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Preface

These are the notes based on the course on Ramsey Theory taught at Univer-
sität Hamburg in Summer 2011. The lecture was based on the textbook “Ramsey
theory” of Graham, Rothschild, and Spencer [44]. In fact, large part of the material
is taken from that book.
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CHAPTER 1

Introduction

Ramsey theory is a branch of Discrete Mathematics, which was named after
the seminal result of Ramsey [75]. Roughly speaking, Ramsey theory concerns
the study of finite partitions (sometimes called colourings) of discrete structures,
such as graphs, hypergraphs, integers, discrete functions, finite dimensional vector
spaces over finite fields, posets etc. A typical result in Ramsey theory asserts that
a given configuration will be completely contained in one of the partition classes
for any finite partition of some sufficiently large or “rich” structure. We start with
a brief overview and state some of the main results of that type.

1.1. A few cornerstones in Ramsey theory

1.1.1. Ramsey’s theorem. Ramsey’s theorem concerns partitions of the edge
set of hypergraphs or set systems and we discuss it in detail in Chapter 2.

Theorem 1.1 (Ramsey 1930). For all integers r, k ≥ 1, and ` ≥ k and every

(countably) infinite set X the following holds. For any partition E1∪̇ . . . ∪̇Er =
(
X
k

)
of the k-element subsets of X, there exists an index j ∈ [r] and an `-element subset

Y ⊆ X such that
(
Y
k

)
⊆ Ej.

The finite version of Ramsey’s theorem (see Theorem 2.1) was reproved by
Skolem [81] and by Erdős and Szekeres [30]. In fact, Erdős and Szekeres were
interested in a question of Esther Klein. She proved that among 5 points in general
position in the plane (i.e., no three points are colinear), there always exist 4 points
which span a convex quadrilateral and asked for the following generalisation: Does
there exist for every integer k ≥ 3 some integer n such that among every set of
n points in general position in the plane there always exist k points, which span a
convex k-gon. In [30] Erdős and Szekeres showed that the affirmative answer of that
question follows from the finite version of Ramsey’s theorem and gave a new proof
of Ramsey’s theorem. Moreover, it is more than fair to say the Erdős popularised
Ramsey’s theorem a lot. Erdős was certainly one of the main contributors to
Ramsey theory and we have to agree with the authors from [44, p. 26] who write
“it is difficult to overestimate the effect of this paper” with reference to [30].

1.1.2. Ramsey-type results for the integers. The first Ramsey-type re-
sults predate Theorem 2.7 and concern partitions of the integers. One of the oldest
results can be traced back to the work of Hilbert in [46].

Theorem 1.2 (Hilbert’s cube lemma – 1892). For all integers r ≥ 1 and k ≥ 0
the following holds. For any partition E1∪̇ . . . ∪̇Er = N of the natural numbers
there exists some j ∈ [r] and there exist natural numbers a, λ1, . . . , λk ∈ N such
that the k-cube spanned by a, λ1, . . . , λk is contained in Ej, i.e., for every 0-1-vector

(δ1, . . . , δk) ∈ {0, 1}k we have a+
∑k
i=1 δiλi ∈ Ej.

In fact, several other Ramsey-type results on the integers predate the work
of Ramsey from 1930. One of them is due to Schur [79], who used the following
“combinatorial lemma” to give a simpler proof of Dickson’s theorem [13, 14], which
asserts that Fermat’s last theorem does not hold in modular arithmetic.
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2 1. INTRODUCTION

Theorem 1.3 (Schur 1916). For every integer r ≥ 1, every integer n ≥ r!e and
every partition E1∪̇ . . . ∪̇Er = [n] of the first n positive integers there exists some
j ∈ [r] and x, y, z ∈ Ej such that x+ y = z.

The next notable contribution is due to van der Waerden [89]. This result was
proved in Hamburg while van der Waerden was visiting Artin.

Theorem 1.4 (van der Waerden 1927). For all integers r ≥ 1 and k ≥ 1 the
following holds. For any partition E1∪̇ . . . ∪̇Er = N of the natural numbers there
exists some j ∈ [r] such that Ej contains an arithmetic progression of length k, i.e.,
there exists an a ∈ N and λ > 0 such that a+ iλ ∈ Ej for every i = 0, . . . , k − 1.

In 1933 Rado (in his PhD-thesis [71] supervised by Schur) found a beautiful
generalisation of Theorems 1.2-1.4. In fact he characterised all systems of lin-
ear equations with the property that any finite colouring of the integers yields a
monochromatic solution. It is easy to check, that cubes of finite dimension, triples
of the form x+ y = z, and arithmetic progressions of finite size can be described as
solutions of homogeneous systems of linear equations.

For an ` × k matrix A = (aij) ∈ Z`×k of integers consider the system L(A) of
homogeneous linear equations

k∑
j=1

aijxj = 0 for 1 ≤ i ≤ ` .

We say that a matrix A is partition regular if for any integer r ≥ 1 and any
partition E1∪̇ . . . ∪̇Er of N there exists a solution (x1, . . . , xk) of L(A) with all xi
having the same colour. Rado obtained the following characterisation of partition
regular matrices. For an ` × k matrix A and j ∈ [k] we denote by ~aj the j-th
column vector and for a set of integer vectors V we we denote by SpanQ(V) the
linear vector space spanned by V over Q.

Theorem 1.5 (Rado 1933). The integer matrix A ∈ Z`×k is partition regular if
and only if there exists a partition of J0∪̇ . . . ∪̇Jp = [k] of the indices of the columns
such that

(i )
∑
j∈J0 ~a

j = ~0 and

(ii ) for every i = 1, . . . , p we have
∑
j∈Ji ~a

j ∈ SpanQ({~aj : j ∈ J0∪̇ . . . ∪̇Ji−1}).

Conditions (i ) and (ii ) are referred to as the column condition. If ` = 1, then
the column condition reduces to the simple condition that there exists a non-empty
subset J0 ⊆ [k] such that

∑
j∈J0 a1j = 0 and at least one of the a1j for j ∈ J0 is

non-zero.
It is easy to check that the first non-trivial case of Theorem 1.2 (k = 2) fol-

lows from Theorem 1.5, since the solutions of the homogeneous system L(A) for
A =

(
1 −1 −1 1

)
form 2-cubes in the sense of Theorem 1.2. Moreover, the

qualitative statement of Theorem 1.3 follows from this characterisation, as Schur’s
theorem asserts monochromatic solutions of L(A) for the matrix A =

(
1 1 −1

)
.

Similarly, it is easy to check that the special case of Theorem 1.4 for k = 3 follows
from Theorem 1.5 by considering A =

(
1 1 −2

)
.

On the other hand, it follows from Theorem 1.5 that
(
1 1 −3

)
is not partition

regular, which might be a bit surprising in view of the fact that
(
1 1 −1

)
and(

1 1 −2
)

are partition regular.
Another beautiful strengthening of Theorem 1.4 is due to Szemerédi [85]. It

follows from Szemerédi’s theorem that in fact the largest partition class Ej , i.e.,
the one which maximises

lim sup
n→∞

|Ej ∩ [n]|
n

,
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always contains an arithmetic progression of length k. Note that a similar generali-
sation of Schur’s theorem obviously fails to be true, since for r ≥ 3 we could choose
all odd integers to be included in the largest partition class.

Theorem 1.6 (Szemerédi 1975). Let k ≥ 1 be an integer and let ε > 0. If
a set E ⊆ N satisfies lim supn→∞ |E ∩ [n]|/n > 0, then E contains an arithmetic
progression of length k.

Theorem 1.6 was first conjectured by Erdős and Turán in 1936 [18] and the
first non-trivial case (k = 3) was solved by Roth [77, 78]. Szemerédi’s theorem
initiated a lot of research in quite different areas of mathematics, including graph
theory, ergodic theory, and additive number theory (see, e.g., [86]).

We discuss van der Waerden’s theorem (Theorem 1.4) and Roth’ theorem (The-
orem 1.6 for k = 3) in detail in Chapter 3. Moreover, for one of the proofs of Roth’
theorem we will consider a strengthened version of Theorem 1.2.

1.1.3. Ramsey-type results in higher dimensional spaces. All results
in Section 1.1.2 concerned partitions of the integers and one may seek for natural
generalisations for the d-dimensional lattice of integers Nd.

We say F ′ ⊆ Nd is a homothetic copy of some a configuration F ⊆ Nd if there
exists some ~v0 ∈ Nd and λ 6= 0 such that

F ′ = ~v0 + λF = {~v0 + λ~u : ~u ∈ F} .
For example, Theorem 1.4 asserts that in any finite partition of N one of the par-
tition classes contains a homothetic copy of [k]. The following generalisation for
d ≥ 2 was first obtained by Grünwald (also known as Gallai) [72, page 123] and,
independently, for d = 2 by Witt [92] (former professor at Universiät Hamburg).

Theorem 1.7 (Gallai 1942 and Witt 1952). For all integers r, d ≥ 1, and every
finite configuration F ⊆ Nd the following holds. For any partition E1∪̇ . . . ∪̇Er = Nd
of the d-dimensional integer lattice there exists some j ∈ [r] such that Ej contains
a homothetic copy of F .

Theorem 1.7 asserts the existence of a “small” d-dimensional object in a “large”
space of the same dimension d. The following theorem of Graham, Leeb and Roth-
schild [41], which was first conjectured by Rota, is in some sense complementary to
Theorem 1.7. It asserts monochromatic subspaces in a sufficiently high dimensional
vector space over a finite field.

Theorem 1.8 (Graham, Leeb & Rothschild 1972). For all integers r ≥ 1 and
` ≥ k ≥ 0 and every finite field F there exists some integer n0 such that for every
n ≥ n0 the following holds. For any partition E1∪̇ . . . ∪̇Er of the k-dimensional
subspaces of Fn there exists some j ∈ [r] and some `-dimensional subspace with all
its k-dimensional subspaces belonging to Ej.

The following affine version of Theorem 1.8 is equivalent to it (see Section 4.1.3).

Theorem 1.9 (affine Ramsey theorem). For all integers r ≥ 1 and ` ≥ k ≥ 0
and every finite field F there exists some integer n0 such that for every n ≥ n0 the
following holds. For any partition E1∪̇ . . . ∪̇Er of the k-dimensional affine subspaces
of Fn there exists some j ∈ [r] and some `-dimensional affine subspace with all its
k-dimensional affine subspaces belonging to Ej.

Already the case k = 0 and ` = 1 in Theorem 1.9 is interesting. It asserts a
monochromatic line (i.e., 1-dimensional affine subspaces) in any finite partition of
the points of a sufficiently high dimensional space Fn. In fact, for this case more
is true. It can be shown that already for a very special sets of lines the conclusion
holds, i.e., one of those special lines is completely contained in one of the partition
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classes. In fact, this result is a direct consequence of a more abstract result due to
Hales and Jewett [45].

Definition 1.10. For a finite set A (also called alphabet) of cardinality k and
an integer n ≥ 1 we denote by An the set of all functions from [n] to A.

We say a k-element subset L = {fa : a ∈ A} ⊆ An is a combinatorial line in An

if there exist a non-empty set X ⊆ [n] and a function g : [n] \X → A such that for
every a ∈ A we have

(i ) fa(x) = g(x) for every x ∈ [n] \X and
(ii ) fa(x) = a for every x ∈ X.

If F = GF(p) is a prime field for some prime p, then it is easy to see that every
combinatorial line in Fn is indeed a line in Fn. On the other hand, in this case Fn
contains only (p+ 1)n − pn combinatorial lines, but the number of lines in Fn is(

pn

2

)(
p
2

) =
pn−1(pn − 1)

p− 1
> pn−2(pn − 1) > (p+ 1)n

for n ≥ 5 since |F| = p ≥ 2.
The Hales-Jewett theorem asserts that for any finite set A every finite partition

of An for sufficiently large n yields a monochromatic combinatorial line. Conse-
quently, this is clearly a strengthening of Theorem 1.9 for the case k = 0 and ` = 1.
In fact, this result is more general and Theorem 1.9 can be deduced from it (as was
shown by Spencer in [83]) and also Theorems 1.4 and 1.7 are consequences of it.

Theorem 1.11 (Hales & Jewett 1963). For all integers r ≥ 1 and every finite
alphabet A there exists some integer n0 such that for every n ≥ n0 the following
holds. For any partition E1∪̇ . . . ∪̇Er of An there exists some j ∈ [r] such that Ej
contains a combinatorial line.

We discuss the Hales-Jewett theorem and some of its consequences in Chapter 4.

1.2. A unifying framework

All statements mentioned so far and many other results in Ramsey theory
can interpreted as statements regarding the chromatic number of a suitable chosen
hypergraph.

Definition 1.12 (hypergraphs). A hypergraph H = (V,E) is a pair, where the
vertex set V is some set and the set of hyperedges E ⊆ 2V is a subset of the power
set. For a hypergraph H we denote by V (H) the set of vertices and by E(H) the
set of its hyperedges, i.e., H = (V (H), E(H)). For a subset W ⊆ V we denote by
H[W ] = (W,E ∩ 2W ) the subhypergraph of H induced on W .

A hypergraph H = (V,E) is k-uniform for some integer k ≥ 1, if E ⊆
(
V
k

)
and

2-uniform hypergraphs are called graphs.

In these notes the vertex set V will be almost always just finite or countable.
Now we can model the Ramsey-type theorems from Section 1.1 in the following
way: Let V be the set which will be partitioned and let E correspond to the
configurations, which are asserted to appear in at least one of the partition classes.

More concretely, for example in the context of van der Waerden’s theorem for
some fixed k, the vertex set is V = N and an edge e is a k-element subset of N, which
forms an arithmetic progression, i.e., the corresponding hypergraph is k-uniform.
For a fixed integer k, Theorem 1.4 asserts that for any partition of V some partition
classes induces at least one edge. Similarly, in the context of Ramsey’s theorem
V =

(
X
k

)
and for every `-element set Y ⊆ X the family eY =

(
Y
k

)
forms an edge in

the corresponding hypergraph H. Then Ramsey’s theorem asserts that for every
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finite partition of the edges of H at least one of the partition classes contains one
edge. We can reword this assertion for every partition of the vertex set of the
corresponding hypergraph, in terms of the chromatic number of the hypergraph.

Definition 1.13 (chromatic number). The chromatic number χ(H) of a hy-
pergraph H = (V,E) is the smallest integer r ≥ 1 such that there exists a partition
V1∪̇ . . . ∪̇Vr = V of the vertex set such that for every j ∈ [r] the partition class Vj
contains no edge of H, i.e., E ∩2Vj = ∅ for every j ∈ [r]. If no such integer r exists,
then we set χ(H) =∞.

With this definition at hand Theorems 1.1–1.11 can be phrased as follows:
the chromatic number of the corresponding hypergraph is bigger than r for every
r ≥ 1. Note, however, that in Theorems 1.1, 1.2, 1.4, 1.7–1.11 we have additional
parameters (like integers k and `, matrix A, configuration F , and alphabet A) and
the corresponding hypergraphs would be “customised” for one particular choice of
those additional parameters.

1.3. The compactness principle

In this introduction we chose to present the infinite version of several of the
theorems (Theorems 1.1, 1.2, 1.4–1.7). However, also finite versions of those the-
orems hold, in which the infinite set X, or the set N, or Nd will be replaced by
an n-element set X, or [n], or [n]d for some sufficiently large n (depending on the
other parameters of those theorems). In fact, for several results in Ramsey theory
the finite and infinite version are (qualitatively) equivalent. This correspondence is
often established by the compactness principle, which first appeared in the work of
Rado [73] (see also [39, 9]). We state the compactness principle in the setting of
hypergraphs from the last section.

Theorem 1.14 (compactness principle). Let r ≥ 1 be an integer and let H =
(V,E) be a hypergraph such that every edge e ∈ E is finite. If χ(H[W ]) ≤ r for
every finite subset W ⊆ V , then χ(H) ≤ r.

Theorem 1.14 is trivial when V is finite and can be easily proved for countable
sets V . In the countable case it has a simple elementary proof or it can be deduced
from Kőnig’s infinity lemma [52] (see, e.g., [15, Section 8]). For uncountable sets V
the proof of the compactness principle relies on the axiom of choice and can be
deduced from Tychonoff’s theorem [88] (Theorem A.10). For completeness we
include this proof here (a short overview over the necessary notions from topology
can be found in Appendix A.1). The proof based on Tychonoff’s theorem goes back
to [39].

Proof. Let H = (V,E) and r ≥ 1 be given. We consider X = [r]V , the family
of all functions from f : V → [r]. We view X as a topological space. In fact,
consider [r] to be the topological space endowed with the discrete topology, and
let X be the product space

∏
v∈V [r], endowed with the product topology. Since [r]

is a compact topological space, it follows from Theorem A.10 that X is compact.

For a function f ∈ X, we consider the corresponding partition V f1 ∪̇ . . . ∪̇V fr =

V , where V fj = f−1(j) for every j ∈ [r]. For a finite subset W ⊆ V we denote by
XW ⊆ X the set of all functions f ∈ X with the property that the corresponding

partition V f1 ∪̇ . . . ∪̇V fr = V induces no monochromatic edge in H[W ], i.e., there

exists no edge e ∈ E ∩ 2W such that e ⊆ V fj ∩W for some j ∈ [r].

