, for i “ 0, . . . , `, all |Zi||Zi`1| edges are present. Note that we
do not insist that the sets Zi are pairwise disjoint. If the vertices in Z0 are those of áx and
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the vertices in Z``1 are those of áy, then the rope is said to be a páx, áy; k, `, aq-rope and the
sets pZ1, . . . , Zaq are called the inner parts of the rope.

Z0 Z1 Z4 Z5 Z9 Z10

Figure 3.1. A p3, 9, 4q-rope.

We shall prove the following assertion for fixed cliques áx and áy.

Claim 3.2. There exists ` ď L` 2 such that for every a “ 0, . . . , ` there are ξanak`p`´aq

p
áx, áy; k, `, aq-ropes in G.

Note that, for a “ 0, Claim 3.2 ensures many walks betweenNpáxq andNpáyq, which indeed
are provided by Lemma 2.4. For a “ `, it is easy to see that a páx, áy; k, `, `q-rope (without
any vertex repetition) contains a páx, áy; kq-path with m “ `k inner vertices. The number
of páx, áy; k, `, `q-ropes with vertex repetitions is bounded by m2nm´1. Excluding these ropes
from those obtained by Claim 3.2 for a “ ` yields at least ξ`nm´m2nm´1 ě ξ`n

m{2 ě ξnm

p
áx, áy; kq-paths, for sufficiently large n. Thus, for a “ `, the claim leads to the conclusion of
Lemma 3.1 and it is left to verify the claim. �

Proof of Claim 3.2. First we fix the integer `. Consider the neighbourhoods Npáxq and Npáyq.
Since áx and áy are ζ-connectable, we have |Npáxq|, |Npáyq| ě ζn. Since G is µ-inseparable, for
each pair of distinct vertices px, yq P NpáxqˆNpáyq, by Lemma 2.4, there are at least cn`px,yq

px, yq-walks with `px, yq inner vertices and 0 ď `px, yq ď L. Hence, by the pigeonhole
principle, there is some ` with 2 ď ` ď L`2 such that there are at least ζ2cn`{pL`1q “ ξ0n

`

pxk, y1q-walks with exactly ` inner vertices and such that the first and last inner vertex is
from Npáxq and Npáyq, respectively. This yields the claim for a “ 0.

We proceed in an inductive manner. Let a ě 0 and assume by induction that G contains
at least ξanak`p`´aq páx, áy; k, `, aq-ropes. For many of such ropes we now blow up the 1-
element part Za`1. Consider collections Z “ pZ1, . . . , Za, Za`2, . . . , Z`q and sets UZ such
that u P UZ if and only if

pZ1, . . . , Za, tuu, Za`2, . . . , Z`q

are the inner parts of a páx, áy; k, `, aq-rope. By a standard averaging argument, it is easy to
see that there exist ξanak`p`´aq´1{2 collections Z such that the set UZ has size at least ξan{2.
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Note that each Kk contained in UZ yields a páx, áy; k, `, a` 1q-rope. Lemma 2.1 applied
to every set UZ of size at least ξan{2 leads to

1
k!

ˆ

dp
k
2q ´ pk ´ 1qk %n2

|UZ |2

˙

|UZ |
k

(3.2)
ě

dp
k
2q

2k!

ˆ

ξa
2

˙k

nk

unordered copies of Kk in a given UZ of size at least ξan{2 . Hence, there are at least

ξa
2 n

ak`p`´aq´1
¨
dp

k
2q

2k!

ˆ

ξa
2

˙k

nk
(3.1)
“ ξa`1n

pa`1qk`p`´pa`1qq

p
áx, áy; k, `, a` 1q-ropes in G, which concludes the proof of Lemma 3.1. �

3.2. Absorbing Path Lemma. For a given vertex v a clique K2k contained in Npvq

can be used as an absorber for v, in the sense that obviously the K2k induces a k-path
on 2k vertices. Moreover, placing v in the middle of this K2k yields a k-path containing v
that starts and ends with the same Kk’s. Since inseparable and uniformly dense graphs
G “ pV,Eq have minimum degree linear in the number of vertices, by Lemma 2.1 the
uniform density yields many cliques K2k in the neighbourhood of any given vertex v.
Moreover, for many of these K2k all the Kk’s contained in it are connectable and, hence,
together with the connecting lemma we can build an absorbing path defined below.

Definition 3.3. For a graph G “ pV,Eq on n vertices, an integer k ě 1, and α ě 0, we say
that a páx, áy; kq-path P in G is α-absorbing if for every set X Ď V r V pP q of size |X| ď αn,
there is a páx, áy; kq-path Q in G with vertex set V pQq “ V pP q YX.

Lemma 3.4 (Absorbing Path Lemma). For every d, µ P p0, 1s, and integer k ě 1, there
exist %, ζ, α ą 0, with ζ ď µ{2, and n0 such that every p%, dq-dense and µ-inseparable
graph G on n ě n0 vertices contains an α-absorbing páx, áy; kq-path PA of size |V pPAq| ď ζn{2,
and áx, áy being ζ-connectable.