Owing to the assumption on H in Theorem 1.14 we have XW 6= ∅ for every
finite subset W ⊆ V .
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Below we check that for every finite set W ⊆ V the family XW is closed (and
open) in X. Indeed, since W and [r] are finite, the set XW is the finite union of
sets Xg

W , where for some colouring g : W → [r] we set

Xg
W =

∏
v∈V

Zgv where Zgv =

{
[r] if v ∈ V \W,

g(v) if v ∈W .

Obviously, we have XW =
⋃
gX

g
W , where the union runs over all colourings g of W

which do not induce a monochromatic edge in W . Equivalently, XW = X \
⋃
hX

h
W

where the union runs over all colourings h of W which induce a monochromatic
edge in W . Since, the set Xh

W is a basic open set in the product topology of X for
every function h : W → [r], we infer that XW is a closed set in X.

Summarising, we obtain that

C = {XW : W ⊆ V and W is finite}
is a collection of closed sets in the compact space X. The collection C has the finite
intersection property, i.e., the joint intersection of finitely many members of C is
non-empty. Indeed, let W1, . . . ,W` ⊆ V be a finite collection of finite subsets
from V . Hence, the set W =

⋃
i∈[`]Wi is finite and

XW1 ∩ · · · ∩XW`
⊇ XW 6= ∅ .

Since X is compact and C is a collection of closed sets in X with the finite
intersection property, it follows from Proposition A.8 that⋂

W⊆V
W finite

XW 6= ∅ .

In other words, there exists a function f : V → [r] such that f ∈ XW for every finite

set W ⊆ V . We claim that the partition V f1 ∪̇ . . . ∪̇V fr = V shows that χ(H) ≤ r.

Suppose for a contradiction that there is some e ∈ E and j ∈ [r] such that e ⊆ V fj .
In particular, f 6∈ Xe, but by assumption on H the edge e is finite, which yields a
contradiction to the fact that f ∈ XW for every finite set W ⊆ V . �

1.4. Other topics in Ramsey theory

Owing to the fact that these are the lecture notes for a short course in Ramsey
theory, there are many topics in Ramsey theory, which we will not here. Below we
briefly mention some of them and include a few references for further studies.

Ramsey numbers: Already Ramsey discussed his estimate for the smallest in-
teger n0 (see definition of the Ramsey function R(k)(`1, . . . , `r) in Sec-
tion 2.1) for which the finite version of Ramsey’s theorem holds (see The-
orem 2.1). Improving the upper bound was one of the main motivations
of Skolem [81] and this bound was further improved by Erdős and Szek-
eres [30]. The first exponential lower bounds for graphs was given by a
probabilistic argument by Erdős [19]. (In fact [19] marks one of the first
appearances of the probabilistic method in combinatorics, which grew into
an important brach of combinatorics itself.) The bounds obtained in [30]
and [19] yield

2`/2 ≤ R(2)(`, `) ≤ 22` .

Despite a lot of effort these bounds were only slightly improved within the
last 60 years (see [82] and [7]).

For hypergraphs the gap between the upper and the lower bound is
is much larger. It follows from the work of Erdős and Rado [28] that
R(k)(`, `) is bound from above by a (k − 1)-times iterated exponential



1.4. OTHER TOPICS IN RAMSEY THEORY 7

function, while the lower bound of Erdős, Hajnal, and Rado [25] is a
(k − 2)-times iterated exponential. For example, for k = 3 we have

2c`
2

≤ R(3)(`, `) ≤ 22c
′`
.

for some positive constants c and c′ independent of `. Erdős, Hajnal,
and Rado conjectured that the upper bound is asymptotically correct (up
to the constant c′) and Erdős offered $ 500 for a proof (see, e.g., [20]).
We briefly discuss asymptotic bounds for R(k)(`, `) in Section 2.4. More
details can be found in [42] and [44, Chapter 4] (see also [8] for more
recent developments).

In some cases the precise value of the Ramsey function is known and
we refer the interested reader to the dynamic survey [74].

Ramsey classes: We stated some classical results in Ramsey theory and discussed
a unifying framework in Section 1.2. Another abstract generalisation,
which was considered by Leeb [55] and others (see, e.g., [10, 62]), is the
following. Suppose C is a class of finite discrete structures endowed with
a notion of isomorphism (”≡”) between elements of C and a transitive
notion of substructure (“v”), which is compatible with the notion of iso-
morphism (i.e., if B and B′ ∈ C are isomorphic, then there is a one-to-one
correspondence ϕ between the substructures of B and B′ such that every
substructure A of B is isomorphic to the substructure ϕ(A) of B′). This
abstract formalism can be naturally described in terms of category theory,
where the substructure relation corresponds to the class of morphisms.

For A and B ∈ C we denote by
(
B
A

)
C

the family of all copies of A in

B, i.e., the set of all substructures A′ of B which are isomorphic to A(
B

A

)
C

= {A′ ∈ C : A′ v B and A′ ≡ A} .

We say a class C has the Ramsey property for A ∈ C (or C is A-Ramsey)
if for every r ∈ N and every B ∈ C there exists some C ∈ C such that

C −→ (B)Ar

by which we mean that for every partition E1∪̇ . . . ∪̇Er of
(
C
A

)
C

there exist

j ∈ [r] and B′ ∈
(
C
B

)
C

such that
(
B′

A

)
C
⊆ Ej . Moreover, we say C is a

Ramsey class, if it has the Ramsey property for every A ∈ C .
For example, let C be the class of all finite sets, where two sets of the

same cardinality are considered isomorphic and the substructure relation
coincides with the subset relation. Then the finite version of Ramsey’s
theorem asserts that for every k ∈ N the class C is A-Ramsey for every k-
element set A. Consequently, the finite version of Ramsey’s theorem (see
Theorem 2.1) is equivalent to the statement that C is a Ramsey class.

Another example is given by Theorem 1.8, which asserts that the set
of all finite dimensional vector spaces over a given finite field is a Ramsey
class (where subobjects are subspaces and all spaces of the same dimension
are isomorphic).

The notion of a Ramsey class is very restrictive and only few other
Ramsey classes were found [2, 11, 55, 56, 58, 60, 61, 63, 64, 65, 66, 67]
(see also the survey of Nešetřil [59]). A deep connection between Ram-
sey classes, Fräıssé limits of ultrahomogeneous structures, and topological
dynamics of extremely amenable automorphism groups of countable struc-
tures was established by Kechris, Pestov and Todorcevic [51].

Canonical Ramsey theory: In canonical versions of Ramsey-type theorems the
number of colours (or partition classes) is not fixed. In particular, we allow
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colourings where every element in the underlying space may get a different
colour and clearly in this case no interesting monochromatic configuration
can be guaranteed. However, it turns out that for many instances one
can guarantee the existence of a configuration with a canonical colour-
ing. Canonical colourings usually include monochromatic copies, rainbow
copies (i.e., every element in the configuration has a different colour) and
other “obvious” colour patterns (which depend on the context). A canon-
ical version of Ramsey’s theorem was first studied by Erdős and Rado [27]
and the survey of Deuber [12] is a good starting point for further studies.

Transfinite Ramsey theory: Roughly speaking, transfinite Ramsey theory con-
cerns extensions of Ramsey’s theorem to cardinal numbers. One of the
first results of this sort is the Dushnik–Miller–Erdős theorem [16]. Many
more results can be found in Erdős and Rado [28, 29] and for more
details we refer to the work Erdős, Hajnal, and Rado [25] and to the
monograph [24].

Euclidean Ramsey theory: The main questions in this area concern extensions
of Theorem 1.7 in Rd (instead of Nd) with the following twists: on the one
hand we insist on real copies of F and do not allow homothetic copies,
i.e., one of the partition class must contain a translate of F ; on the other
hand, we are satisfied, if such copies can be only guaranteed for finite
partitions of Rn for some sufficiently large n (depending on the number
of partition classes and on the configuration F ). Questions of this type
were first considered by Erdős et al. in [21, 22, 23]. In particular, it
was shown that every configuration F ⊆ Rd for which such a Ramsey-
type statement holds, must be contained on some (d− 1)-dimensional the
sphere in Rd. Graham conjectures that this condition is also sufficient
for being Ramsey and offers $ 1000 for a proof (see, e.g., [40]). So far
this conjecture is known to be true only for a few point sets, including
the corners of rectangular parallelepipeds [21], of simplices [33], and of
Platonic solids [53].



CHAPTER 2

Ramsey’s theorem

2.1. Statement of Ramsey’s theorem and notation

We first state the finite version Ramsey’s theorem from [75]. Theorem 2.1
asserts that for any r-colouring of the edges of the complete k-uniform hypergraph
on some sufficiently large (depending on r, k, and `) vertex sets X there exists a
monochromatic clique on at least ` vertices.

Theorem 2.1 (Ramsey’s theorem – finite version). For all integers r ≥ 1,
k ≥ 1, and ` ≥ k there exists an n0 such that for every n-element set X with
n ≥ n0 the following holds. For every partition of E1∪̇ . . . ∪̇Er =

(
X
k

)
of the k-

element subsets of X there exists an `-element subset Y ⊆ X such that
(
Y
k

)
⊆ Ej

for some j ∈ [r].

Clearly, Theorem 2.1 implies Theorem 1.1. In fact, the compactness principle
(Theorem 1.14) yields the equivalence of these two versions of Ramsey’s theorem.

We will use the following convenient notation. For a set X satisfying the
conclusion of Theorem 2.1 we write

X −→ (`)kr

and for X = [n] = {1, . . . , n} we simply write

n −→ (`)kr .

The smallest integer n having the property n −→ (`)kr is the Ramsey number

R(k)(`; r)

and Ramsey’s theorem asserts that the Ramsey function R(k)(`; r) is well defined.
For the proof of Theorem 2.1 it will be convenient to consider an asymmetric

version of the Ramsey function. For a set X and integers r ≥ 1, k ≥ 1, and
`1, . . . , `r ≥ k we write

X −→ (`1, . . . , `r)
k

if for any partition E1∪̇ . . . ∪̇Er of
(
X
r

)
there exists some j ∈ [r] and an `j-element

subset Y ⊆ X such that
(
Y
k

)
⊆ Ej . Similarly, as above we write n −→ (`1, . . . , `r)

k

for [n] −→ (`1, . . . , `r)
k we denote by

R(k)(`1, . . . , `r)

the smallest integer n with the property n −→ (`1, . . . , `r)
k.

Theorem 2.2 (Ramsey’s theorem). For all integers r, k ≥ 1, and `1, . . . , `r ≥ k
there exists an integer n such that n −→ (`1, . . . , `r)

k.

Clearly, Theorems 2.1 and 2.2 are equivalent, since

R(k)(`; r) = R(k)(`, . . . , `︸ ︷︷ ︸
r-times

) and R(k)(`1, . . . , `r) ≤ R(k)(maxj∈[r] `j ; r) .

9
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2.2. Proof of Ramsey’s theorem for k = 1 and 2

2.2.1. The pigeonhole principle. Ramsey’s theorem for k = 1 is equivalent
to the pigeonhole principle (or Dirichlet’s Schubfachprinzip). In fact, it is easy to
see that

R(1)(`1, . . . , `r) = 1 +

r∑
j=1

(`j − 1) . (2.1)

Note, that for the proof of equality (2.1) we are required to show two assertions.
Firstly, we have to show that the 1-element subsets of an (

∑r
j=1(`j − 1))-element

set X can be partitioned into r classes E1∪̇ . . . ∪̇Er =
(
X
1

)
such that |Ej | < lj

for every j ∈ [r], which is obviously possible. Secondly, we have to show that
such a partition does not exist for a (1 +

∑r
j=1(`j − 1))-element set X. But also

this is rather obvious, since supposing the contrary and assuming the existence
of a partition E1∪̇ . . . ∪̇Er =

(
X
1

)
such that |Ej | < `j gives rise to the following

contradiction

|X| =
∣∣∣∣(X1

)∣∣∣∣ =

r∑
j=1

|Ej | ≤
r∑
j=1

(`j − 1) < 1 +

r∑
j=1

(`j − 1) = |X| .

2.2.2. Ramsey’s theorem for graphs. Since 2-uniform hypergraphs are
(simple, undirected) graphs, we will use the language from graph theory here. Be-
low, we give two proofs of Ramsey’s theorem for graphs. First we show Theorem 2.2
for k = 2 by induction on

∑
j `j (see Section 2.2.2.1). Then in Section 2.2.2.2 we

present a proof, which reduces the problem more directly to the k = 1 case.
2.2.2.1. Induction on

∑
j `j. Let us warm up with the first non-trivial cases.

Clearly, R(2)(2, 2) = 2 and it is not hard to show that R(2)(2, 3) = R(2)(3, 2) = 3.
This leaves R(2)(3, 3) as the first open case. Below we give a simple argument,
which shows that

R(2)(3, 3) ≤ 2 + (R(2)(2, 3)− 1) + (R(2)(3, 2)− 1) = 6 .

For that we have to show that every colouring of the edges of K6 (i.e., for every
partition E1∪̇E2 = E(K6)) there exists a monochromatic copy of K3 (i.e., K3 ⊆ E1

or K3 ⊆ E2). For that let E1∪̇E2 be an arbitrary partition of E(K6) and let
v ∈ V (K6) be arbitrary. Let N1(v) be the neighbours of v, which are connected to
v by an edge from E1 and let N2(v) be defined analogously. Since

|N1(v)|+ |N2(v)| = 5 > (R(2)(2, 3)− 1) + (R(2)(3, 2)− 1)

either |N1(v)| ≥ R(2)(2, 3) or |N2(v)| ≥ R(2)(3, 2). Without loss of generality we
may assume that |N1(v)| ≥ R(2)(2, 3) and in this case the definition of R(2)(2, 3)

asserts: either E1 ∩
(
N1(v)

2

)
contains a copy of K2, which together with v extends

to a copy of K3 in E1 or E2 ∩
(
N1(v)

2

)
contains a copy of K3. In either of the cases

we found a monochromatic copy and we are done.
In fact, one can also show that R(2)(3, 3) > 5 by considering an edge partition of

K5 given by two edge-disjoint cycles of length 5. This way we obtain R(2)(3, 3) = 6.
In general it is extremely hard to determine the Ramsey function precisely and
only a very few precise results are known. However, the proof of the upper bound
on R(2)(3, 3) easily extends to the general case. This proof of Ramsey’s theorem
appeared already in [30] and we give the details of this proof below.

Proof of Theorem 2.2 for k = 2. We proceed by induction on
∑r
j=1 `j .

Clearly, for r = 1 we have R(2)(`; 1) = ` for every integer ` ≥ 2. Moreover, it
follows directly from the definition of the Ramsey function that

R(2)(`1, . . . , `r−1, 2) = R(2)(`1, . . . , `r−1)
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and, more generally, we have

R(2)(`1, . . . , `j−1, 2, `j+1, . . . , `r) = R(2)(`1, . . . , `j−1, `j+1`r) . (2.2)

In particular, R(2)(2; r) = 2 for every r ≥ 1, which establishes the induction start.
For the induction step let r > 1 and `1, . . . , `r ≥ 2. If `j = 2 for some j ∈ [r],

then we can appeal to (2.2) and obtain R(2)(`1, . . . , `r) = R(2)(`1, . . . , `j−1, `j+1`r),
which is ensured by induction assumption. So let `1, . . . , `r ≥ 3. Similar as in the
proof of R(2)(3, 3) ≤ 6 we set

n = 2 +

r∑
j=1

(
R(2)(`1, . . . , `j−1, `j − 1, `j+1, . . . , `r)− 1

)
(2.3)

and we will show that
R(2)(`1, . . . , `r) ≤ n .

For that let E1∪̇ . . . ∪̇Er be an arbitrary partition of E(Kn), let v be some vertex
of Kn and for j ∈ [r] we denote by Nj(v) those neighbours of v which are joint to
v by an edge from Ej . Since v has n− 1 neighbours, the pigeonhole principle and
the choice of n ensures the existence of some index j ∈ [r] such that

|Nj(v)| ≥ R(2)(`1, . . . , `j−1, `j − 1, `j+1, . . . , `r) .

Consequently, there either exists an i 6= j such that Ei (restricted to Nj(v)) contains

a copy of K`i or Ej restricted to Nj(v) (i.e., Ej ∩
(
Nj(v)

2

)
) contains a copy of K`j−1,

which together with v spans a copy of K`j . In either case, there exists an i ∈ [r]
such that Ei contains a copy of K`i . Since E1∪̇ . . . ∪̇Er = E(Kn) was arbitrary,
this shows R(2)(`1, . . . , `r) ≤ n. �

One may argue that the proof given above relied on the pigeon hole principle
and, hence, in some sense we reduced the k = 2 case of Theorem 2.2 to the case
k = 1. In fact, in the proof we chose n to be n = 1 +R(1)(L1, . . . , Lr) where

Lj = R(2)(`1, . . . , `j−1, `j − 1, `j+1, . . . , `r) ,

and this view leads to a generalisation of the proof for arbitrary k. Another key idea
in this proof was the reduction of

∑
j `j , by applying the induction assumption too

a suitably large monochromatic neighbourhood of some fixed vertex. In the proof
presented in the next section we also consider monochromatic neighbourhoods.
However, the difference between the two approaches becomes more apparent, when
we extend them to arbitrary k.