Proof. Given d, µ, and k, we set

ζ “
dp

2k`1
2 qµ2k`1

22k`3 . (3.3)

Applying Lemma 3.1 for d, µ{2, and ζ{2 yields constants %1, ξ, M , and n10 and we fix

α “
ζ2

24p10k2 `Mq
and % “ min

#

%1

4 ,
dp

2k`1
2 qµ2

8p2k ` 1q2

+

, (3.4)

and let a sufficiently large p%, dq-dense and µ-inseparable graph G “ pV,Eq on n vertices
be given.
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For every vertex v P V , call an ordered K2k contained in Npvq with ordered ver-
tex set px1, . . . , x2kq an v-absorber, if áxv “ px1, . . . , xkq and áyv “ pxk`1, . . . , x2kq are ζ-
connectable (ordered) Kk’s in G. Note that px1, . . . , x2kq and px1, . . . , xk, v, xk`1, . . . , x2kq

are both páxv, áyv; kq-paths with ζ-connectable ends. We denote by Av Ď V 2k the set of all
v-absorbers and we let

A “
ď

vPV

Av

be the set of all absorbers in G.
The α-absorbing páx, áy; kq-path PA is constructed by considering a collection A Ď A

independently at random. We shall show that a.a.s. for every vertex v the collection A
will contain “many” v-absorbers from Av. After erasing intersecting absorbers, we shall
connect the remaining ones to a path PA by repeated applications of Lemma 3.1.

First we prove the existence of “many” v-absorbers for every v P V in G. Since G is
µ-inseparable, we have |Npvq| ě µpn ´ 1q ě µn{2 for sufficiently large n. Consequently,
the induced subgraph GrNpvqs is p4%{µ2, dq-dense and Lemma 2.1 shows that the number
of ordered K2k`1 in GrNpvqs is at least

´

dp
2k`1

2 q ´ p2kqp2k ` 1q4%
µ2

¯

|Npvq|2k`1 (3.4)
ě

dp
2k`1

2 q

2 ¨

´µ

2

¯2k`1
¨ n2k`1 (3.3)

“ 2ζn2k`1 .

Since there are at most n2k different K2k and each K2k is contained in at most n differ-
ent K2k`1, by a simple averaging argument, there exist at least ζn2k different K2k each
contained in ζn different K2k`1 in GrNpvqs. Consequently, |Av| ě ζn2k for every v P V .

Set

p “
ζ

6p10k2 `Mqn2k´1 . (3.5)

and consider a random collection A Ď A, in which every ordered K2k P A is included
independently with probability p. Let Xv be the random variable |AXAv|. Then,

EXv ě ζn2kp
(3.5)
“

ζ2n

6p10k2 `Mq
.

Since Xv is binomially distributed, by the union bound and Chernoff’s inequality (see,
e.g., [8, Theorem 2.1]), we have

P
´

Dv : Xv ď
ζ2n

12p10k2 `Mq

¯

ď n ¨max
vPV

P

ˆ

Xv ď
ζ2n

12p10k2 `Mq

˙

ď n ¨ exp
ˆ

´
ζ2n

48p10k2 `Mq

˙

ă
1
3 , (3.6)

for sufficiently large n.
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Consider now the pairs of absorbers in A that share some vertex. Let Y be the random
variable that counts the number of such intersecting pairs. There are at most 5k2n4k´1

possible intersecting pairs in A and, hence, EY ă 5k2n4k´1p2. Markov’s inequality yields

P
´

Y ě
ζ2n

24p10k2 `Mq

¯ (3.5)
ď PpY ě 15k2n4k´1p2

q ď
EY

15k2n4k´1p2 ă
1
3 . (3.7)

For the size of A we note that E|A| ă n2kp and another application of Markov’s inequality
shows

P
´

|A| ě
ζn

2p10k2 `Mq

¯

(3.5)
“ Pp|A| ě 3n2kpq ď

E|A|

3n2kp
ă

1
3 . (3.8)

Thus, by (3.6), (3.7), and (3.8), there exists a collection A0 Ď A satisfying

(i) |A0 XAv| ě ζ2n{p12p10k2 `Mq for every v P V ,
(ii) there are at most ζ2n{p24p10k2 `Mqq pairs of intersecting absorbers in A0,
(iii) the size |A0| is at most ζn{p2p10k2 `Mqq.

From each pair of intersecting absorbers, delete one of them in an arbitrary way and
let A1 “ tK̂1, . . . , K̂mu Ď A0 be the set of absorbers in A0 obtained this way. It follows
from properties (i) and (ii) that

ˇ

ˇA1 XAv

ˇ

ˇ ě
ζ2n

24p10k2 `Mq
“ αn

for every v P V , i.e., A1 contains at least αn v-absorber for every vertex v P V .
In the final step we connect the absorbers in A1 to a k-path PA. We construct PA

inductively by repeated applications of Lemma 3.1. Suppose we already obtained a path P i

that contains K̂1, . . . , K̂i and

|V pP i
q| ď i ¨ 2k ` pi´ 1qM ,

below we establish the existence of P i`1 that in addition contains K̂i`1 and satisfies

|V pP i`1
q| ď pi` 1q ¨ 2k ` i ¨M .