2.2.2.2. Reduction to k = 1. Again we outline the main idea for the case
R(2)(3, 3). This time we only show that

R(2)(3, 3) ≤ 2R
(1)(2,2) = 8 .

Let E1∪̇E2 = E(K8) be arbitrary and fix some vertex x1 from V (K8). Note that
either at least 4 of the 7 neighbours of x1 are connected to x1 by edges from E1 or
the same statement holds when E1 is replaced by E2. Let X1 be the set of those
neighbours and let i1 ∈ {1, 2} indicate the matching index of the edge set. We
repeat this choice within X1. So let x2 ∈ X1 be arbitrary and note that at least
two of the three neighbours of x2 in X1 − x1 are either joined to x2 only by edges
form E1 or only by edges from E2. Let X2 be the set of those neighbours and let
i2 ∈ {1, 2} be the index of the corresponding set from the partition. Finally, select
one vertex x3 from the two remaining vertices in X2, set X3 = X2 − x3 and let
i3 be the index of the edge set, which contains the edge consisting of x3 and the
vertex from X3. By the pigeonhole principle, there exist two vertices xj1 and xj2
with j1 < j2 in the set {x1, x2, x3} for which ij1 = ij2 . Let y denote the unique
vertex from X3. We claim that xj1 , xj2 , and y span a K3 contained in Eij1 . In fact
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xj2 and y are contained in Xj1 and, hence, the edges xj1xj2 and xj1y are contained
in Eij1 . Moreover, y ∈ Xj2 and, hence, xj2y ∈ Eij2 and the claim follows from
ij1 = ij2 .

Roughly speaking, the proof above can be generalised for R(2)(`1, . . . , `r) by
the following reasoning. Suppose n = rt for t = R(1)(`1 − 1, . . . , `r − 1) then we
can select vertices x1, . . . , xt and y such that all edges from xjxj′ with j′ > j and
xjy come from the same partition class, say Eij . In fact, in every selection step we
will ensure that the set of remaining vertices shrinks roughly by the factor 1/r and,
hence, our choice of n is supposed to ensure that after t selection steps at least one
vertex y is left.

Owing to the special property that the partition class from E1, . . . , Er which
contains every edge xjxj′ with j′ > j and xjy only depends on the vertex xj , we

naturally obtain a partition of
(
X′

1

)
for X ′ = {x1, . . . , xt} into r classes. Then

Ramsey’s theorem for k = 1 asserts the existence of some j ∈ [r] and a subset

Y ′ = {y1, . . . , y`j−1} ⊆ X ′ such that
(
Y ′

1

)
is from the same partition class. In fact,

this implies
(
Y ′+y

2

)
⊆ Ej for some j ∈ [r] and we conclude Theorem 2.2 for k = 2.

Below we give the details of this outline. This proof of Ramsey’s theorem goes back
to the work of Erdős and Rado [28].

Proof of Theorem 2.2 for k = 2. Since r = 1 is obvious, let r ≥ 2 and let
`1, . . . , `r ≥ 2 be given. Appealing to Theorem 2.2 for k = 1, we set

t = R(1)(`1 − 1, . . . , `r − 1) and n = rt

and we will show that

R(2)(`1, . . . , `r) ≤ n .
So let E1∪̇ . . . ∪̇Er be an arbitrary partition of E(Kn). We set X0 = V (Kn) and
inductively we show that for every i = 1, . . . , t there exists a vertex xi ∈ Xi−1 and
a set Xi ⊆ Xi−1 − xi with

(i ) |Xi| ≥ n/ri = rt−i and
(ii ) there exists some ji ∈ [r] such that xix ∈ Eji for every x ∈ Xi.

Let i ≥ 1 and suppose Xi−1 was chosen already and |Xi−1| ≥ n/ri−1. (Note that
X0 satisfies this condition.) We fix some vertex xi ∈ Xi−1. Since r ≥ 2 and since
n > ri−1 we have ⌈

n/ri−1 − 1

r

⌉
=
n

ri

and, consequently, there exists a set Xi ⊆ Xi−1 − x1 of size at least n/ri and an
index ji ∈ [r] such that all neighbours of xi in Xi are connected by an edge from Eji .

Having verified the existence of vertices xi and sets Xi satisfying (i ) and (ii )
for every i = 1, . . . , t. In particular Xt is not empty and finally we fix a vertex
y ∈ Xt.

Set X ′ = {x1, . . . , xt} and consider the following partition of E′1∪̇ . . . ∪̇E′r of(
X′

1

)
given by {xi} ∈ E′j if ji = j. Since |X ′| = R(1)(`1− 1, . . . , `r− 1) Theorem 2.2

for k = 1 yields an index j ∈ [r] and a subset Y ′ ⊆ X ′ with |Y ′| ≥ `j − 1 such that(
Y ′

1

)
⊆ E′j , i.e., for every xi ∈ Y ′ we have ji = j. Consequently, for every xi ∈ Y ′

we have xiy ∈ Ej and for every i′ ≥ i we have xixi′ ∈ Ej , since such xi′ and y are

contained in Xi. Therefore,
(
Y ′+y

2

)
⊆ Ej and we conclude the proof. �

2.3. Proof of Ramsey’s theorem for general k

We shall extend the proofs of Ramsey’s theorem for graphs from Section 2.2.2.
In both arguments we selected vertices and monochromatic neighbourhoods. Hence
extending those arguments to k-uniform hypergraphs requires us to decide if a
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vertex was a 1-element subset or (k − 1)-element subset or something completely
different. Sometimes we can extend those arguments either way, giving different
looking proofs of Ramsey’s theorem and we will give three proofs of Ramsey’s
theorem. All proofs proceed by induction on k and we shall always assume that
Theorem 2.2 holds for all k′ < k.

First proof of Theorem 2.2. This proof is due to Erdős and Szekeres [30].
We use induction on

∑
j `j . Similarly as in the corresponding proof for graphs, we

may assume that r ≥ 2 and `1, . . . , `r ≥ k + 1, since

R(k)(`; 1) = `

and
R(k)(`1, . . . , `j−1, k, `j+1, . . . , `r) = R(k)(`1, . . . , `j−1, `j+1`r) .

For j ∈ [r] we set

Lj = R(k)(`1, . . . , `j−1, `j − 1, `j+1, . . . , `r) ,

which exist due to our induction assumption on
∑
j `j . Next we appeal to the

induction assumption for k − 1 and we set

n = 1 +R(k−1)(L1, . . . , Lr)

and we shall show that
R(k)(`1, . . . , `r) ≤ n .

Let X be an n-element set and let E1∪̇ . . . ∪̇Er =
(
X
k

)
be an arbitrary partition of

the k-element subsets of X. Fix some x ∈ X and consider the “induced” partition
E′1∪̇ . . . ∪̇E′r =

(
X−x
k−1

)
of the (k − 1)-element subsets of X − x. More precisely, a

(k − 1)-element subsets K ′ ∈
(
X−x
k−1

)
will be contained in E′j if (K ′ + x) ∈ Ej .

Owing to the choice of n and to Ramsey’s theorem for k − 1, there exists an
index j ∈ [r] and a subset Y ⊆ X − x of size |Y | ≥ Lj such that

(
Y
k−1

)
⊆ E′j , i.e.,

(K ′+x) ∈ Ej for every K ′ ∈
(
Y
k−1

)
. Owing to the choice of Lj , we infer that either

there exists some index i 6= j and a subset Zi ⊆ Y of size `i such that
(
Zi
k

)
⊆ Ei

or there exists a subset Zj ⊆ Y of size `j − 1 such that
(
Zj
k

)
⊆ Ej . In the former

case we are done. For the latter case the set Zj is one element short of the desired
size. However, we recall that Zj ⊆ Y and, therefore, we also have (K ′ + x) ∈ Ej
for every K ′ ∈

(
Zj
k−1

)
. Consequently,

(
Zj+x
k

)
⊆ Ej in this case, which concludes the

proof of Theorem 2.2. �

Next we extend the proof from Section 2.2.2.2 in two ways.

Second proof of Theorem 2.2. Let r ≥ 1 and `1, . . . , `r ≥ k be given. Set

t = R(1)(`1 − k + 1, . . . , `r − k + 1) .

We consider the following recursively defined sequence of integers. For i = t, . . . , 1
we define

Lt = 1 +R(k−1)(k − 1; r) = k and Li = 1 +R(k−1)(Li+1; r)

and we set
n = L1 .

It is easy to verify that this choice of n suffices, i.e., that n −→ (`1, . . . , `r)
k. In fact,

for an n-element set X and a partition E1∪̇ . . . ∪̇Er =
(
X
k

)
we proceed as follows.

Inductively we select vertices x1, . . . , xt and subsets X0 = X ⊇ X1 ⊇ · · · ⊇ Xt such
that xi ∈ Xi−1, Xi ⊆ Xi−1 − xi, and

(i ) |Xi| ≥ Li and

(ii ) there exists some ji ∈ [r] such that xi +K ′ ∈ Eji for every K ′ ∈
(
Xi
k−1

)
.
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Suppose x1, . . . , xi and X1, . . . , Xi were chosen this way. We select xi+1 from Xi in
an arbitrary way and consider the induced partition of the (k− 1)-element sets K ′

of Xi − xi+1 given by K ′ ∈ E′j if (x + K ′) ∈ Ej . Owing to the choice of Li, there
exists a subset Xi+1 satisfying (ii ) by Ramsey’s theorem for k − 1.

Finally, we apply the pigeonhole principle to X ′ = {x1, . . . , xt} and we obtain
an index j ∈ [r] and a subset Y ′ ⊆ X ′ of size `j − k + 1 such that ji = j for every

xi ∈ Y ′. It is easy to check that
(
Y ′+K′

k

)
⊆ Ej for every (k − 1)-element subset

K ′ ∈
(
Lt
k−1

)
, which concludes the proof. �

The last proof is somewhat wasteful by applying Ramsey’s theorem for k−1 in
a recursive manner. As a consequence this proof gives no reasonable upper bound
on R(k)(`1, . . . , `r). In the next proof we will apply the induction assumption on
k more carefully. In fact, also this proof (like the last proof) is an extension of
the proof for graphs from Section 2.2.2.2. But this time we view the vertices from
the k = 2 case in Section 2.2.2.2 as (k − 1)-element sets and not as 1-element
sets. This proof of Ramsey’s theorem gives the best upper bound for general k (see
Section 2.4.1). and goes back to Erdős and Rado [28].

Third proof of Theorem 2.2. We exclude the trivial case and let r ≥ 2
and `1, . . . , `r ≥ k. This time we set

t = R(k−1)(`1 − 1, . . . , `r − 1) and n = r(
t

k−1) + k − 2 . (2.4)

We shall verify that this n satisfies n −→ (`1, . . . , `r)
k. So let X be an n-element

set and consider an arbitrary partition E1∪̇ . . . ∪̇Er =
(
X
k

)
. Similarly, as in the

last proof we select inductively vertices x1, . . . , xt. In fact, we fix k − 2 vertices
x1, . . . , xk−2 in an arbitrary way and we set Xk−2 = X \ {x1, . . . , xk−2}. Next
we fix xk−1, . . . , xt and subsets Xk−2 ⊇ Xk−1 ⊇ · · · ⊇ Xt such that xi ∈ Xi−1,
Xi ⊆ Xi−1 − xi, and

(i ) |Xi| ≥ (n− k + 2)/r(
i

k−1) = r(
t

k−1)−( i
k−1) and

(ii ) for every K ′ ∈
({x1,...,xi}

k−1

)
there exists a jK′ ∈ [r] such that K ′+ y ∈ EjK′

for every y ∈ Xi.

Clearly, properties (i ) and (ii ) hold for i = k − 2 and suppose x1, . . . , xi and
X1, . . . , Xi were chosen already. We select xi+1 from Xi in an arbitrary way.

For a k-element set K ∈
(
X
k

)
we denote by jK the index of that partition class

from E1∪̇ . . . ∪̇Er which contains K. For a vertex y ∈ Xi − xi+1 we consider the

vector ~Jy = (jK′′+xi+1+y)K′′ , where K ′′ runs over all (k − 2)-element subsets of

{x1, . . . , xi}, i.e., ~Jy ∈ [r](
{x1,...,xi}

k−2 ). Owing to (i ) (which also ensures |Xi| > 1 for
i < t), combined with r ≥ 2 and i ≥ k − 2 we have⌈

|Xi| − 1

r(
i

k−2)

⌉
≥ r(

t
k−1)−( i

k−1)−( i
k−2) = r(

t
k−1)−(i+1

k−1) .

Hence, there exists a vector ~J ∈ [r](
{x1,...,xi}

k−2 ) and a subset Xi+1 ⊆ Xi − xi+1 of

size at least r(
t

k−1)−(i+1
k−1) such that ~Jy = ~J for every y ∈ Xi+1. Combining this

with the property (ii ) for all K ′ ∈
({x1,...,xi}

k−1

)
we infer that xi+1 and Xi+1 satisfy

properties (i ) and (ii ).
Finally, we note that due to the choice of n the set Xt is non-empty and we fix

some xt ∈ Xt and we consider the set X ′ = {x1, . . . , xt}. We consider the partition

E′1∪̇ . . . ∪̇E′r =
(
x′

k−1

)
given by K ′ ∈ E′j if and only if K ′+ y ∈ Ej . Note that due to

Property (ii ) we also have K ′+x′ ∈ Ej for every x′ ∈ X ′\{x1, x2, . . . , xik−1
}, where

K ′ = {xi1 , . . . , xik−1
} with i1 < · · · < ik−1. Since |X ′| = t the choice of t in (2.4)

guarantees a subset Y ′ ⊆ X ′ and of some index j ∈ [r] such that |Y ′| ≥ `j − 1 and
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Y ′

k−1

)
⊆ E′j . We set Y = Y ′ + y and claim that Y has the desired properties. In

fact, |Y | ≥ `j . Moreover, let K ∈
(
Y
k

)
be arbitrary. Either K = {xi1 , . . . , xik} with

i1 < · · · < ik or K = {xi1 , . . . , xik−1
, y} for i1 < · · · < ik−1. In either case, we have

xi1 , . . . , xik−1
∈ Y ′ and, hence, {xi1 , . . . , xik−1

} ∈ E′j , which yields K ∈ Ej in both
cases. �

2.4. Bounds for the symmetric Ramsey function

Below we discuss lower and upper bounds for the symmetric Ramsey function
R(k)(`, `). We begin with the upper bounds given by the proofs from the last
section.

2.4.1. Upper bounds. Comparing the three proofs of Ramsey’s theorem
given in the last section shows that for k ≥ 3 the last proof gives the best up-
per bounds on R(k)(`, `). For k = 2 the first proof gives a slightly better bound.
(Recall that for k = 1 Ramsey’s theorem “degenerates” to the pigeonhole principle,
which yields (2.1)). The following notation will be useful. For numbers a and b we
set

a ↑ b = ab .

Furthermore, for numbers a1, . . . , an and n ≥ 3 we define

a1 ↑ a2 ↑ . . . ↑ an = a1 ↑ (a2 ↑ (. . . ↑ (an−1 ↑ an) . . . )) = a
a
. .
.
an

2
1 .

We note that

(a1 ↑ a2 ↑ . . . ↑ an)k = ak1 ↑ a2 ↑ . . . ↑ an . (2.5)

Theorem 2.3 (Erdős & Szekeres 1935 and Erdős & Rado 1952).

(i ) For all `1, `2 ≥ 2 we have R(2)(`1, `2) ≤
(
`1+`2−2
`1−1

)
.

(ii ) For all r ≥ 2, ` > k ≥ 2 we have

R(k)(`; r) ≤ r ↑ rk−1 ↑ rk−2 ↑ . . . ↑ r2 ↑ (r(`− k) + 1) .

In particular, for every k ≥ 2 there exists a constant C > 0 such that for
every ` > k we have

log
(k−1)
2

(
R(k)(`, `)

)
≤ C` , (2.6)

where log
(k−1)
2 denotes the (k − 1)-times iterated log2-function.

Proof. (i ) We recall the proof of Ramsey’s theorem for graphs pre-
sented in Section 2.2.2.1 (see also the first proof of Ramsey’s theorem in
Section 2.3). There it was shown that

R(2)(`1, `2)
(2.3)

≤ R(2)(`1 − 1, `2) +R(2)(`1, `2 − 1) .

A straightforward inductive argument yields

R(2)(`1, `2) ≤ R(2)(`1 − 1, `2) +R(2)(`1, `2 − 1)

≤
(

(`1 − 1) + `2 − 2

(`1 − 1)− 1

)
+

(
`1 + (`2 − 1)− 2

`1 − 1

)
=

(
`1 + `2 − 2

`1 − 1

)
,

where for the last identity we used Pascal’s rule
(
a−1
j−2

)
+
(
a−1
j−1

)
=
(
a
j

)
.
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(ii ) We consider the third proof of Ramsey’s theorem from Section 2.3. In
fact (2.4) combined with (2.1) yields for k = 2

R(2)(`; r) ≤ rr(`−2)+1 + 2− 2 = r ↑ (r(`− 2) + 1) ,

which establishes the induction start. A simple induction yields

R(k)(`; r) ≤
(
r ↑
(
R(k−1)(`− 1; r)

k − 1

))
+ k − 2

(2.4)

≤
(
r ↑
(
r ↑ rk−2 ↑ rk−3 ↑ . . . ↑ r2 ↑ (r(`− 1− (k − 1)) + 1)

k − 1

))
+ k − 2

=

(
r ↑
(
r ↑ rk−2 ↑ rk−3 ↑ . . . ↑ r2 ↑ (r(`− k) + 1)

k − 1

))
+ k − 2

(2.5)

≤
(
r ↑ r

k−1 ↑ rk−2 ↑ rk−3 ↑ . . . ↑ r2 ↑ (r(`− k) + 1)

(k − 1)!

)
+ k − 2

≤ r ↑ rk−1 ↑ rk−2 ↑ . . . ↑ r2 ↑ (r(`− k) + 1) ,

where we used r ≥ 2 in the last inequality.
�

We remark that for k = 2 and `1 = `2 = ` the bound in (i ) is better than the
one given in (ii ). Indeed, Stirling’s formula yields(

2`− 2

`− 1

)
= (1 + o(1))

4`−1

√
π`

, (2.7)

where o(1)→ 0 for `→∞, while

2 ↑ (2(`− 2) + 1) =
4`−1

2
.

2.4.2. Lower bounds. Proving a lower bound like R(k)(`, `) > n requires to

prove the existence of a partition E1∪̇E2 =
(
X
k

)
for an n-element set X such that

every `-set Y ⊆ X has the property
(
Y
k

)
∩ E1 6= ∅ and

(
Y
k

)
∩ E2 6= ∅. It seems a

natural attempt, to give an explicit example of such a partition.
For example, for k = 2 it is easy to show R(2)(`, `) > (` − 1)2. For that split

X into ` − 1 sets V1∪̇ . . . ∪̇V`−1 = X of size ` − 1. Let E1 be the set of all pairs
which are contained in some Vi for i ∈ [`− 1] and, hence, let E2 consist of all pairs
which intersect two of the classes Vi. This way we obtain a quadratic lower bound
on R(2)(`, `). However, the upper bound given in (2.7) is exponential, which leaves
a lot of room for improvement for at least one of the bounds.

It turned out to be very hard to establish good constructive lower bounds for
R(k)(`, `) for k ≥ 2. Abbott [1] found a construction giving R(2)(`, `) > c`α for
α = log2(5) ≈ 2.32 and Nagy [57] gave a cubic bound. The first constructive
superpolynomial bound was obtained by Frankl [32] and the currently best known
constructive bound due to Frankl and Wilson [34] achieves

R(2)(`, `) ≥ `(1−o(1))
ln(`)

4 ln ln(`) .

On the other hand, Erdős [19] obtained a much better lower bound in a non-
constructive way. Often the proof of this result is presented in the language of
basic probability theory. In fact, [19] is considered to be one of the first applica-
tions of the probabilistic method in combinatorics, which grew into a very active
branch in modern combinatorics itself (see, e.g., [4]). Below we present the proof
in form of a simple counting argument (similarly as it appears in [19]) and avoid
the introduction of necessary notions from probability theory.
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Theorem 2.4 (Erdős 1947). If 2
(
n
`

)
< 2(`k) for n ≥ ` ≥ k, then R(k)(`, `) > n.

In particular, for k = 2 we obtain

R(2)(`, `) >
`

e
√

2
2`/2 (2.8)

and for general k we have

R(k)(`, `) > 2c`
k−1

(2.9)

for some constant c = c(k) > 0.

Proof. For an n-element set X there are 2(nk) partitions of
(
X
k

)
into two parts.

On the other hand, there are at most 2
(
n
`

)
2(nk)−(`k) partitions of

(
X
k

)
into two parts

such that one of the parts contains all k-element subsets of some `-set Y ⊆ X.
(We can choose the `-set Y in

(
n
`

)
ways, decide which of the two partition classes

contains
(
Y
k

)
, and there are 2(nk)−(`k) ways to distribute

(
X
k

)
\
(
Y
k

)
among the two

two partition classes.) The assumption 2
(
n
`

)
< 2(`k) yields

2

(
n

`

)
2(nk)−(`k) < 2(nk) .

Hence, there exists a partition of
(
X
k

)
into two parts such that no `-set Y has the

property that
(
Y
k

)
is contained in one of the partition classes, i.e., R(k)(`, `) > n.

Solving 2
(
n
`

)
< 2(`k) for the largest possible n gives (2.9). For the proof of (2.8)

the estimate
(
n
`

)
≤ ( en

` )` is useful. �

Both the lower and the upper bound for R(2)(`, `) given in (2.7) and (2.8) are
exponential in `, while the lower and upper bounds for R(k)(`, `) for k ≥ 3 given
in (ii ) of Theorem 2.3 and (2.9) are away by (k − 2)-times iterated exponential
functions.

Despite a lot of effort those bounds for k = 2 were only improved slightly. The
best known lower bound is based on a more refined probabilistic tool (the so-called
local lemma from [26]) given by Spencer [82] and improves (2.8) by a factor of two.

The upper bound was improved by a constant factor by Frasnay [35]. The first
substantial improvement is due to Rödl (unpublished, see [42]), which was further
improved by Thomason [87]. Currently the best bound is due to Conlon [7]. The
best known bounds for k = 2 are(√

2

e
− o(1)

)
`2`/2 ≤ R(2)(`, `) ≤ `−C ln `/ ln ln `

(
2`− 2

`− 1

)
, (2.10)

for some constant C > 0.
For hypergraphs the gap between the bounds in (ii ) of Theorem 2.3 and (2.9)

could be closed up to one exponential in the iterated exponential function. For k ≥ 3
the following result of Erdős, Hajnal, and Rado [25, Lemma 6, p.140] (see also [24,
Theorem 26.3]) “lifts” a lower bound for R(k)(`, `) by one additional exponential
to a lower bound for R(k+1)(`′, `′) (for some appropriate `′). Moreover, it is known
that for k = 2 a similar result is true, if r ≥ 4.

Theorem 2.5 ((negative) stepping-up lemma).

(i ) If k ≥ 3 and R(k)(`, `) > n, then R(k)(`′, `′) > 2n where `′ = 2`+ k − 4.
(ii ) If R(2)(`; 4) > n, then R(3)(`+ 1; 4) > 2n. �

For the proof we refer the reader to [24, Theorem 26.3] (see also [44, Sec-
tion 4.7]).
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The negative stepping-up lemma combined with (2.9) for k = 3 yields a much
better lower bound for R(k)(`, `) for k ≥ 4. In fact, we obtain

R(k)(`, `) > 2 ↑ . . . ↑ 2 ↑︸ ︷︷ ︸
(k−2)-times

c`2 ,

for every k ≥ 3 and constants c = c(k) > 0. Together with (2.6) we obtain for every
k ≥ 3 some constants c, C > 0 depending only on k such that

c`2 < log
(k−2)
2

(
R(k)(`, `)

)
< 2C` . (2.11)

It turned out to be a very hard problem to close the exponential gap in (2.11).
Erdős, Hajnal, and Rado [25, Section 16] conjectured that the lower bound can be
improved to match the upper bound (up to the constant C) and (ii ) of Theorem 2.5
gives some evidence for this believe. In view of (i ) of Theorem 2.5 it would suffice
to settle the following conjecture.

Conjecture 2.6 (Erdős, Hajnal & Rado 1965). There is some c > 0 such that

R(3)(`, `) ≥ 2 ↑ 2 ↑ c` = 22c` .

Conjecture 2.6 is one of the major open problems related to Ramsey’s theorem
and Erdős offered $ 500 for its solution [20].

2.5. Infinite version of Ramsey’s theorem

We briefly discuss the so-called infinite version of Ramsey’s theorem, which
was already considered in [75].

Theorem 2.7 (Ramsey 1930). For all integers r, k ≥ 1, and every (countably)

infinite set X the following holds. For any partition E1∪̇ . . . ∪̇Er =
(
X
k

)
of the k-

element subsets of X, there exists an index j ∈ [r] and an infinite subset Y ⊆ X

such that
(
Y
k

)
⊆ Ej.

Clearly, Theorem 2.7 implies Theorem 1.1 and, hence, it also implies Theo-
rem 2.1 by the compactness principle. However, while Theorem 2.1 implies Theo-
rem 1.1, it does not immediately yield Theorem 2.7. This is because Theorem 2.7
asserts the existence of an infinite monochromatic set Y for every finite parti-
tion of

(
X
k

)
for a countably infinite set X, while a straight forward application of

Theorem 2.1 only yields the existence of monochromatic subsets Y of arbitrary
(unbounded) size in an infinite set X.

However, the second and the third proof of the finite version of Ramsey’s the-
orem given in Section 2.3 can be adjusted to prove Theorem 2.7. Again the proof
proceeds by induction on k. Roughly speaking, we simply have to ensure the ex-
istence of infinite sequences (xi)i∈N and (Xi)i∈N where Xi is always an infinite
set (instead of a large finite set satisfying the lower bounds stated in (i ) in those
proofs). In the end, we conclude the proof by an application of the infinite version
of the pigeonhole principe (Theorem 2.7 for k = 1) in case of the second proof and
by an application of the Theorem 2.7 for k − 1 in case of the third proof. We omit
the details here. Such an infinite version of the second proof from Section 2.3 can
be found for example in [15, Proof of Theorem 9.1.2].

Below we give a proof of Theorem 2.7 based on ultrafilters (see Appendix A.3
for the necessary background). Ideas connecting ultrafilters with Ramsey theory
can be traced back to Fred Galvin in connection with Hindman’s theorem [47].
The earliest proofs of the infinite Ramsey theorem based on ultrafilter we could
find are [6, Theorem 3.3.7.] and [49, Problem 7.5.1]. The proof given below follows
the presentation from [24, Section 10].
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Proof of Theorem 2.7. Let integers r and k be given. Theorem 2.7 is trivial
if r = 1. We proceed by induction on k. The theorem follows from the pigeonhole
principle for k = 1, which establishes the induction start. Hence, we may assume
that r ≥ 2 and k ≥ 2 and that the theorem holds for k − 1.

Let X be a countably infinite set. Fix a non-principal ultrafilter F on X, which
is guaranteed to exist by Theorem A.30.

Let E1∪̇ . . . ∪̇Er be an arbitrary partition of
(
X
k

)
. For any (k−1)-set K ∈

(
X
k−1

)
the sets

Aj,K = {x ∈ X \K : (K + x) ∈ Ej}
for j ∈ [r] form a partition of X \ K. Since F is a non-principal ultrafilter and
X \K is co-finite, the set (X \K) ∈ F (see Proposition A.29). Moreover, it follows
from Proposition A.26 there exists a unique index jK ∈ [r] such that AjK ,K ∈ F .

We claim that there exists an infinite set X ′ = {x1, x2, . . . } such that

(∗) for every (k−1)-set K = {xi1 , . . . , xik−1
} ∈

(
X′

k−1

)
with i1 < · · · < ik−1 and

every xik ∈ X ′ with ik > ik−1 we have (K+xik) ∈ EjK , i.e., xik ∈ AjK ,K .

For that we show that every finite set X ′ with property (∗) can be enlarged, which
means that that there are no maximal finite sets with this property and, therefore,
there must be an infinite set with this property. So let X ′ be a finite set satisfying
(∗). Consequently,

X ′′ =
⋂

K∈( X
′

k−1)

AjK ,K

is a finite intersection of sets from the filter and, hence, X ′′ ∈ F . In particular,
X ′′ is infinite (since F is a non-principal ultrafilter) and, hence, there exists some
x ∈ X ′′ \X ′. It follows from the definition of x, that X ′ + x has property (∗).

Let X ′ be an infinite set with property (∗). We consider the corresponding

partition E′1∪̇ . . . ∪̇E′r of
(
X′

k−1

)
, where we let E′j consist of those (k − 1)-sets K ∈(

X′

k−1

)
with jK = j. Owing to the induction assumption there exists an infinite

subset Y ⊆ X and an index j ∈ [r] such that
(
Y
k−1

)
⊆ E′j . Since Y ⊆ X ′, it

posseses property (∗) and, hence,
(
Y
k

)
⊆ Ej . �





CHAPTER 3

Arithmetic progressions

This chapter is devoted to van der Waerden’s theorem (Theorem 1.4) and its
extensions. We will give the combinatorial proof of van der Waerden in Section 3.1.
In Section 3.2 we present a topological proof of Theorem 1.4.

In Sections 3.3.1 and 3.3.2 we consider the first nontrivial case of Szemerédi’s
theorem (Theorem 1.6 for k = 3), which is due to Roth [77, 78]. We give a
combinatorial proof due to Szemerédi in Section 3.3.1 and in Section 3.3.1 we follow
the analytical argument of Roth from [78].

3.1. Combinatorial proof of van der Waerden’s theorem

For r = 2 Theorem 1.4 was conjectured by Schur and van der Waerden heard
it from Baudet. Van der Waerden discussed the problem with Schreier and Artin
during his research stay in Hamburg in 1926/27. In those discussions it turned out
the following finite version of Theorem 1.4 is helpful for an inductive proof (see,
e.g., [90, 91] for more details).

Theorem 3.1 (van der Waerden 1927). For all integers r ≥ 1 and k ≥ 1
there exists some integer n0 such that for every n ≥ n0 the following holds. For
any partition E1∪̇ . . . ∪̇Er = [n] there exists some j ∈ [r] such that Ej contains an
arithmetic progression of length k, i.e., there exists an a ∈ N and λ > 0 such that
a+ iλ ∈ Ej for every i = 0, . . . , k − 1.

We note that an infinite version of Theorem 3.1 in the spirit of of the infinite
version of Ramsey’s theorem (Theorem 2.7) is obviously not true. For example,
split N into two classes so that every class contains intervals of unbounded size
(e.g., let E1 =

⋃
i∈N0
{22i, . . . , 22i+1−1} and E2 = N\E1). Suppose that one of the

classes contains an infinite arithmetic progression of the form {a+ iλ : i ∈ N0} for
a and λ ∈ N. Since such an arithmetic progression cannot “jump” over an interval
of length at least λ from the other class, but each class contains infinitely many
intervals of length at least λ, we derive at a contradiction.

We denote by W (k; r) the smallest integer n for which the conclusion of Theo-
rem 3.1 holds. Clearly, W (k; 1) = k for every integer k ≥ 1, and for r ≥ 1 we have
W (1; r) = 1 and W (2; r) = r + 1. The first non-trivial case concerns W (3; 2). The
partition given by E1 = {1, 2, 5, 6} and E2 = {3, 4, 7, 8} shows that W (3; 2) > 8. A
simple (but somewhat tedious) case analysis shows indeed W (3; 2) ≤ 9 and, hence,
W (3; 2) = 9. Below we show the considerably weaker bound

W (3; 2) ≤ 325 . (3.1)

However, this proof can be generalises and leads to van der Waerden’s original proof
of Theorem 3.1. For the proof of (3.1) it is helpful to note

325 = 65 · 5 = (2 · 25 + 1) · 5
where the 5 comes from 5 = 2W (2; 2)−1. Let E1∪̇E2 = [325] be some partition. We

split [325] into 65 intervals of size 5, i.e., [365] =
⋃̇65

i=1Ii for Ii = {5(i−1)+1, . . . , 5i}.
Such an interval of can intersect E1 and E2 in 25 = 32 different ways. Consequently,

21
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there are at least 2 intervals among the first 33 intervals which intersect E1 and E2 in
the same way, i.e., Ii1 and Ii2 have the same pattern according to the partition of Ii1
and Ii2 induced by E1 and E2. More precisely, there exist indices 1 ≤ i1 < i2 ≤ 33
such that 5(i1 − 1) + ` and 5(i2 − 1) + ` are in the same partition class E1 or E2

for every ` ∈ [5].
Every partition of an interval of length 5 into two classes there exists an arith-

metic progression of length 3 such that the first and the second member are from
the same class. In fact, among the first three elements of such an interval two
elements are in the same class and the third number, which completes this pair to
a three term arithmetic progression, is also contained in this interval of length 5.

Let 1 ≤ `1 < `2 < `3 ≤ 5 be the indices of this three term arithmetic progression
in Ii1 for the partition E1 and E2. Without loss of generality we may assume that
5(i1−1)+`1 and 5(i1−1)+`2 are contained in E1 and 5(i1−1)+`3 ∈ E2. Since Ii1
and Ii2 have the same pattern, we also have 5(i2 − 1) + `1, 5(i2 − 1) + `2 ∈ E1 and
5(i2 − 1) + `3 ∈ E2.

Finally, we consider the l3-rd element from Ii3 for i3 = i2 + (i2− i1). Note that
i3 ≤ 65, since i2 ≤ 33, and 5(i3 − 1) + `3 ≤ 325. Furthermore, we observe that
5(i3 − 1) + `3 is the third element for the two three term arithmetic progressions

5(i1 − 1) + `1 , 5(i2 − 1) + `2 , 5(i3 − 1) + `3

and

5(i1 − 1) + `3 , 5(i2 − 1) + `3 , 5(i3 − 1) + `3 .

Since 5(i1 − 1) + `1, 5(i2 − 1) + `2 ∈ E1 and 5(i1 − 1) + `3, 5(i2 − 1) + `3 ∈ E2, it
follows that either E1 or E2 contains a three term arithmetic progression and we
conclude (3.1).