For that, set

Zi
“ V pP i

q Y

m
ď

j“i`1
V pK̂jq

and observe that for every i ď m,

|Zi
| ď i ¨ 2k ` pi´ 1qM ` pm´ iq ¨ 2k ă m ¨ p2k `Mq
piiiq
ď

ζn

2p10k2 `Mq
p2k `Mq ď ζn

2
(3.3)
ď

µn

4 . (3.9)

Let áx be the last k vertices of K̂i and let áy be the first k vertices of K̂i`1. In view
of the choice of constants in (3.4), the observation (3.9), and Lemma 2.3, the induced
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subgraph G1 “ GrpV r Ziq Y V páxq Y V páyqs is p%1, dq-dense and pµ{2q-inseparable, and áx

and áy are ζ{2-connectable in G1. Consequently, there is an páx, áy; kq-path in G1 with at
most M inner vertices outside Zi. Together with P i this yields P i`1 with the desired
properties.

Since Pm contains at least αn distinct v-absorbers for every v P V , it is an α-absorbing
path. Moreover, the first k vertices in Pm are from K̂1 and the last k vertices are from K̂m,
which by definition are ζ-connectable cliques in G, which shows that PA “ Pm has the
desired properties. �

3.3. Proof of the main result. Having established the Connecting Lemma (Lemma 3.1),
the Absorbing Path Lemma (Lemma 3.4), and the Path Lemma (Corollary 2.2), we are
ready to deduce Theorem 1.4.

Proof of Theorem 1.4. The proof of Theorem 1.4 is based on the absorption method and we
start by fixing all involved constants. Given d, µ, and k, applying Lemma 3.4 (Absorbing
Path Lemma) yields constants %A, ζA, αA, and an application of Corollary 2.2 (Path
Lemma) yields %P and ζP. For an application of Lemma 3.1 (Connecting Lemma), set

ζC “ min
!ζA

2 ,
αAζP

2

)

, (3.10)

and apply the Connecting Lemma with µ{2, d, ζC, and k to attain constants %C, ξC, andMC.
Finally, set

% “ min
!

%A,
α2

A%P

4 ,
%C

4

)

, (3.11)

and let n be sufficiently large. In particular, we may assume that
2

αAζP
M2

C ă
ξC

4

´αA

8

¯MC
n . (3.12)

Let G “ pV,Eq be a p%, dq-dense and µ-inseparable graph on n vertices. By the
Absorbing Path Lemma, there is an αA-absorbing páxA, áyA; kq-path PA contained in G

with |V pPAq| ď ζAn{2 and áxA, áyA being ζA-connectable in G. This path will be set aside
and with it, another special set of vertices which we call the reservoir. On the remaining
graph, we shall find an almost perfect covering of its vertices by i0 disjoint páxi, áyi; kq-paths
with áxi, áyi being ζC-connectable.

The reservoir R Ď V will be used to connect the absorbing path and the paths in the
almost perfect covering to attain an almost spanning cycle. For that it is convenient to
choose the set R in such a way that for any connectable áx and áy there are still “many”
p
áx, áy; kq-paths having all their inner vertices in R. In order to define the reservoir, consider
the induced subgraph

G1 “ GrpV r V pPAqq Y V p
áxAq Y V p

áyAqs .
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Since the number of deleted vertices is |V pPAq| ´ 2k ď ζAn{2 ď µn{4, Lemma 2.3 shows
that G1 is µ{2-inseparable and, since µn{4 ă n{2, it follows from the p%, dq-denseness of G
that G1 is also p4%, dq-dense. Moreover, if áx is a clique in G1 that is ζA-connectable in G,
then it is ζA{2-connectable in G1. By our choice of constants in (3.10) and (3.11), it follows
from the Connecting Lemma that if áx and áy are two disjoint ζC-connectable cliques in G1,
then there are at least ξCpn{2qm distinct páx, áy; kq-paths with m inner vertices in G1, for
some m “ mpáx, áyq ďMC.

We wish the reservoir to be disjoint from PA, thus consider the induced subgraph
G´ V pPAq “ G1 ´ pV páxAq Y V p

áyAqq. The number of páx, áy; kq-paths in G1 intersecting áxA

or áyA is at most 2k ¨m ¨ pn{2qm´1, implying that for n sufficiently large, there are at least

ξC

´n

2

¯m

´ 2k ¨m ¨
´n

2

¯m´1
ě
ξC

2

´n

2

¯mpáx,áyq

, (3.13)

p
áx, áy; kq-paths with inner vertices in G´ V pPAq. Note that this is true for any two disjoint
ζC-connectable cliques in G1, which in particular allows áxA or áyA to be one of them.

For the reservoir R we choose vertices from V r V pPAq independently with probability

p “
αA

4 . (3.14)

The desired properties for the reservoir are

(i) |R| ď αAn{2 and
(ii) for any two disjoint ζC-connectable cliques áx and áy in G1, there are at least

ξC

4

´αA

4

¯m´n

2

¯m

,

p
áx, áy; kq-paths with all their m “ mpáx, áyq inner vertices in R.

For property (i) we observe that Markov’s inequality implies

P
´

|R| ě
αAn

2

¯

ď
2E|R|
αAn

“
n´ |V pPAq|

2n ă
1
2 .

For property (ii), let áx and áy be two disjoint ζC-connectable cliques in G1 and define X to
be the random variable that counts the number of páx, áy; kq-paths with all their m “ mpáx, áyq

inner vertices in R. Note that the inclusion or exclusion of a vertex in R affects X by at
most m ¨ nm´1 and that

EX
(3.13)
ě

ξC

2

´n

2

¯m´αA

4

¯m

.