Roughly speaking, in the argument given above, we ensured the existence of
two arithmetic progressions of length two one in E1 and one in E2, which focused
on the same number (on 5(i3 − 1) + `3). In some sense in the proof we used the
(trivial) fact that the W (2; r) ≤ r + 1 is true for r = 32. So we used the induction
assumption (on k) for a much bigger number of partition classes (32 instead of 2).
In order to generalize this proof we have to consider how to establish W (3; r) for
r > 2. Iterating the proof of (3.1) yields

W (3; 3) ≤ (2 · 3(2·37+1)·7 + 1)(2 · 37 + 1) · 7
and, more generally, for W (3; r) we set w1 = 2 · W (2; r) − 1 = 2r + 1 and for
j = 2, . . . , r

Wj−1 =

j−1∏
i=1

wi and wj = 2 · rWj−1 + 1 = 2 ·W (2; rWj−1)− 1

and obtain

W (3; r) ≤Wr . (3.2)

A proof along the lines the W (3; 2) yields inductively that for every j = 1 . . . , r and
every partition E1∪̇ . . . ∪̇Er of an interval of length Wj the existence of j arithmetic
progression of length three with the same endpoint zj where the first two elements
from each of those arithmetic progressions are contained in a different class Ei. In
other words, if we assume that there exists no three term arithmetic progression
completely contained in one of the classes, then at least j of the classes Ei are
forbidden for the point zj .

In the next step we split [n] into blocks of length Wj and note that there
are at most rWj different intersection patters for those intervals with the partition
E1∪̇ . . . ∪̇Er. Moreover, among wj+1 = 2 · rWj + 1 = 2 ·W (2; rWj )− 1 consecutive
intervals of this length we find two with the same pattern and a third which is in a
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three term arithmetic progression with the first two intervals, i.e., the first element
of all three intervals form a three term arithmetic progression. In particular, the
three copies of zj form a three term arithmetic progression and since the first
two copies belong to the same partition class, say Ei, now there exist also two
elements from Ei, which this third copy of zj completes to a three term arithmetic
progression. Let this third copy be zj+1. Moreover, one can still ensure that the
other j classes Ei are still forbidden for zj+1. In fact, if x and y were such a pair
in the interval of length Wj , i.e., x, y, zj form a three term arithmetic progression
and x, y are in the same class from E1∪̇ . . . ∪̇Er. Then the copy of x in the first
of the two equally partitioned intervals of length Wj and the copy of y from the
second such interval are still both contained in the same class from the partition
E1∪̇ . . . ∪̇Er and those copies of x and y form an arithmetic progression with z`+1.

We have shown that for every partition of an interval of length wj+1·Wj = Wj+1

there exists a number zj+1 with the property that at least (j + 1) three term
arithmetic progressions end in zj+1 with the property that the first two elements
for each of those progressions are contained in in the same class, but for differnent
classes for different progressions. This establishes the induction step and for j = r
it implies (3.2). In other words, we proved Theorem 3.1 for k = 3 and every r ≥ 1.

It is left to generalize the argument for arbitrary k. However, also this is
straight forward. We proceed by induction on k and assume Theorem 3.1 holds
for k − 1 and every r ≥ 1. For fixed r ≥ 2 we repeat the definition from (3.2),
but we can replace 2 by k−1

k−2 and have to replace W (2; r) by W (k − 1; r). (Terms

of the form Z = 2 · Y − 1 = 2 · (Y − 1) + 1 ensured that the third point of a
three term arithmetic progression with the first two being contained in an interval
of length Y are contained in an interval of length Z. Now we need that, the k-th
element of a k-term arithmetic progression with the first k − 1 be contained in an
interval of length Y are contained in an interval of length Z, which is guaranteed
by Z = (k − 1)bY−1

k−2 c+ 1.)

We set w1 = (k − 1)bW (k−1;r)−1
k−2 c+ 1 and for j = 2, . . . , r

Wj−1 =

j−1∏
i=1

wi and wj = (k − 1)

⌊
W (k − 1; rWj−1)− 1

k − 2

⌋
+ 1

and claim
W (k; r) ≤Wr . (3.3)

It is not hard to verify (3.3) along the lines the proof of (3.2) and we omit the
details here. In fact, such a proof was carried out in the original work of van der
Waerden [89]. Below we give essentially the same proof in a more concise form due
to Graham and Rothschild [43].

Proof of Theorem 3.1. For two integers a ≤ b ∈ Z we write [a, b] for the
interval {a, . . . , b}. For k ∈ N and m ∈ N we define an equivalence relation ∼k on
[0, k]m by

(x1, . . . , xm) ∼k (y1, . . . , ym)

if there exists some i0 ∈ [0,m] such that xi = yi for i ∈ [i0] with xi0 = yi0 = k and
xi0 < k and yi0 < k for every i ∈ [i0 + 1,m]. We note that the equivalence classes
of ∼k are of the form

[0, k − 1]m

if i0 = 0 and for i0 ≥ 1 they are of the form

~zi0−1 × {k} × [0, k − 1]m−i0

with ~zi0−1 ∈ [0, k]i0−1.
Below we verify the following statement for all integers k and m ≥ 1
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vdW (k,m): For every integer r ≥ 1 there exists some integer N = N(k,m, r) such
that for every partition E1∪̇ . . . ∪̇Er of [N ] there exist a, λ1, . . . , λm ∈ N
with a + k

∑m
i=1 λi ≤ N such that for every equivalence class X of ∼k

on [0, k]m there exists some j ∈ [r] such that fa,λ1,...,λm(X) ⊆ Ej , where

fa,λ1,...,λm(x1, . . . , xm) = a+

m∑
i=1

xiλi .

For k = m = 1 there are two equivalence classes of ∼1 on {0, 1} and each of them
consist of exactly one element. Hence, vdW (1, 1) is trivial and N(k,m, r) = 2
suffices for every r ≥ 1.

Moreover, we note that vdW (k, 1) implies Theorem 3.1 for k. In fact, [0, k−1]
and {k} are the only two equivalence classes of ∼k on [0, k]. Statement vdW (k, 1)
guarantees for every r ≥ 1 a constant N = N(k, 1, r) such that for every partition
E1∪̇ . . . ∪̇Er of [N ] there exist a and λ ∈ N and an index j ∈ [r] such that

fa,λ([0, k − 1]) = {a, a+ λ, a+ 2λ, . . . , a+ (k − 1)λ} ⊆ Ej ,
i.e., Ej contains a k-term arithmetic progression. Consequently, Theorem 3.1 fol-
lows from Lemmas 3.2 and 3.3 below. �

Lemma 3.2. If vdW (k, 1) holds, then vdW (k,m) holds for every m ≥ 1.

Proof of Lemma 3.2. We prove Lemma 3.2 by induction onm. The assump-
tion of Lemma 3.2 states that vdW (k, 1) holds, which establishes the induction
start. So we assume vdW (k,m) holds and we will deduce vdW (k,m+ 1).

Let r ≥ 1 be fixed and let N1 = N(k,m, r) and N2 = N(k, 1, rN1) be given by
induction assumption. We set

N(k,m+ 1, r) = N1 ·N2 .

Let E1∪̇ . . . ∪̇Er be a partition of [N ] for N = N1N2. We split [N ] into N2 intervals
I1, . . . , IN2

of length N1. We say two intervals Ii1 and Ii2 have the same pattern
under the partition E1∪̇ . . . ∪̇Er, if for every ` ∈ [N1] the numbers (i1−1)N1 +` and
(i2 − 1)N1 + ` are contained in the same class of the partition E1∪̇ . . . ∪̇Er. There
are R = rN1 different pattern. We fix some enumeration of all patterns and we
consider the following auxiliary partition E′1∪̇ . . . ∪̇E′R = [N2], where E′J contains
those indices i ∈ [N2] for which Ii has the J-th pattern (of the fixed enumeration).

Owing to the definition of N2 = N(k, 1, R) the statement vdW (k, 1) guarantees
the existence of A and Λ ∈ N such that A + kΛ ≤ N2 and for each of the two
equivalence classes [0, k − 1] and {k} of ∼k on [0, k] there exist J1, J2 ∈ [R] such
that fA,Λ([0, k − 1]) ⊆ E′J1 and fA,Λ(k) ⊆ E′J2 . In particular, there exists some
pattern (the J1-st pattern) such that all blocks Ii with i ∈ fA,Λ([0, k−1]) have this
pattern.

Moreover, owing to the choice of N1 = N(k,m, r) we can apply vdW (k,m) to
one (and hence to all) block(s) Ii with i ∈ fA,Λ([0, k−1]) and we get a0, λ1, . . . , λm
with a0 + k

∑m
i=1 λi ≤ N1 such that for every equivalence class X of ∼k on [0, k]m

there exists j ∈ [r] such that

fa0,λ1,...,λm(X) ⊆ Ej .
We set

a = (A− 1)N1 + a0 and λm+1 = Λ ·N1

and note that

a+ k

m+1∑
i=1

λi = a+ k

m∑
i=1

λi + kΛN1 = (A− 1)N1 +

(
a0 + k

m∑
i=1

λi

)
+ kΛN1

≤ (A− 1)N1 +N1 + kΛN1 = (A+ kΛ)N1 ≤ N2N1 = N .
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We will establish vdW (k,m+ 1) by showing that for every equivalence class Y
of ∼k on [0, k]m+1 there exists j ∈ [r] such that

fa,λ1,...,λm+1
(Y ) ⊆ Ej . (3.4)

Note that elements (x1, . . . , xm+1) ∈ [0, k]m+1 with xm+1 = k form triv-
ial equivalence classes in ∼k on [0, k]m+1, which consist of only one elements.
Hence, (3.4) holds for those equivalence classes.

So let Y be an equivalence class contained in [0, k]m× [0, k− 1]}. Owing to the
application of vdW (k, 1) (which ensures the repetition the same pattern on the
intervals Ii of length N1 with i of the form A+ xΛ for x ∈ [1, k − 1]) we infer that
for every ` ∈ [N1] there exists some j ∈ [r] such that{

(A− 1)N1 + `+ xλm+1 : x ∈ [0, k − 1]
}

=
{

(A− 1)N1 + `+ xΛN1 : x ∈ [0, k − 1]
}
⊆ Ej .

For given (x1, . . . , xm+1) from an equivalence class contained in [1, k]m × [0, k − 1]
we apply the last observation with ` = a0 +

∑m
i=1 xiλi ≤ N1 and obtain that

a+

m+1∑
i=1

xiλi = (A− 1)N1 +

(
a0 +

m∑
i=1

xiλi

)
+ xm+1λm+1

and

a+

m∑
i=1

xiλi = (A− 1)N1 +

(
a0 +

m∑
i=1

xiλi

)
are contained in the same partition class, say Ej . Moreover, it follows from
the application of vdW (k,m) that also (a +

∑m
i=1 yiλi) ∈ Ej for every vector

(y1, . . . , ym) ∈ [0, k]m with the property (x1, . . . , xm) ∼k (y1, . . . , ym). Since for all
vectors (x1, . . . , xm, xm+1), (y1, . . . , ym, ym+1) ∈ Y ⊆ [1, k]m × [0, k − 1] we have
(x1, . . . , xm) ∼k (y1, . . . , ym) on [1, k]m assertion (3.4) follows. �

It is left to prove the following lemma, which allows an induction on k.

Lemma 3.3. If vdW (k,m) holds for every m ≥ 1, then vdW (k + 1, 1) holds.

Proof of Lemma 3.3. Let r ≥ 1. Set N = N(k+1, 1, r) = 2N(k, r, r), where
N(k, r, r) is given by vdW (k,m) applied with m = r. Let E1∪̇ . . . ∪̇Er = [N ] be
arbitrary. The statement vdW (k,m) yields integers a, λ1, . . . , λr ∈ N such that
a + k

∑r
i=1 λi ≤ N(k, r, r) and for every equivalence class X of ∼k on [0, k]r we

have fa,λ1,...,λr (X) ⊂ Ej for some j ∈ [r].
It follows from the pigeonhole principle that there exist numbers s, t ∈ [0, r]

with s < t such that a + k
∑s
i=1 λi and a + k

∑t
i=1 λi are contained in the same

partition class, say Ej . We set

A = a+ k

s∑
i=1

λi and Λ =

t∑
i=s+1

λi

and claim that fA,Λ([0, k]) ⊆ Ej . Since [0, k] is the only non-trivial equivalence
class of ∼k+1 on [0, k+1] and A+(k+1)Λ ≤ a+(k+1)

∑r
i=1 λi ≤ 2N(k, r, r) = N

this establishes vdW (k + 1, 1) for r.
However, for every x ∈ [0, k − 1] we have

A+ xΛ =

(
a+ k

s∑
i=1

λi

)
+ x

(
t∑

i=s+1

λi

)
⊆ fa,λ1,...,λr (X) ,
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where X is the equivalence class {k}s × [0, k − 1]r−s of ∼k on [0, k]r. Hence, there
exists some j such that A+ xΛ ∈ Ej for every x ∈ [0, k − 1]. Finally, we note that
also A+ kΛ ∈ Ej , since A = A+ 0 · Λ ∈ Ej and since

A+ kΛ = a+ k

t∑
i=1

λi and A = a+ k

s∑
i=1

λi

are in the same partitions class due to the choice of s and t above. �

3.2. Topological proof of van der Waerden’s theorem

In this section we give another proof of van der Waerden’s theorem. This
proof uses ideas from topological dynamics (see Appendix A.2 for the necessary
background). Roughly speaking, we deduce Theorem 1.4 from a multiple recur-
rence theorem (see Section 3.2.2), which can be viewed as a strengthening of The-
orem A.17. Such a proof of van der Waerden’s theorem first appeared in the work
of Furstenberg and Weiss [38] (see also [37]) and it grew out of Furstenberg’s proof
of Szemerédi’s theorem [36].

3.2.1. The topological van der Waerden theorem. We first state the
following recurrence result, which can be viewed as a topological version of Theo-
rem 1.4.

Theorem 3.4 (topological van der Waerden theorem). Let (X,T ) be a dynam-
ical system, where X is a compact metric space with metric % and let k ∈ N. There
exists some x ∈ X such that for every ε > 0 there exists an n ∈ N such that

%(x, T in(x)) < ε

simultaneously for every i ∈ [k].

In Section 3.2.2 we prove the multiple recurrence theorem (Theorem 3.6) which
is more general than the topological van der Waerden theorem. Below we first
deduce Theorem 1.4 from Theorem 3.4. In this proof the following metric space
will play a prominent rôle.

Let A be a finite set. We define a metric % on the set of all functions x,
y : N→ A as follows

%(x,y) =

{
0 , if x(n) = y(n) for every n ∈ N,
1
m , where m = min{n ∈ N : x(n) 6= y(n)}.

(3.5)

It is straightforward to check that (AN, %) is a metric space and we omit this here.
In fact, more is true and below we show that the metric % induces the product
topology (of the discrete topologies) on AN. Indeed, for x ∈ AN and ε > 0 we see
that the open ball

Bε(x) = {y ∈ AN : %(x,y) < ε}
in the metric space (AN, %) consists precisely of those functions y ∈ AN for which
y(j) = x(j) for every j = 1, . . . , b1/εc. Consequently,

Bε(x) = {x(1)} × · · · × {x(b1/εc)} ×
∏
n>1/ε

A ,

which is in the basis of product topology on AN. Conversely, since A is finite, every
basic open set in the product topology on AN can be written as the finite union of
sets of the form {a1} × · · · × {ai} ×

∏
n>iA with a1, . . . , ai ∈ A. In other words,

every basic open set in product topology on AN can be written as the union of open
balls of the form Bε(x) for some x ∈ AN and ε > 0. Hence, we have shown that the
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metric % induces the product topology on AN and owing to Tychonoff’s theorem
(Theorem A.10) the metric space (AN, %) is compact.

We shall consider the left shift on AN defined by

(T ◦ x)(n) = x(n+ 1) (3.6)

for every x ∈ AN and every n ∈ N. Clearly, if %(x,y) ≤ 1/(n+ 1) for some n ∈ N,
then %(T (x), T (y)) ≤ 1/n and, therefore, T is uniformly continuous on (AN, %). We
summarise the above in the following proposition.

Proposition 3.5. Let A be a finite set and let % : AN → AN be defined by (3.5).
Then (AN, %) is a compact metric space and the induced topology is the product
topology of the discrete topology on A. Moreover, the left shift T : AN → AN defined
in (3.6) is uniformly continuous. �

After these preparations we prove van der Waerden’s theorem from the topo-
logical version.

Proof: Theorem 3.4 ⇒ Theorem 1.4. Let integers r ≥ 1 and k ≥ 1 be
fixed and let E1∪̇ . . . ∪̇Er be some partition of N. We interpret this partition as an
element x from [r]N defined by x−1(j) = Ej for every j ∈ [r]. Let % be the metric
on [r]N given in (3.5) and let T be the left shift defined in (3.6). We let X be the
closure in ([r]N, %) of the orbit of x under T , i.e.,

Ox = {Tn(x) : n ∈ N} and X = cl(Ox) .