Consequently, the Azuma-Hoeffding inequality (see, e.g., [8, Corollary 2.27]) asserts that

P
´

X ď
ξC

4

´αA

4

¯m´n

2

¯m¯

ď exp
´

´
pξC{4q2pαA{4q2mpn{2q2m

2n ¨m2n2m´2

¯

ď exp
´

´
ξ2

C
32 ¨

α2MC
A

82MCM2
C
¨ n

¯

. (3.15)
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Since there are at most n2k pairs páx, áyq, the union bound and (3.15) show that the probability
of R not having property (ii) is less than 1{2 for sufficiently large n. Hence, there is some
set R satisfying both (i) and (ii).

Set aside PA and R and cover the vertices of G´pV pPAqYV pRqq by disjoint k-paths until
at most αAn{2 vertices are left uncovered. We obtain these k-paths by repeated applications
of the Path Lemma. Assume we already have tP1, . . . , Piu, where for j “ 1, . . . , i the
k-path Pj is a páxj, áyj; kq-path with áxj, áyj being ζC-connectable in G1 and

|V pPjq| ě
αAζP

2 n. (3.16)

Let L “ V ´V pPAq´V pRq´
Ťi
j“1 V pPjq be the set of vertices not yet covered and suppose

that |L| ě αAn{2. Hence, the subgraph GrLs is p4%{α2
A, dq-dense. By the choice in (3.11)

and the Path Lemma, there is a páxi`1,
áyi`1; kq-path Pi`1 in GrLs with

|V pPi`1q| ě ζP|L| ě
αAζP

2 n ,

and áxi`1, áyi`1 being ζP-connectable in GrLs. By the choice in (3.10), we have

ζP|L| ě ζCn ě ζC|V pG
1
q| ,

and hence, áxi`1, áyi`1 are ζC-connectable in G1. Therefore, we may enlarge the partial k-path
covering until the set of leftover vertices has size at most

|L| ă
αA

2 n . (3.17)

Let tP1, . . . , Pi0u be such a family of k-paths. Note that (3.16) yields

i0 ă
n

αAζP{2 ¨ n
“

2
αAζP

. (3.18)

The next step is to connect the k-paths in tPA “ P0, P1, . . . , Pi0u using the reserved
vertices in R to obtain the k-th power of an almost spanning cycle. Assume we already
obtained for some 0 ď j ď i0 a páxA, áyj ; kq-path Qj containing the paths PA, P1, . . . , Pj and
such that

|V pQj
qr pV pPAq Y ¨ ¨ ¨ Y V pPjqq| “ |V pQj

q XR| ď j ¨MC . (3.19)

If j ă i0, we will connect Qj to Pj`1 and obtain the páxA, áyj`1; kq-path Qj`1 that in addition
contains Pj`1 and satisfies |V pQj`1q X R| ď pj ` 1q ¨MC. For j “ i0, we have that Qi0

is a páxA, áyi0 ; kq-path including all tPA, P1, . . . , Pi0u and we will connect áyi0 to áxi0`1 “
áxA,

obtaining the k-th power of a cycle.
By property (ii) of the reservoir, since áyj and áxj`1 are ζC-connectable cliques in G1, there

are at least
ξC

4

´αA

4

¯m´n

2

¯m

,
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p
áyj,

áxj`1; kq-paths with all its m “ mpáyj,
áxj`1q inner vertices in R. We need to ensure that

one of these k-paths is disjoint from Qj. By (3.19), the number of k-paths with m inner
vertices that intersect Qj is at most

j ¨MC ¨m ¨ n
m´1 (3.18)

ă
2

αAζP
¨M2

C ¨ n
m´1 (3.12)

ď
ξC

4

´αA

8

¯MC
nm .

Hence, there is a páyj, áxj`1; kq-path with all its m ďMC inner vertices in R that is disjoint
from Qi. If j ă i0, this páyj, áxj`1; kq-path can be used to build Qj`1, which satisfies that

|V pQj`1
q XR| ď j ¨MC `MC “ pj ` 1q ¨MC .

If j “ i0, use this páyi0 , áxi0`1; kq-path to close the k-th power of an almost spanning cycle H 1.
The vertices from G which are not in H 1 are those from L, which were not covered by

the almost perfect k-path covering, plus the vertices in R that were not used to connect
the paths in tPA, P1, . . . , Pi0u. Hence,

|V r V pH 1
q| ď |L| ` |R|

(3.17)
ď

αA

2 n`
αA

2 n .

Since PA is a segment ofH 1 and PA is αA-absorbing, we may replace PA by a páxA, áyA; kq-path
with vertex set V pPAq Y pV r V pH 1qq and obtain the desired k-th power of a Hamiltonian
cycle in G. �

§4. Embedding graphs of small bandwidth

In this section we sketch the proof of Theorem 1.5, which is based on the regularity
method for graphs and on Theorem 1.4. There are quite a few examples of results obtained
by the regularity method, which are based on reductions to simpler or seemingly weaker
results that are applied to the reduced graph of the regular partition obtained by an
application of Szemerédi’s regularity lemma [20] (see, e.g., [13, Sections 2, 4-6] and [10]). In
particular, the proofs of the bandwidth theorems in [1, 19] were based on reductions to the
corresponding theorems for powers of Hamiltonian cycles. We will follow the same route
and start the discussion by recalling this approach. For the discussion below we assume
the reader to be familiar with the regularity method for graphs and the blow-up lemma
from [11].