Since ([r]N, %) is compact (see Proposition 3.5), we have that (X, %) is a compact
metric space. Moreover, T is continuous and since T (Ox) ⊆ Ox we have

X = cl(Ox) ⊇ cl(T (Ox)) =
⋂

C′ closed
C′⊇T (Ox)

C ′
(∗)
⊇

⋂
C closed
C⊇Ox

T (C)

⊇ T

( ⋂
C closed
C⊇Ox

C

)
= T (cl(Ox)) = T (X) ,

where the continuity of T was used for (∗).
Consequently, (X,T ) is a dynamical system, which satisfies the assumptions of

Theorem 3.4 and applying it with k− 1 and ε = 1/3, yields some y ∈ X and λ ∈ N
such that

%
(
y, T iλ(y)

)
<

1

3
(3.7)

for every i ∈ [k − 1]. Moreover, we infer from the continuity of T that T iλ is
continuous for every i ∈ [k− 1]. Hence, there exists some δ > 0 such that for every
z ∈ X with %(y, z) < δ we have

%
(
T iλ(y), T iλ(z)

)
<

1

3
(3.8)

for every i ∈ [k − 1]. In particular, there exists some z ∈ Ox satisfying (3.8) and,
therefore, there exists some a ∈ N such that (3.8) holds for z = T a(x). With out loss
of generality, we may assume %(y, T a(x)) < δ < 1/3. Since T a(T b(z)) = T a+b(z)
by definition of the left shift, we infer from (3.7) and (3.8) applied to z = T a(x)
that

%
(
T a(x), T a+iλ(x)

)
≤ %
(
T a(x),y

)
+ %
(
y, T iλ(y)

)
+ %
(
T iλ(y), T a+iλ(x)

)
< 1

for every i ∈ [k− 1]. In particular, (T a ◦x)(1) = (T a+iλ ◦x)(1) for every i ∈ [k− 1]
and, therefore,

T a(x(1)) = T a+λ(x(1)) = T a+2λ(x(1)) = · · · = T a+(k−1)λ(x(1)) .
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Recalling that T is the left shift on [r]N we infer that there exists some j ∈ [r] such
that

j = x(a+ 1) = x((a+ 1) + λ) = x((a+ 1) + 2λ) = · · · = x((a+ 1) + (k − 1)λ) ,

which means that ((a+ 1) + iλ) ∈ Ej for every i = 0, . . . , k− 1, i.e., Ej contains an
arithmetic progression of length k. �

3.2.2. The multiple recurrence theorem. In this section we verify Theo-
rem 3.4. In fact, we show the following more general multiple recurrence theorem.

Theorem 3.6 (multiple recurrence theorem). Let (X, %) be a compact metric
space and let T1, . . . , Tk be a commuting family of continuous maps on X. Then
there exists an x ∈ X such that for every ε > 0 there exists an n ∈ N such that

%(x, Tni (x)) < ε

simultaneously for every i ∈ [k].

The topological van der Waerden theorem (Theorem 3.4) follows from the mul-
tiple recurrence theorem by setting for i ∈ [k]

Ti = T i = T ◦ · · · ◦ T︸ ︷︷ ︸
i-times

,

which are clearly commuting.
The proof of Theorem 3.6 splits into two parts. First we prove it under the

more restrictive assumption that the continuous commuting maps T1, . . . , Tk are
indeed homeomorphisms (see Proposition 3.9). We remark that van der Waerden’s
theorem for partitions of Z can be deduced directly from Proposition 3.9, since in
this case we would consider the left shift T on [r]Z, which is a homeomorphism. On
the other hand, it is not hard reduce Theorem 3.6 to Proposition 3.9 and we give
those details in Section 3.2.2.2

3.2.2.1. Multiple recurrence for homeomorphisms. In the is section we verify a
version of Theorem 3.6, where we additionally assume that the continuous maps
Ti are homeomorphisms on X. We begin with the following lemma concerning
homogeneous subsets.

Definition 3.7 (homogeneous set). Let (X, %) be a compact metric space and
T : X → X be continuous. A closed non-empty set Z ⊆ X is homogeneous with
respect to T , if there exists a group of homeomorphisms Γ of X such that each
S ∈ Γ commutes with T (i.e., S ◦ T = T ◦ S) and S(Z) ⊆ Z for every S ∈ Γ and
such that (Z,Γ) is a minimal dynamical system.

Proposition 3.8. Let (X, %) be a compact metric space, let T : X → X be a
continuous map on X, and let Z ⊆ X be homogeneous with respect to T . Suppose
that for every ε > 0 there exist x, y ∈ Z and m ∈ N such that %(x, Tm(y)) < ε.
Then the following holds

(i ) for every δ > 0 and every z ∈ Z there exist z′ ∈ Z and n ∈ N such that
%(z, Tn(z′)) < δ,

(ii ) for every δ > 0 there exist z ∈ Z and n ∈ N such that %(z, Tn(z)) < δ,
(iii ) for every δ > 0 such that Zδ = {z ∈ Z : ∃n ∈ N s.t. %(z, Tn(z)) < δ} is

dense in Z, and
(iv ) there exists some z ∈ Z such that for every δ > 0 there exists n ∈ N such

that %(z, Tn(z)) < δ.

Proof. We first verify part (i ) and then we show

(i ) ⇒ (ii ) ⇒ (iii ) ⇒ (iv ).
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The proof given below of assertions (i ) and (ii ) of Proposition 3.8 was attributed
to Rufus Bowen (see [38, Proposition 1.2] or [37, Section 2.1]).

Proof of (i ): Let δ > 0 and z ∈ Z be given and let Γ be the group of home-
omorphism guaranteed by the assumption that Z is homogeneous. We appeal to
Proposition A.21, applied to (Z,Γ) with δ/2 and obtain a finite subset Γ′ ⊆ Γ
with the property that for every x, y ∈ Z there exists some S ∈ Γ′ such that
%(x, S(y)) < δ/2. In particular, for x = z we have that for every y ∈ Z there exists
S ∈ Γ′ with

%(z, S(y)) < δ/2 . (3.9)

Moreover, by the assumption of Proposition 3.8 there exist y, y′ ∈ Z and m ∈ N
such that

%(y, Tm(y′)) < ε ,

where ε is sufficiently small so that for every S ∈ Γ′ the continuity of S implies
that %(S(x), S(x′)) < δ/2 for all x, x′ ∈ X with %(x, x′) < ε. Note that we used
the notion of uniform continuity here. However, this is justified since between
compact metric spaces every continuous function is uniformly continuous (see The-
orem A.13).

In particular, this choice of ε guarantees for every S ∈ Γ′ that

%
(
S(y), Tm(S(y′))

)
= %
(
S(y), S(Tm(y′))

)
< δ/2 ,

where we used that every S ∈ Γ′ commutes with T . It follows from (3.9) applied
with y = y′ that there exists some S ∈ Γ′ such that we have

%
(
z, Tm(S(y′))

)
≤ %
(
z, S(y′)

)
+ %
(
S(y′), Tm(S(y′))

)
< δ .

Setting z′ = S(y′) yields (i ).
(i ) ⇒ (ii ): Let δ > 0 be given. We shall repeatedly apply (i ). Fix some

z0 ∈ Z. We will inductively apply (i ), and the j-th application will yield zj ∈ Z
and nj ∈ N. Suppose for j ≥ 0 the points z0, z1, . . . , zj ∈ Z and n1, . . . , nj were
chosen already.

Let zj+1 ∈ Z and nj+1 ∈ N be given by assertion (i ) applied for εj+1 ≤ δ/2j+2

and zj , where εj+1 > 0 was chosen in such a way that the continuity of T implies

%
(
Tns+···+nt(x), Tns+···+nt(x′)

)
<

δ

2t+2
(3.10)

for all 1 ≤ s ≤ t ≤ j and all x, x′ ∈ Z with %(x, x′) < εj+1.
This way we obtain sequences (zj)j∈N0 and (nj)j∈N such that

%(zj , T
nj+1(zj+1)) < εj+1 ≤

δ

2j+2
(3.11)

for every j ∈ N0. A simple inductive argument shows that for every 0 ≤ s < t we
have

%
(
zs, T

ns+1+···+nt(zt)
)
<
δ

2

t∑
j=s+1

2−j <
δ

2
. (3.12)

In fact, this estimate holds for t = s+ 1 due to (3.11) and, hence, by induction we
have

%
(
zs, T

ns+1+···+nt+1(zt+1)
)

≤ %
(
zs, T

ns+1+···+nt(zt)
)

+ %
(
Tns+1+···+nt(zt), T

ns+1+···+nt(Tnt+1(zt+1))
)

<
δ

2

t∑
j=s+1

2−j +
δ

2t+2
=
δ

2

t+1∑
j=s+1

2−j ,

where we used that %(zt−1, T
nt(zt)) < εt and (3.10) for the last estimate.
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The compactness of the metric space Z (inherited from the compactness of X)
implies that there exist integers s and t with 0 ≤ s < t such that %(zs, zt) < δ/2
and, hence, (3.12) yields

%
(
zt, T

ms+1+···+mt(zt)
)
≤ %(zt, zs) + %

(
zs, T

ms+1+···+mt(zt)
)
<
δ

2
+
δ

2
= δ ,

which concludes the proof of assertion (ii ) of Proposition 3.8.
(ii ) ⇒ (iii ): Let δ > 0 be given and let U ⊇ Bε(x) be some open set in Z.

Again we appeal to Proposition A.21, applied to (Z,Γ) with ε and obtain the finite
set Γ′ ⊆ Γ. Moreover, we apply the conclusion of part (ii ) of Proposition 3.8 for
δ′ > 0 sufficiently small, so that for every S ∈ Γ′ we have %(S(x′), S(x′′)) < δ for
all x′, x′′ ∈ Z with %(x′, x′′) < δ′. Part (ii ) yields some n ∈ N and z ∈ Z such
that %(z, Tn(z)) < δ′ and the choice of δ′ yields %(S(z), S(Tn(z))) < δ for every
S ∈ Γ′. Moreover, owing to the properties of Γ′ there exists some S ∈ Γ′ such that
%(x, S(z)) < ε.

Summarising, we have shown that S(z) ∈ U and

%
(
S(z), Tn(S(z))

)
= %
(
S(z), S(Tn(z))

)
< δ ,

which means S(z) ∈ Zδ. Since U was arbitrary, this means that every open set
in Z contains some element from Zδ, i.e., Zδ is dense in Z.

(iii ) ⇒ (iv ): Finally, we verify conclusion (iv ) of Proposition 3.8. For every
N ∈ N we consider the sets Z1/N . It follows from the continuity of Tn for every
n ∈ N that Z1/N is open for every N ∈ N. Moreover, Z1/N is dense due to (iii ).
Hence, it follows for example from Baire’s catagory theorem that

⋂
N∈N Z1/N 6= ∅

(in fact, it is dense itself) and every z ∈
⋂
N∈N Z1/N satisfies conclusion (iv ) of

Proposition 3.8.
Alternatively, we can show

⋂
N∈N Z1/N 6= ∅ directly. Clearly, Z1 ⊇ Z1/2 ⊇

Z1/3 ⊇ . . . form a chain (under inclusion) of non-empty open sets and, hence, we
can find a chain of non-empty closed subsets (Y1/N )N∈N with Y1/N ⊆ Z1/N . The
chain (Y1/N )N∈N has the finite intersection property and, hence, the compactness
of Z yields

⋂
N∈N Z1/N ⊇

⋂
N∈N Y1/N 6= ∅ (see Proposition A.8). �

Now we are ready to prove the Theorem 3.6 for homeomorphisms.

Proposition 3.9 (multiple recurrence theorem for homeomorphisms). Let
(X, %) be a compact metric space and let T1, . . . , Tk be a commuting family of home-
omorphisms on X. Then there exists an x ∈ X such that for every ε > 0 there
exists an n ∈ N such that

%(x, Tni (x)) < ε

simultaneously for every i ∈ [k].

Proof. We proceed by induction on k. For k = 1 Proposition 3.9 follows from
Birkhoff’s recurrence theorem (Theorem A.17).

Let k > 1 and let Γ be the group generated by T1, . . . , Tk. Owing to Proposi-
tion A.22 we may assume without loss of generality that (X,Γ) is minimal dynam-
ical system.

In the proof we consider the k-fold product X = X × · · · × X and let ∆(X)
be the diagonal elements in X, i.e., ∆(X) = {(x, . . . , x) : x ∈ X} ⊆X. We can fix
the following metric % on X by setting

%(x,y) =

k∑
i=1

%(xi, yi)

for every x = (x1, . . . , xk), y = (y1, . . . , yk) ∈X. We fix T = T1×· · ·×Tk : X →X
in the obvious way

T (x) = (T1(x1), . . . , Tk(xk))



3.2. TOPOLOGICAL PROOF OF VAN DER WAERDEN’S THEOREM 31

for every x = (x1, . . . , xk) ∈ X. It follows from those definitions that (X,%) is a
compact metric space and T is continuous on X (actually it is even a homeomor-
phism). Moreover, for every S ∈ Γ let S = S × · · · × S and Γ = {S : S ∈ Γ}.
The minimality of (X,Γ) implies that (∆(X),Γ) is a minimal dynamical system.
Moreover, every S ∈ Γ is a homeomorphism on X and commutes with T . Hence,
∆(X) is homogeneous with respect to T . Furthermore, we claim that ∆(X) satis-
fies the assumption of Proposition 3.8. In fact, we apply the induction assumption
of Proposition 3.9 to the maps R1, . . . , Rk−1 defined by Ri = Ti ◦ T−1

k . The in-
duction assumption yields some x ∈ X such that for every ε > 0 there exists
some m ∈ N such that %(x,Rmi (x)) < ε for every i ∈ [k − 1] and, hence, for
x = (x, . . . , x) ∈ ∆(X) and y = (T−mk (x), . . . , T−mk (x)) ∈ ∆(X), we have

%(x,Tm(y)) =

k∑
i=1

%(x, Tmi (T−mk (x)) =

k−1∑
i=1

%(x,Rmi (x)) + %(x, x) < (k − 1)ε .

Consequently, Proposition 3.8 part (iv ) yields the existence of some z =
(z, . . . , z) ∈ ∆(X) such that for every δ > 0 there exists some n ∈ N such that
%(z,T n(z)) < δ and, in particular, %(z, Tni (z)) < δ for every i ∈ [k]. �

3.2.2.2. Multiple recurrence for continuous maps. Below we verify Theorem 3.6
and reduce it to the “homeomorphism version” (Proposition 3.9).

Proof of Theorem 3.6. Let (X, %) be a compact metric space and T1, . . . , Tk
be a commuting family of continuous maps on X. We consider the product space X

of all functions from Zk to X, i.e., X = XZk . Owing to Tychonoff’s theorem (The-
orem A.10) the topological space X is compact. Moreover, for fix an enumeration
τ of Zk (i.e., τ : Zk → N is a bijection) and set % : X ×X → R≥0

%τ (f, g) =
∑
~z∈Zk

%(f(~z ), g(~z ))

2τ(~z )
(3.13)

for all functions f , g : Zk → X. It is easy to check that %τ defines a metric on X
and that %τ induces the product topology on X (the proof is similar to the proof
that following (3.5) in Section 3.2.1).

For i ∈ [k] we consider left shift in the i-th coordinate Si : X →X defined for
every f ∈X by

(Si ◦ f)(~z ) = f(z1, . . . , zi−1, zi + 1, zi+1, . . . , zk) ,

for every ~z = (z1, . . . , zk) ∈ Zk. It is straightforward to check that Si is a homeo-
morphism on X for every i ∈ [k] and, clearly, S1, . . . , Sk commute. Summarising,
(X,%τ ) is a compact metric space and S1, . . . , Sk are commuting homeomorphisms
on X.

We will apply Proposition 3.9 to the following closed subset Y ⊆ X. Let Y
contain those functions f ∈X satisfying

(Si ◦ f)(~z ) = Ti(f(~z )) for every i ∈ [k] and ~z ∈ Zk .

For later reference we note that the definition of Y yields for every f ∈ Y , n ∈ N,
~z ∈ Zk, and i ∈ [k] that

(Sni ◦ f)(~z ) = Tni (f(~z )) . (3.14)

It is easy to see that X \ Y is open. In fact, if f ∈ X \ Y , then there exists
~z = (z1, . . . , zk) ∈ Zk and i ∈ [k] such that for ~zi = (z1, . . . , zi + 1, . . . , zk)

T (f(~z )) 6= f(~zi) .
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Consequently, every function g ∈ X which takes the same values on ~z and ~zi as f
is not in Y . The set of all those functions g defines a basic open set in the product
topology of X, which is contained in X \ Y and, hence, X \ Y is open.

Moreover, it follows from the definition of Y that for every f ∈ Y we have
Si(f) ∈ Y and S−1

i (f) ∈ Y for every i ∈ [k]. In other words, Y is invariant under

Si and S−1
i for every i ∈ [k].

We are going to apply Proposition 3.9 to S1, . . . , Sk and the (Y ,%τ ). However,
in order to ensure that (Y ,%τ ) is indeed a (compact) metric space, we still have
to verify that Y is non-empty. For every n ∈ N we define a function fn : Zk → X
as follows: Fix some x ∈ X and for ~z = (z1, . . . , zk) ∈ Zk with zi < −n for some
i ∈ [k] we set fn(~z ) = x and for all other ~z = (z1, . . . , zk) ∈ Zk we set

fn(~z ) = T z1+n
1 (T z2+n

2 (. . . (T zk+n
k (x)) . . . )) .

Since X is compact there exists a converging subsequence (fnj )j∈N and we set

f = limj→∞ fnj . Moreover, for every n ∈ N, ~z ∈ Zk with z1, . . . , zk ≥ −n, and
i ∈ [k] it follows from the assumption that T1, . . . , Tk are commuting that

(Si ◦ fn)(~z ) = fn(z1, . . . , zi + 1, . . . , zk)

= T z1+n
1 (. . . (T zi+1+n(. . . (T zk+n

k (x)) . . . )) . . . )

= Ti(T
z1+n
1 (. . . (T zi+n(. . . (T zk+n

k (x)) . . . )) . . . ) = Ti(fn(~z )) .

Consequently, (Si ◦ f)(~z ) = Ti(f(~z )) for every ~z ∈ Zk and every i ∈ [k] and,
therefore, f ∈ Y

Summarising the above, we have shown that (Y ,%τ ) is a compact metric space,
which is invariant under S1, . . . , Sk and S−1

1 , . . . , S−1
k . Hence, it follows from the

fact that S1, . . . , Sk are commuting homeomorphism on X, that S1, . . . , Sk are also
commuting homeomorphism on Y . In other words, (Y ,%τ ) and S1, . . . , Sk satisfy
the assumptions of Proposition 3.9, which yields a function h ∈ Y such that for
every ε > 0 there exists n ∈ N with

%τ (h, Sni (h)) < ε (3.15)

for every i ∈ [k]. Recalling, that τ is some fixed enumeration of Zk. We set
~z ∗ = τ−1(1) ∈ Zk. It follows from (3.15) and the definition of %τ in (3.13), that

%
(
h(~z ∗), (Sni ◦ h)(~z ∗)

)
< 2ε .

Hence, for x∗ = h(~z ∗) ∈ X we obtain

%
(
x∗, Tni (x∗)

)
= %
(
h(~z ∗), Tni (h(~z ))

) (3.14)
= %

(
h(~z ∗), (Sni ◦ h)(~z ∗)

)
< 2ε

for every i ∈ [k], which concludes the proof of Theorem 3.6. �

3.3. Two proofs of Roth’s theorem

In this section we focus on Roth’s theorem, the first non-trivial case of Sze-
merédi’s theorem, i.e., Theorem 1.6 for k = 3. This result was first obtained by
Roth [77] and in Section 3.3.2 we give the improved proof of Roth from [78]. Be-
fore in Section 3.3.1 we present a combinatorial proof of Roth’s theorem due to
Szemerédi (see [84, Remark on page 94]).

We begin with a few observations. Throughout this section we mean by an
APk for an integer k ∈ N an (non-trivial) arithmetic progression of length k. Note
that for k = 3 an AP3 consists of three integers x < y < z satisfying x + z = 2y.
We say a set A ⊆ N is APk-free, if it contains no APk. For k ∈ N and a subset
X ⊆ N we set

rk(X) = max{|A| : A ⊆ X and A is APk-free}
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and for X = [n] ⊆ N we omit the square brackets and simply write rk(n). Sze-
merédi’s theorem is equivalent to the assertion that for every k ∈ N the ratio
rk(n)/n tends to zero as n→∞. It follows from the definition that rk(X) = rk(n)
whenever X is an arithmetic progression of length n and, hence, in particular, when
X is an interval of length n. Consequently, the pigeonhole principle yields

rk(n+m) = rk([n+m]) ≤ rk([n]) + rk([n+ 1, n+m]) = rk(n) + rk(m)

for all integers n, m ∈ N. In other words, rk(n) is a subadditive function and owing
to Fekete’s lemma (Proposition B.2) the limit τk = limn→∞ rk(n)/n exists and for
every n ∈ N we have

rk(n)

n
≥ τk . (3.16)

In Sections 3.3.1 and 3.3.2 we will show Roth’s theorem from [77] and establish

τ3 = 0 . (3.17)

in two very different ways. First we give a combinatorial argument due to Szemerédi
(see [84, page 94]) in Section 3.3.1 and then we give the improved version of Roth’s
original argument from [78] in Section 3.3.2.

3.3.1. Szemerédi’s combinatorial proof of Roth’s theorem. The key
ingredient in Szemerédi’s argument is the following density version of Hilbert’s
cube lemma (Theorem 1.2). We recall that for integers a, λ1, . . . , λk the k-cube
C(a;λ1, . . . λk) spanned by a, λ1, . . . , λk is defined by

C(a;λ1, . . . λk) =

{
a+

k∑
i=1

δiλi : (δ1, . . . , δk) ∈ {0, 1}k
}
.

The following result asserts that sets X ⊆ [n] of non-vanishing density contain
cubes of dimension log log(n).

Proposition 3.10 (Cube lemma (density version)). Let ε > 0, n ∈ N, and
X ⊆ [n] satisfy |X| ≥ εn. Suppose for some integer k ∈ N we have

n ≥ 42k−1

ε2k

holds, then there exist a, λ1, . . . , λk ∈ N such that C(a;λ1, . . . λk) ⊆ X.
In particular, every set X ⊆ J with |X| ≥ ε|J | contains a k-cube for

k ≥ blog2 log2(|J |)− log2 log2(4/ε)c
for every interval J ⊆ N.

We refer to Proposition 3.10 as a density version of Theorem 1.2 since it guar-
antees a k-cube for subsets of [n] of positive density, while Theorem 1.2 (via the
compactness principle) is an assertion for partitions of [n]. Similarly, we may view
Szemerédi’s theorem (Theorem 1.6) as a density version of van der Waerden’s the-
orem (Theorem 1.4). Also note that k in Proposition 3.10 is not necessarily fixed
and can slowly grow with n, which will become important later. We remark that
Proposition 3.10 is best possible in the sense that a a simple probabilistic argument
(or a counting argument as in the proof of Theorem 2.4) shows that for sufficiently
large n there are subsets X ⊆ [n] with |X| ≥ n/2, which contain no k-cube with
k ≥ (1 + ξ) log2 log2(n).

Proof. Let ε, n, X, and k satisfy the assumptions of Proposition 3.10 Set
X0 = X. Inductively we define for i = 1, . . . k integers λi ∈ N and sets Xi ⊆ Xi−1

such that

{λi + x : x ∈ Xi} ⊆ Xi−1 and |Xi| ≥
|Xi−1|2

4n
≥ ε2in

42i−1
.
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Note that the lower bound on the size of Xi yields |Xk| ≥ 1 and |Xi−1| ≥ 2 for every
i = 0, . . . , k−1. Suppose λ1, . . . , λi−1 ∈ N and X0 ⊇ X1 ⊇ · · · ⊇ Xi−1 were defined

already. Every pair {x, y} ∈
(
Xi−1

2

)
with x < y has a difference y− x ∈ [n− 1] and,

hence, one difference appears for at least(|Xi−1|
2

)
n− 1

≥ |Xi−1|2

4n
(3.18)

pairs, where we used |Xi−1| ≥ 2. Let λi ∈ N such a difference and set

Xi = {x ∈ Xi−1 : x+ λi ∈ Xi−1} .
Clearly, the choice of Xi and λi yields Xi ⊆ Xi−1 and {λi + x : x ∈ Xi} ⊆ Xi−1.
Moreover, (3.18) and the inductive bound on |Xi−1| gives

|Xi| ≥
|Xi−1|2

4n
≥ (ε2i−1

n/42i−1−1)2

4n
=

ε2in

42i−1
.

Finally, we fix some a ∈ Xk. The definition of λ1, . . . , λk and of the sets X1, . . . , Xk

yields by induction that the (k − i+ 1)-cube C(a;λk, . . . , λi) is contained in Xi−1.
Consequently, the k-cube C(a;λk, . . . , λ1) = C(a;λ1, . . . , λk) ⊆ X0 = X. �

After these preparations we verify (3.17).

Szemerédi’s proof of (3.17). We assume for a contradiction that τ3 = τ for
some τ > 0. We set

ξ = min

{
τ

200
,
τ2

10

}
. (3.19)

In view of (3.16) we may choose m0 ∈ N to be sufficiently large such that

τ ≤ r3(m)

m
≤ τ + ξ (3.20)

for every m ≥ m0. Finally, we let n be sufficiently large so that

5
⌊

log2 log2

(√
n/100

)
− log2 log2(8/τ)

⌋
≥ log2 log2(n) (3.21)

and
τ2

100
log2 log2(n) ≥ m0 (3.22)

and let X ⊆ [n] be an AP3-free set with |X| ≥ τn. Without loss of generality,
we may assume that n is a square number and that it is divisible by 100. Owing
to (3.20) we have

|X ∩ Y | ≤ (τ + ξ)|Y |
for every set Y , which forms an arithmetic progression of length at least m0, since
otherwise |X ∩ Y | would contain an AP3. In particular,

|X ∩ [0.49n]|+ |X ∩ [0.5n+ 1, n]| ≤ (τ + ξ) · 0.99n

and, consequently, for the interval I = [0.49n + 1, 0.5n] we infer from ξ ≤ τ/200
that

|X ∩ I| ≥ τn− (τ + ξ) · 0.99n ≥ τ

2
|I| . (3.23)

Splitting I into
√
n/100 intervals of length

√
n/100 we infer that there exists such

an interval J ⊂ I with |X ∩ J | ≥ τ |J |/2. Hence, Proposition 3.10 yields integers a
and λ1, . . . , λk ∈ N such that the k-cube C(a;λ1, . . . , λk) is contained in X ∩J with

k =
⌊

log2 log2

(√
n/100

)
− log2 log2(8/τ)

⌋
(3.24)

and we have
k∑
i=1

λi ≤ |J | =
√
n

10
. (3.25)
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We set C0 = {a} and for i ∈ k set Ci = C(a;λ1, . . . , λi), i.e., Ci is the i-cube spanned
by a and λ1, . . . , λi. Moreover, for i = 0, . . . , k we set

Zi = {2y − x : x ∈ X ∩ [0.49n] and y ∈ Ci} .

Note that for every z ∈ Zi there exist x ∈ X and y ∈ Ci ⊆ X with x < y < z such
that x+ z = 2y, i.e., x, y, z forms an AP3 in [n]. In particular, Zi ∩X = ∅, since X
is AP3-free.

Similar as in (3.23) one can show that |X ∩ [0.49n]| ≥ τ
2 · 0.49n and, therefore,

|Z0| ≥ |X ∩ [0.49n]| ≥ 0.245τn . (3.26)

Moreover, we have Ci = Ci−1 ∪ {y + λi : y ∈ Ci−1},

Zi = Zi−1 ∪ {z + 2λi : z ∈ Zi−1} , (3.27)

and

Z0 ⊆ Z1 ⊆ · · · ⊆ Zk ⊆ [n] . (3.28)

In particular, there exists some i ∈ [k] such that

|Zi \ Zi−1| ≤
n

k
. (3.29)

Recalling that k = Ω(log2 log2(n)), we have |Zi \ Zi−1| ≤ n/k = o(n), which
is crucial for this proof of Roth’s theorem. Below we shall show that Zi−1 can
be decomposed into “few” (in fact, into n/k = o(n)) arithmetic progressions with
difference 2λi. As a consequence we will infer that [n]\Zi−1 can be decomposed into
2λi+o(n) = o(n) arithmetic progressions with difference 2λi Since X∩Zi−1 = ∅ and
|Zi−1| ≥ |Z0| = Ω(n) it follows that the density of X on [n]\Zi−1 is “substantially”
larger compared to the density of X on [n]. Consequently, the density of X on one
of the arithmetic progressions A with difference 2λi in [n] \ Zi must be “large”.
In fact, |X ∩ A| > (τ + ξ)|A| for some sufficiently large arithmetic progression A,
so that (3.20) yields that X ∩ A contains an AP3. However, this contradicts the
assumption that X is AP3-free. Below we give the details of this outline.

Let A be the family of maximal arithmetic progressions with difference 2λi
completely contained in Zi−1. Clearly, the arithmetic progressions in A are pairwise
disjoint and {b, b+ 2λi, . . . , b+ (`− 1) · 2λi} ⊆ Zi−1 is a set in A (for some b ∈ Zi−1

and ` ∈ N) if and only if b + ` · 2λi ∈ Zi \ Zi−1. Conversely, we infer from (3.27)
that for every element of z ∈ Zi \ Zi−1 we have z − 2λi ∈ Zi−1. Hence, there
is a one-to-one correspondence between the arithmetic progression in A and the
elements in Zi \ Zi−1 and owing to (3.29) we have

|A| ≤ n

k
.

Next we consider the family B of maximal arithmetic progressions with differ-
ence 2λi completely contained in [n]\Zi−1. Firstly, note that [n] can be decomposed
into 2λi arithmetic progressions with difference 2λi (the equivalence classes of [n]
modulo 2λi). Every member A ∈ A is contained in one of those equivalence classes
and removing A from [n] splits this equivalence class into two arithmetic progres-
sions with difference 2λi. Repeating this argument for every A ∈ A shows that the
set [n] \ Zi−1 can be decomposed into at most 2λi + |A| arithmetic progressions
with difference 2λi, i.e.,

|B| ≤ 2λi +
n

k
. (3.30)

Finally, we say an arithmetic progression B ∈ B is short if its length is is less
than m0 and otherwise it is called long. Note that for every long B we must have
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|X ∩ B| ≤ (τ + ξ)|B|, due to (3.20). Moreover, since trivially |X ∩ B| ≤ m0 for
every short B ∈ B and since X ∩ Zi−1 = ∅ we obtain

|X| = |X∩([n]\Zi−1)| ≤
∑
B∈B

B is long

(τ+ξ)|B|+
∑
B∈B

B is short

m0 ≤ (τ+ξ)(n−|Zi−1|)+m0|B| .

Owing to (3.22), (3.25), (3.26), (3.28), and (3.30) we have

|X| ≤ τn+ ξn− 0.245τ2n+
τ2

100
log2 log2(n)

(√
n

5
+
n

k

)
Straightforward calculations involving the choice of ξ ≤ τ2/10 from (3.19) and (3.24)
combined with (3.21) show that

ξn+
τ2

100
log2 log2(n)

(√
n

5
+
n

k

)
< 0.245τ2n ,

which yields the contradiction |X| < τn. �

3.3.2. Roth’s analytical proof. In this section we follow the argument of
Roth and establish (3.17) by means of Fourier analysis (see Appendix B.2 for rel-
evant basic facts and notation). We will show the following quantitative version
of (3.17).

Theorem 3.11. For every τ > 0 the following holds. If A ⊆ [n] with |A| ≥ τn
for some n ≥ exp exp(1200/τ), then A contains an AP3.

For the proof of Theorem 3.11 it will be convenient to move away from subsets
of [n] and to consider subsets of of cyclic group Z/nZ instead. The main step in
the proof is based on a density-increment argument (similar as in the proof given
in Section 3.3.1), which is provided by Proposition 3.13. Roughly speaking, this
lemma asserts that every subset A of Z/nZ satisfies one the following two condi-
tions: either A is distributed “uniformly” in the sense that all nontrivial Fourier
coefficients of the indicator function of A are small compared to the trivial Fourier
coefficient 1̂A(0) = |A| (see alternative (i ) in Proposition 3.13) or A is denser on
some arithmetic progression within Z/nZ of size Ω(

√
n) (see alternative (ii )). We

will show that the uniformity given in alternative (i ) yields “many” AP3’s in A (see
Proposition 3.14 and as a consequence Theorem 3.11 follows from iterated applica-
tions of Proposition 3.13. However, in order to be prepare for iterated applications
of Proposition 3.13 we have to make sure that the arithmetic progressions in Z/nZ
which we consider are arithmetic progressions in Z as well.

Definition 3.12 (Z-progression). We say an arithmetic progression P in Z/nZ
is a Z-progression, if P viewed as a subset of [0, n−1] ⊂ Z also forms an arithmetic
progression.

For example, {5, 1, 4} ⊂ Z/7Z is an AP3 in Z/7Z, but it is not a Z-progression.
On the other hand, {2, 4, 6} ⊂ Z/7Z is also a Z-progression.

Proposition 3.13. If n ≥ 50 and A ⊆ Z/nZ with |A| ≥ τn, then one of the
following holds

(i ) either |1̂A(r)| ≤ τ2n/100 for every r ∈ Z/nZ \ {0},
(ii ) or there is a Z-progression P ⊆ Z/nZ of length at least |P | ≥ τ2

√
n/5000

such that |A ∩ P | ≥ (τ + τ2/800)|P |.

Before we prove Proposition 3.13 we establish the connection between the con-
dition in (i ) and the existence of AP3’s in |A|.
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Proposition 3.14. Suppose n > 50/τ3 for some τ ∈ (0, 1] and A ⊆ Z/nZ
satisfies |A| ≥ τn. If |1̂A(r)| ≤ τ2n/100 for every r ∈ Z/nZ \ {0}, then one of the
following holds

(i ) either A contains an AP3, which is a Z-progression,
(ii ) or there exists a Z-progression P ⊆ Z/nZ of length at least |P | ≥ bn/3c

such that |A ∩ P | ≥ (τ + τ/6)|P |.

Theorem 3.11 follows from iterated applications of Propositions 3.13 and 3.14
and we first give the details of this reduction.