4.1. Sketch of the proof of Theorem 1.5. Given a bounded degree graphH “ pVH , EHq

of small linear bandwidth and a uniformly dense and inseparable graph G “ pVG, EGq, we
apply Szemerédi’s regularity lemma [20] and obtain a regular partition V0ŸV1Ÿ. . .ŸVt “ VG

and a reduced graph R “ prts, ERq. Moreover, by a careful choice of the involved constants
we may ensure that R satisfies essentially the same assumptions as G, i.e., we ensure
that R itself is again uniformly dense and inseparable. Consequently, we can appeal to
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Theorem 1.4 and obtain a k-th power of a Hamiltonian cycle C in the reduced graph R for
any fixed (not yet specified) k P N. Moreover, without loss of generality we may assume
that the (cyclic) ordering of V pCq matches the one from rts and that k ` 1 divides t.

Next we prepare for an application of the blow-up lemma of Komlós, Sárközy, and
Szemerédi [11]. For that we fix a Kk`1-factor F Ď C and for the price of moving some
vertices from every Vi for i P rts to the exceptional class V0 of the regular partition,
we can ensure that those pairs covered by cliques from F become super-regular. Let
V 10 Ÿ V

1
1 Ÿ . . . Ÿ V

1
t “ VG be the regular partition after this step. In the next step we want

to:

(‹) redistribute the vertices of V 10 to the other vertex classes without compromising the
super-regularity of the pairs covered by F .

Resolving (‹) presents the main challenge in the proof of Theorem 1.5 and we discuss this
in Section 4.2. For now let V 21 Ÿ . . . Ÿ V 2t “ VG be the resulting vertex partition of G after
the redistribution.

After preparing the graph G we want to find a “matching” partition W1 Ÿ . . . ŸWt “ VH

of the vertex set of H into independent sets. In particular, we would like to achieve
that |Wi| “ |V

2
i | for every i P rts and that applying the blow-up lemma for every clique

in F yields a partial embedding of pieces of H induced on the corresponding vertex classes
into G. However, in addition we have to make sure that these partial embeddings lead to a
full embedding H ãÑ G. For that we have to ensure that the necessary adjacencies between
the pieces of the partial embeddings are preserved. Owing to the small bandwidth of H
only few vertices of every piece may have neighbours in the next piece, where the ordering
of the pieces reflects the bandwidth ordering of VH . This allows us to embed these vertices
first (using the greedy embedding strategy from [2]) and then utilise the so-called image
restrictions from the blow-up lemma. For the greedy embedding of those connections, we
need that the involved pairs are covered by C.

Summarising the discussion above, we want to find a partition W1 Ÿ . . . ŸWt of VH
satisfying

(i ) Wi is independent in H for every i P rts,
(ii ) |Wi| “ |V

2
i | for every i P rts, and

(iii ) ϕ : VH ÝÑ rts, defined by ϕ´1piq “ Wi, is a graph homomorphism from H to C.

The maximum degree restriction ∆pHq ď ∆ implies χpHq ď ∆` 1. Moreover, the Hajnal-
Szemerédi theorem [7] yields for every U Ď VH an equitable p∆ ` 1q-colouring of HrU s.
Hence, we may simply split VH into t{p∆` 1q intervals (according to the bandwidth order)
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of roughly the same size and then fix an equitable p∆` 1q-colouring of each interval. This
yields the desired partition W1 Ÿ . . . ŸWt of VH , which obviously satisfies (i ).

Fixing k ě ∆ implies that C contains a K∆`1-factor F and this may allow us to apply
the blow-up lemma for the partial embeddings of these intervals. For that we also need to
address (ii ). In the process of preparing the graph G, we may have moved a few vertices
leading to slightly different sizes of the vertex classes V 21 , . . . , V 2t . However, using the
super-regularity of the pairs covered by cliques from F and the uniform density of G
(applied to GrV 2i s) tells us that we can move a few vertices between classes covered by
the same clique K from F to balance those classes to restore (ii ), without affecting the
super-regularity of the pairs covered by K.

For part (iii ) it will be convenient that all pairs between two consecutive K∆`1’s from F

are regular. In fact, this would even allow the small alterations for balancing the classes
corresponding to one K∆`1 mentioned above, without compromising the regularity. We
can achieve this by simply choosing k “ 2∆` 1 and having C to be a p2∆` 1q-st power of
a Hamiltonian cycle in R and fixing a K∆`1-factor F Ď C.

This concludes the outline of the proof of Theorem 1.5. It remains to address (‹) (see
Section 4.2), while the other steps of the proof can be obtained by adaptations of the
proofs from [1,19] and the details can be found in [5].

4.2. Redistributing the vertices of the exceptional class. For addressing the problem
raised in (‹) it will be convenient to consider the following strengthening of Theorem 1.4.

Theorem 4.1. For every d, µ P p0, 1s, and k P N there exist %, α, γ ą 0 and t0 such
that the following holds. Suppose R “ prts, ERq is a p%, dq-dense and µ-inseparable graph
on t ě t0 vertices and subsets U1, . . . , Um Ď rts each of size at least µt for some m ď 2γt

are given.
Then R contains the k-th power of a Hamiltonian cycle C with the additional property

that for every i P rms there are at least αt cliques Kk contained in CrUis.

Proof of Theorem 4.1 (Sketch). There is only one difference between Theorems 4.1 and 1.4.
It concerns the additionally given vertex subsets U1, . . . , Um Ď V “ V pRq of size Ωp|V |q
for which we require that the guaranteed k-th power of a Hamiltonian cycle shares Ωp|V |q
many Kk with each of these sets.

This additional restriction can be achieved by adjusting the proof of the Absorbing Path
Lemma (Lemma 3.4). Since each of the sets Ui has linear size, Lemma 2.1 yields Ωp|V |k`1q

cliques Kk`1 in Ui. Consequently, by a standard averaging argument at least Ωp|V |kq Kk’s
are ζ-connectable for some sufficiently small ζ “ ζpd, µq ą 0. Hence, following the proof of
the Absorbing Path Lemma (Lemma 3.4) we may consider a random collection of Kk’s of
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size Ωp|V |q and need to ensure that with positive probability it contains Ωp|V |q suchKk’s for
every given set Ui. For a fixed set Ui this holds with probability at least 1´ expp´Ωp|V |qq
and by the union bound this can be achieved for all sets U1, . . . , Um simultaneously as
long as m “ 2op|V |q, which is enforced by the assumption of Theorem 4.1. The rest of the
proof of Lemma 3.4 would be analogous. As a result the absorbing path PA is not only
α-absorbing, but also induces Ωp|V |q cliques Kk within every given set U1, . . . , Um. Finally,
we remark that none of these Kk would be altered during the absorption process, since
they can be chosen disjoint from the K2k used for the absorption property. Therefore, the
guaranteed k-th power of a Hamiltonian cycle C has the desired property. �

Below we explain how Theorem 4.1 can be used to address (‹) in the proof of Theorem 1.5.
In the proof of Theorem 1.5 we want to find a p2∆` 1q-st power of a Hamiltonian cycle C
in the reduced graph R and we fix a K∆`1-factor F Ď C, where each clique consists of
consecutive vertices from C. Note that we could easily redistribute the vertices of V 10 ,
if we would know that for every vertex v P V0 there exists a clique K in F such that
|NGpvq X V

1
j | “ Ωp|V 1j |q for all j P V pKq. In fact, in such a case we could simply add v to

any of the classes V 1j corresponding to a vertex of K without affecting the super-regularity
of the pairs covered by K. Moreover, if for every vertex v P V 10 there would be at least αt
such cliques K, then we could redistribute all vertices of V 10 in a fairly balanced way, i.e.,
by enlarging the sizes of the classes V 1i for every i P rts by at most |V 10 |

αt
vertices and this

would resolve the problem raised in (‹).
For that we would like to apply Theorem 4.1 to the reduced graph R with additional sets

Uv “
 

j P rts : |NGpvq X Vj| “ Ωp|Vj|q
(

.

On the one hand, the µ-inseparability of G would imply that |Uv| ě µ1t for some µ1 ą 0.
On the other hand, since the vertex set V 10 depends on F Ď C and we may move some
vertices to V0 to establish the super-regularity of the pairs covered by F , we would need to
consider Uv for every v P VG and such a naïve approach would require m “ n " 2γt.

We may consider vertices v, w P VG to be equivalent (v „ w), if Uv “ Uw, which allows
us to reduce m to 2µ2t for some µ2 ą 0 depending on µ. However, since the parameter
γ ą 0 in Theorem 4.1 depends on µ, such a basic improvement on the number of sets
would not suffice for an application of Theorem 4.1.

We resolve this issue by considering a random refinement of V1 Ÿ . . . Ÿ Vt, where each
class Vi is split randomly into s sets Vi,1 Ÿ . . . Ÿ Vi,s “ Vi. Let S be the corresponding
reduced graph of the refined partition. The local characterisation of regularity through the
number of four-cycles combined with the Azuma-Hoeffding inequality tells us that every
subpair pVi,a, Vj,bq will inherit the regularity from pVi, Vjq as long as s “ oppn{ log nq1{8q.
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Hence, we may consider such a random refinement for some s " 1{γ and the resulting
reduced graph S would be simply an s-blow-up of R. Consequently, the reduced graph S
is also inseparable and uniformly dense.

Moreover, the randomness can be further utilised to show that the equivalence relation „
would not be affected. More precisely, Chernoff’s inequality implies that if Uv “ Uw for the
reduced graph R, then US

v “ US
w for the sets

US
v “

 

pj, σq P rts ˆ rss : |NGpvq X Vj,σ| “ Ωp|Vj,σ|q
(

.

Consequently, we can apply Theorem 4.1 (with k “ 2∆` 1) for the reduced graph S on st
vertices with

m ď 2µ2t ď 2γst .

As a result, for every vertex v P V there are at least αst K2∆`1 contained in CrUS
v s and,

hence, F rUS
v s contains at least αst different K∆`1. This way we can redistribute the

vertices of V 10 as discussed above and this addresses (‹) in the proof of Theorem 1.5.
This concludes the discussion of the proof of Theorem 1.5. For the technical details of

this approach we refer to [5].

§5. Concluding remarks

Finding a common generalisation of the approximate version of Theorem 1.1 and of
Theorem 1.4 is an interesting open problem. In other words, we want to weaken the
assumptions of Theorem 1.4 in such a way that, on the one hand, for every ε ą 0, every
sufficiently large n-vertex graph with minimum degree p k

k`1 ` εqn would satisfy them and,
on the other hand, they still ensure the existence of a k-th power of a Hamiltonian cycle.

In fact, for k “ 1, µ-inseparability alone yields an appropriate Connecting Lemma (see
Lemma 2.4). Moreover, a combination of some ideas from [14] and [15] shows that it
supplies sufficiently strong absorbers for such an approach. However, considering n-vertex
graphs that are the complement of a clique on p1´µqn vertices, shows that µ-inseparability
alone does not suffice for the existence of Hamiltonian cycles.

The missing part for this problem is an appropriate relaxation of the p%, dq-denseness
assumption that still guarantees an almost perfect path cover. This is rendered by
the following property, which is closely related to the notion of robust (out)expanders
utilised by Kühn, Osthus and their collaborators in their work on Hamiltonian cycles (and
decompositions thereof) in (directed) graphs (see, e.g., [9, Section 3.4] and the references
therein).
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Definition 5.1. For % ą 0, d P r0, 1s a graph G “ pV,Eq is p%, dq-robustly matchable, if
for all subsets U Ď V we have

epUq ě d
|U |2

2 ´ %n2,

or
|U | ď

n

2 ` %n and
ˇ

ˇ

 

v P V r U : |Npvq X U | ě d|U | ´ %n
(ˇ

ˇ ě |U | ´ %n .

Obviously every p%, dq-dense graph is p%, dq-robustly matchable and it is not hard to
show that for % ! d, such graphs contain matchings that cover almost all vertices. In fact,
the same can be inferred for the reduced graph after a suitable application of Szemerédi’s
regularity lemma. The regular pairs in the reduced graph covered by such a matching
contain a collection of relatively few disjoint paths that cover the vertices of the regular
pair. In other words, one can show that p%, dq-robustly matchable graphs admit an almost
perfect path cover that can be used for an absorption based proof.

The discussion above outlines an approach based on the absorption method that shows
that for every d ą 0, there exist % and µ ą 0 such that every sufficiently large p%, dq-robustly
matchable and µ-inseparable graph is Hamiltonian. The details of such a proof appear
in [5]. In this way, we obtain strengthening of Theorem 1.4 for k “ 1. Moreover, it is
straightforward to check that for every ε ą 0, every sufficiently large graph G “ pV,Eq
with δpGq ě p1

2 ` εq|V | is p%, dq-robustly matchable and µ-inseparable for appropriate
parameters d, %, and µ. In other words, this yields a common generalisation of the
approximate version of Dirac’s theorem (Theorem 1.1 for k “ 1) and Theorem 1.4 for k “ 1.

For powers of Hamiltonian cycles, we remark that µ-inseparability does not suffice to
ensure a Connecting Lemma nor the existence of appropriate absorbers. For example,
random bipartite graphs of edge density 2µ` op1q are µ-inseparable, while a Connecting
Lemma and absorbers for k-th powers of Hamiltonian cycles must contain cliques of
order k ` 1. However, a recursive definition of inseparability within vertex neighbourhoods
seems to be sufficient in this context. Combining this with a notion that robustly ensures
almost perfect Kk`1-factor’s might lead to a common generalisation of the approximate
version of Theorem 1.1 and Theorem 1.4 for arbitrary k ě 1 and we intend to come back
to this in the near future.

References

[1] J. Böttcher, M. Schacht, and A. Taraz, Proof of the bandwidth conjecture of Bollobás and Komlós,
Math. Ann. 343 (2009), no. 1, 175–205, DOI 10.1007/s00208-008-0268-6. MR2448444 Ò1, 1, 1, 4, 4.1

[2] V. Chvatál, V. Rödl, E. Szemerédi, and W. T. Trotter Jr., The Ramsey number of a graph with
bounded maximum degree, J. Combin. Theory Ser. B 34 (1983), no. 3, 239–243, DOI 10.1016/0095-
8956(83)90037-0. MR714447 Ò4.1

https://doi.org/10.1007/s00208-008-0268-6
http://www.ams.org/mathscinet-getitem?mr=2448444
https://doi.org/10.1016/0095-8956(83)90037-0
https://doi.org/10.1016/0095-8956(83)90037-0
http://www.ams.org/mathscinet-getitem?mr=714447


EMBEDDING SPANNING SUBGRAPHS IN UNIFORMLY DENSE AND INSEPARABLE GRAPHS 23

[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math.
Acad. Sci. Hungar. 14 (1963), 423–439, DOI 10.1007/BF01895727. MR0200185 Ò1

[4] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69–81,
DOI 10.1112/plms/s3-2.1.69. MR0047308 Ò1

[5] O. Ebsen, Ph.D. Thesis, Fachbereich Mathematik, Universität Hamburg. Expected 2019/20. Ò4.1, 4.2,
5

[6] P. Erdős, Problem 9, Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963), Publ.
House Czechoslovak Acad. Sci., Prague, 1964, pp. 85–90. MR0179778 Ò1

[7] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, Combinatorial theory and its
applications, II (Proc. Colloq., Balatonfüred, 1969), North-Holland, Amsterdam, 1970, pp. 601–623.
MR0297607 Ò1, 4.1

[8] S. Janson, T. Łuczak, and A. Ruciński, Random graphs, Wiley-Interscience Series in Discrete Mathe-
matics and Optimization, Wiley-Interscience, New York, 2000. MR1782847 Ò3.2, 3.3

[9] D. Kühn and D. Osthus, Hamilton cycles in graphs and hypergraphs: an extremal perspective, Proceed-
ings of the International Congress of Mathematicians—Seoul 2014. Vol. IV, Kyung Moon Sa, Seoul,
2014, pp. 381–406. MR3727617 Ò5

[10] J. Komlós, The blow-up lemma, Combin. Probab. Comput. 8 (1999), no. 1-2, 161–176,
DOI 10.1017/S0963548398003502. Recent trends in combinatorics (Mátraháza, 1995). MR1684627 Ò4

[11] J. Komlós, G. N. Sárközy, and E. Szemerédi, Blow-up lemma, Combinatorica 17 (1997), no. 1, 109–123,
DOI 10.1007/BF01196135. MR1466579 Ò1, 4, 4.1

[12] , Proof of the Seymour conjecture for large graphs, Ann. Comb. 2 (1998), no. 1, 43–60,
DOI 10.1007/BF01626028. MR1682919 Ò1

[13] J. Komlós and M. Simonovits, Szemerédi’s regularity lemma and its applications in graph theory,
Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), Bolyai Soc. Math. Stud., vol. 2, János
Bolyai Math. Soc., Budapest, 1996, pp. 295–352. MR1395865 Ò4

[14] J. Polcyn and Chr. Reiher, 2018. Personal communication. Ò5
[15] Chr. Reiher, V. Rödl, A. Ruciński, M. Schacht, and E. Szemerédi, Minimum vertex degree condition

for tight Hamiltonian cycles in 3-uniform hypergraphs, Proc. Lond. Math. Soc. (3) 119 (2019), no. 2,
409–439, DOI 10.1112/plms.12235. MR3959049 Ò5

[16] Chr. Reiher and M. Schacht, Clique factors in locally dense graphs, Random Structures Algorithms
49 (2016), no. 4, 691–693. Appendix to Triangle factors of graphs without large independent sets and
of weighted graphs by J. Balogh, Th. Molla, M. Sharifzadeh, ibid. Ò1

[17] V. Rödl, A. Ruciński, and E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, Com-
bin. Probab. Comput. 15 (2006), no. 1-2, 229–251, DOI 10.1017/S0963548305007042. MR2195584
(2006j:05144) Ò1, 3

[18] P. D. Seymour, Problem Section, Problem 3, Combinatorics (Proc. British Combinatorial Conf., Univ.
Coll. Wales, Aberystwyth, 1973), Cambridge Univ. Press, London, 1974, pp. 201–202. London Math.
Soc. Lecture Note Ser., No. 13. MR0345829 Ò1

[19] K. Staden and A. Treglown, The bandwidth theorem for locally dense graphs, available at
arXiv:1807.09668. Submitted. Ò1, 1, 1, 1, 4, 4.1

https://doi.org/10.1007/BF01895727
http://www.ams.org/mathscinet-getitem?mr=0200185
https://doi.org/10.1112/plms/s3-2.1.69
http://www.ams.org/mathscinet-getitem?mr=0047308
http://www.ams.org/mathscinet-getitem?mr=0179778
http://www.ams.org/mathscinet-getitem?mr=0297607
http://www.ams.org/mathscinet-getitem?mr=1782847
http://www.ams.org/mathscinet-getitem?mr=3727617
https://doi.org/10.1017/S0963548398003502
http://www.ams.org/mathscinet-getitem?mr=1684627
https://doi.org/10.1007/BF01196135
http://www.ams.org/mathscinet-getitem?mr=1466579
https://doi.org/10.1007/BF01626028
http://www.ams.org/mathscinet-getitem?mr=1682919
http://www.ams.org/mathscinet-getitem?mr=1395865
https://doi.org/10.1112/plms.12235
http://www.ams.org/mathscinet-getitem?mr=3959049
https://doi.org/10.1017/S0963548305007042
http://www.ams.org/mathscinet-getitem?mr=2195584
http://www.ams.org/mathscinet-getitem?mr=2195584
http://www.ams.org/mathscinet-getitem?mr=0345829
https://arxiv.org/abs/1807.09668


24 O. EBSEN, G. S. MAESAKA, CHR. REIHER, M. SCHACHT, AND B. SCHÜLKE

[20] E. Szemerédi, Regular partitions of graphs, Problèmes combinatoires et théorie des graphes (Colloq.
Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978,
pp. 399–401 (English, with French summary). MR540024 Ò1, 4, 4.1

Fachbereich Mathematik, Universität Hamburg, Hamburg, Germany
Email address: Oliver.Ebsen@uni-hamburg.de

Email address: Giulia.Satiko.Maesaka@uni-hamburg.de

Email address: Christian.Reiher@uni-hamburg.de

Email address: schacht@math.uni-hamburg.de

Email address: Bjarne.Schuelke@uni-hamburg.de

http://www.ams.org/mathscinet-getitem?mr=540024

	1. Introduction
	Organisation

	2. Uniformly dense and inseparable graphs
	2.1. Properties of uniformly dense graphs
	2.2. Properties of inseparable graphs

	3. Absorption method and powers of Hamiltonian cycles
	3.1. Connecting Lemma
	3.2. Absorbing Path Lemma
	3.3. Proof of the main result

	4. Embedding graphs of small bandwidth
	4.1. Sketch of the proof of Theorem 1.5
	4.2. Redistributing the vertices of the exceptional class

	5. Concluding remarks
	References