Proof of Theorem 3.11. Let τ and n satisfy

n ≥ exp exp(1200/τ) . (3.31)

Let A ⊆ [n] with |A| ≥ τn and suppose for a contradiction that A contains no AP3.
We set A0 = {a − 1: a ∈ A} and view A0 as a subset of Z/nZ. Next we appeal
to Proposition 3.13. If alternative (ii ) occurs, then we obtain a Z-progression
P1 ⊆ Z/nZ on which the relative density of A0 is increased. We then pass to the
set A1 = A0 ∩ P which we may view as a subset of Z/n1Z, where n1 = |P |. More
formally, we set A1 = {a − minz∈P z : a ∈ A0 ∩ P} and view A1 as a subset of
Z/n1Z.

Note that every Z-progressionQ ⊆ A1 ⊆ Z/n1Z corresponds to a sub-progression
of P . Moreover, since P is a Z-progression in Z/nZ the progression Q also cor-
responds to a Z-progression in Z/nZ. In other words, Z-progressions Q in A1

correspond to progressions in A ⊆ [n]. This would not be necessarily true if either
Q or P would not be a Z-progression and, in fact, this is the reason why we restrict
our attention in Propositions 3.13 and 3.14 to Z-progressions only.

If, on the other hand, after the first application of Proposition 3.13 alterna-
tive (i ) occurs, then we see that A0 satisfies the assumption of of Proposition 3.14.
Owing to the assumption that A is AP3-free we see that alternative (i ) is impos-
sible . Consequently, alternative (ii ) of Proposition 3.14 occurs, which guarantees
an even bigger density increment on an longer Z-progression (compared with alter-
native (ii ) of Proposition 3.13).

We iterate the same argument k times (k determined later). Let A1, . . . , Ak be
the resulting “subsets” of A0, P1, . . . , Pk be the involved Z-progressions of lengths
n1, . . . , nk and let τj = |Aj ∩ Pj |/|Pj | for every j = 1, . . . , k. In each step we can
guarantee that

nj ≥
τ2

5000

√
nj−1 and τj ≥ τj−1 +

τ2
j−1

800
,

where τ0 = τ and n0 = n. A simple calculation shows that for every j ∈ [k] we
have

nj ≥
(

τ2

5000

)∑j−1
`=0 2−`

n1/2j ≥ τ4

50002
n1/2j . (3.32)

Clearly, at most k∗ = 800/τ2 such iterations are possible, since then the density
would be bigger than 1. However, this would only give a contradiction if we would
require n to be doubly exponential in C/τ2 for some appropriate C (instead of C/τ
as chosen in (3.31)). So for a better estimate on the maximal number of iterations
we take also into account, that the τj increase and, hence, the density increments
increase.

For that we observe that after at most j1 = d800/τe steps we have τj1 ≥ 2τ and
from then on in each step we obtain a density increment of 4τ2/800 = τ2/200. After
additional 400/τ steps the density doubled again, i.e., for j2 = d800/τe+d400/τe we
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have τj2 ≥ 4τ and from then on we obtain density increments of at least 16τ2/800.
Continuing this way we see that after at most

k =

dlog2(1/τ)e∑
`=0

⌈
800

2`τ

⌉
< dlog2(1/τ)e+

∞∑
`=0

800

2`τ
= dlog2(1/τ)e+

1600

τ
≤ 1601

τ

iterations we would arrive at the contradiction τk > 1 if nk−1 ≥ 50/τ3 (otherwise
we would not have been allowed to apply Proposition 3.14 in the kth step). Hence,
in view of (3.32) we obtain the desired contradiction if

τ4

50002
n1/2k−1

>
50

τ3
,

which is ensured by

ln ln(n)
(3.31)
>

1200

τ
>

1601 ln(2)

τ
+ ln ln(53107τ−7) .

This concludes the proof of Theorem 3.11 based on Propositions 3.13 and 3.14. �

It is left to verify Propositions 3.13 and 3.14. We begin with Proposition 3.14,
which establishes the crucial connection between small non-trivial Fourier coeffi-
cients of the function 1A and the existence of AP3’s in A.

Proof of Proposition 3.14. We split Z/nZ evenly into the three intervals
I1 = {0, . . . , bn/3c−1}, I2 = {bn/3c, . . . , b2n/3c−1}, and I3 = {b2n/3c, . . . , n−1}
and set B = A ∩ I2. Note that I1, I2, and I3 form Z-progressions of length either
bn/3c of dn/3e.

If |B| < τn/5, then it follows from n > 42, that either |A ∩ I1| ≥ 7τ |I1|/6 or
|A ∩ I3| ≥ 7τ |I3|/6. In other words, if we assume that alternative (ii ) does not
occur, then

|B| ≥ τ

5
n . (3.33)

We shall estimate the number N(A) of triples (x, y, z) ∈ A × B × B with the
property x + z ≡ 2y (mod n). Roughly speaking, N(A) is a lower bound on the
number of AP3’s in A. Moreover, owing to the choice of B we have that N(A) only
counts Z-progressions. On the other hand, we do not require the elements of (x, y, z)
to be different and, as a consequence, N(A) includes degenerate progressions of the
form x = y = z. However, degenerate AP3’s are fixed by choosing one element
from B, i.e., there are at most |B| ≤ n degenerate AP3’s and the number of (non-
degenerate) AP3’s contained in A which are Z-progressions is at least N(A) − n.
Hence, it suffices to show

N(A) > n . (3.34)

Letting en(·) denote the function from Z/nZ to C defined by x 7→ exp(2πix/n), we
obtain the following crucial identity

N(A)
(B.2)
=

1

n

∑
r∈Z/nZ

∑
x∈A

∑
y∈B

∑
z∈B

en((2y − x− z)r)

=
1

n

∑
r∈Z/nZ

( ∑
x∈Z/nZ

1A(x)en(−xr)
∑

y∈Z/nZ

1B(y)en(2yr)
∑

z∈Z/nZ

1B(z)en(−zr)
)

(B.3)
=

1

n

∑
r∈Z/nZ

1̂A(r) · 1̂B(−2r) · 1̂B(r) .

Consequently, it follows from the Cauchy-Schwarz inequality that

N(A) ≥ 1

n
|A||B|2 − 1

n
max
r 6=0
|1̂A(r)| ·

(∑
r 6=0

|1̂B(−2r)|2
)1/2

·
(∑
r 6=0

|1̂B(r)|2
)1/2

.
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Since there are at most two solutions for the equation s ≡ −2r (mod n) for every
fixed s ∈ Z/nZ we have

∑
r 6=0 |1̂B(−2r)|2 ≤ 2

∑
r 6=0 |1̂B(r)|2 and appealing to the

assumption of Proposition 3.14 we obtain

N(A) ≥ |A||B|
2

n
− τ2

50
√

2

∑
r 6=0

|1̂B(r)|2 .

Parseval’s identity yields

N(A) ≥ |A||B|2

n
− τ2

50

∑
r∈Z/nZ

|1̂B(r)|2

(B.6)
=
|A||B|2

n
− τ2

50
n
∑

x∈Z/nZ

|1B(r)|2

≥ |A||B|2

n
− τ2

50
n|B| .

Finally, owing to |A| ≥ τn, B ⊆ A, and (3.33) we infer

N(A) ≥ |A|
(
|B|2

n
− τ2

50
n

)
≥ τ3

50
n2

and (3.34) follows from n > 50/τ3. �

Finally we verify Proposition 3.13.

Proof of Proposition 3.13. Let A ⊆ Z/nZ |A| ≥ τn for some τ > 0 and
assume that alternative (i ) of Proposition 3.13 fails, i.e., we assume

|1̂A(r)| ≥ τ2

100
n for some r ∈ Z/nZ \ {0}. (3.35)

We define the weighted indicator function fA of A by

fA(x) = 1A(x)− α , where α =
|A|
n
≥ τ ,

for which we have ∑
x∈Z/nZ

fA(x) = 0 . (3.36)

For the moment let Q ⊆ Z/nZ be some arithmetic progression (later we will make
a more careful choice) and for x ∈ Z/nZ let Qx be the arithmetic progression given
by

Qx = {x− z : z ∈ Q} .
We consider the convolution of fA with 1Q, i.e., we set hA,Q = fA ∗1Q, and observe
that

hA,Q(x) =
∑

y∈Z/nZ

fA(y)1Q(x− y)

=
∑

y∈Z/nZ

1A(y)1Q(x− y)− α
∑

y∈Z/nZ

1Q(x− y)

=
∑

y∈Z/nZ

1A(y)1Qx(y)− α
∑

y∈Z/nZ

1Qx(y)

= |A ∩Qx| − α|Qx| .

(3.37)

Hence, ignoring for a moment that we are interested in Z-progressions only, we
want to find an arithmetic progression Q and an x ∈ Z/nZ such that

hA,Q(x) = c|Qx| = c|Q| and |Q| = |Qx| ≥ c′
√
n (3.38)
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for appropriate constants c, c′ > 0. For that we appeal to the inequality

|f̂A(r)||1̂Q(r)| (B.7)
= |ĥA,Q(r)|

(B.4)

≤
∑

x∈Z/nZ

|hA,Q(x)| . (3.39)

Owing to r 6= 0 we have

f̂A(r) = 1̂A(r)− α
∑

x∈Z/nZ

en(−xr) (B.2)
= 1̂A(r) . (3.40)

Moreover, it follows from the definition of hA,Q that∑
x∈Z/nZ

hA,Q(x) =
∑

x∈Z/nZ

∑
y∈Z/nZ

fA(y)1Q(x− y)

=
∑

y∈Z/nZ

fA(y)
∑

x∈Z/nZ

1Q(x− y) =
∑

y∈Z/nZ

fA(y)|Q| (3.36)
= 0 .

(3.41)

Below we shall show that there exists an arithmetic progression Q ⊆ Z/nZ of length
2m+ 1, where m is the largest integer such that

m ≤ n

6d
√
n e

(3.42)

such that

|1̂Q(r)| ≥ |Q|
2

(3.43)

and we deduce (3.38) from this. In fact, summarising the above we infer∑
x∈Z/nZ

(
hA,Q(x) + |hA,Q(x)|

) (3.41)
=

∑
x∈Z/nZ

|hA,Q(x)|

(3.39)

≥ |f̂A(r)||1̂Q(r)|
(3.35),(3.43)

≥ τ2

200
n|Q| .

Consequently, there exists an x ∈ Z/nZ such that hA,Q(x) + |hA,Q(x)| ≥ τ2|Q|/200
and, therefore,

hA,Q(x) ≥ τ2

400
|Q| ,

which yields (3.38).
Next we verify the existence of a progression Q of length 2m + 1, which sat-

isfies (3.43). We consider the d
√
n e + 1 elements of the form jr (mod n) for

j = 0, . . . , d
√
n e. Owing to the pigeonhole principle, there exist numbers j1 and

j2 with 0 ≤ j1 < j2 ≤ d
√
n e such that j2r (mod n) and j1r (mod n) are at most

d
√
n e apart. In other words, for λ = j2 − j1 we have

λ ≤ d
√
n e and λr ≤ d

√
n e . (3.44)

We then set

Q = {−mλ, (m− 1)λ, . . . ,−λ, 0, λ, . . . ,mλ} ⊆ Z/nZ . (3.45)

Owing to (3.42) and (3.44) we have mλ ≤ md
√
n e ≤ n/6 and, hence, the arithmetic

progression Q is the union of two Z-progressions. Moreover, for every x ∈ Z/nZ
the shifted progression Qx is a union of two Z-progressions.

Using the identity en(−z) + en(z) = 2 cos(2πz/n) we obtain

1̂Q(r) =
∑

x∈Z/nZ

1Q(x)en(−xr) =

m∑
k=−m

en(−kλr) = 1 + 2

m∑
k=1

cos
(2πkλr

n

)
.

Since
2πmλr

n

(3.44)

≤ 2πmd
√
n e

n

(3.42)

≤ π

3
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and since cos(ξ) ≥ 1/2 for every ξ with 0 ≤ ξ ≤ π/3 we arrive at

1̂Q(r) ≥ 1 +m >
|Q|
2
,

which gives (3.43).
Summarising, we have shown that there exists an arithmetic progression Q in

Z/nZ of length 2m+ 1, which is the union of two Z-progressions and some x ∈ ZZ
such that hA,Q(x) ≥ τ2|Q|/400 and, hence, we infer from (3.37) that

|A ∩Qx| ≥ α|Qx|+
τ2

400
|Qx| ≥

(
τ +

τ2

400

)
|Qx| .

Finally, we shall pass to a Z-progression. Recall that Qx is the union of two
Z-progressions, say P and P ′. If |P ′| < τ2|Qx|/800, then

|A ∩ P | ≥ |A ∩Qx| −
τ2

800
|Qx| ≥

(
τ +

τ2

800

)
|Qx| ≥

(
τ +

τ2

800

)
|P |

and

|P | ≥
(

1− τ2

800

)
(2m+ 1) >

τ2

5000

√
n .

In other words, in this case we arrived at conclusion (ii ). If on the other hand,
both P and P ′ are Z-progressions of length at least τ2|Qx|/800, then for at least
one of them, say P , we have

|A ∩ P |
|P |

≥ |A ∩Qx|
|Qx|

≥ τ +
τ2

400

and standard calculation using n ≥ 50 and the definition of m in (3.42) give

τ2

800
|Qx| =

τ2

800
(2m+ 1) ≥ τ2

5000

√
n .

In other words, we again arrive at conclusion (ii ) of Proposition 3.13. �





CHAPTER 4

The Hales–Jewett theorem

This chapter is devoted to the Hales–Jewett theorem (Theorem 1.11). The
Hales–Jewett theorem can be used to deduce many other results in Ramsey theory
and in Section 4.1 we give a few example. In Section 4.2 we present Shelah’s
proof [80] of Theorem 1.11. Here we follow the presentation of Alon from [68] (see
also [50]).

4.1. Applications of the Hales–Jewett theorem

We begin with some applications of Theorem 1.11. First we derive a multidi-
mensional version of the Hales–Jewett theorem in Section 4.1.1. In Section 4.1.2
we deduce Theorem 1.7 and in Section 4.1.3 we reduce Theorems 1.8 and 1.9 from
the Hales–Jewett theorem.

4.1.1. Multidimensional version of the Hales–Jewett theorem. We re-
call the definition of a combinatorial line, Definition 1.10 and, more generally, we
define combinatorial spaces.

Definition 4.1. Let A be a finite set of cardinality k and let n, d ≥ 1 be
integers. For an integer m ≥ 1 let Am be the set of all functions from [m] to A.

We say a kd-element subset S = {fa : a ∈ Ad} ⊆ An is a combinatorial d-space
in An if there exist d pairwise disjoint non-empty subsets X1∪̇ . . . ∪̇Xd ⊆ [n] and a
function g : [n] \

⋃
j∈[d]Xj → A such that for every a ∈ Ad we have

(i ) fa(x) = g(x) for every x ∈ [n] \
⋃
j∈[d]Xj and

(ii ) fa(x) = a(i) for every i ∈ [d] and x ∈ Xi.

Clearly, combinatorial 1-spaces are combinatorial lines (see Definition 1.10) and
the following can be viewed as a multidimensional version of Theorem 1.11.

Theorem 4.2. For all integers r, d ≥ 1, and every finite alphabet A there exists
some integer n0 such that for every n ≥ n0 the following holds. For any partition
E1∪̇ . . . ∪̇Er of An there exists some j ∈ [r] such that Ej contains a combinatorial
d-space.

We derive Theorem 4.2 as a simple corollary of Theorem 1.11.

Proof of: Theorem 1.11 ⇒ Theorem 4.2. Let r, d, and A = {a1, . . . , ak}
be given. Let N = n0(r,B) be the constant ensured by Theorem 1.11 applied with r
and the alphabet B = Ad and set n0 = dN .

Let n ≥ n0. Without loss of generality we may assume that n is divisible by d.
Indeed if n = dm + s for some m ≥ n0/d and 1 ≤ s < d, then we consider an
arbitrary projection of An to Adm by fixing s coordinates. For example we consider
only those functions f ∈ An with f(dm+ 1) = · · · = f(dm+ s) = a1. Clearly, any
combinatorial d-space within this restriction forms a combinatorial d-space in An

and we are done.
Therefore, let n = dm for some m ≥ n/d ≥ N . We partition (in an arbitrary

way) [n] into m ordered sets of size d. For simplicity let I1∪̇ . . . ∪̇Im = [n], where

43
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Ij is the interval {(j − 1)d+ 1, . . . , jd}. Now we may view An as a copy of Bm by
letting f ∈ An correspond to Ff ∈ Bm where

Ff (j) = f(Ij) :=
(
f((j − 1)d+ 1), . . . , f(jd)

)
∈ Ad = B .

It is easy to check that this correspondence defines a bijection between An and Bm

and for every partition E1∪̇ . . . ∪̇Er of An we obtain a partition E′1∪̇ . . . ∪̇Er of Bm,
where Ff ∈ E′j if and only if f ∈ Ej . Since m ≥ N , there exists some j ∈ [r]

such that E′j contains a combinatorial line in Bm. This line consists of |B| = |A|d
functions from Bm and it follows from the bijection between An and Bm that the
corresponding |A|d functions in An form a combinatorial d-space. �

4.1.2. Proof of the Gallai–Witt theorem. Next we deduce the multidi-
mensional version of van der Waerden’s theorem (so-called Gallai–Witt theorem,
Theorem 1.7) from the Hales–Jewett theorem.

Proof of: Theorem 1.11 ⇒ Theorem 1.7. Let r, d ≥ 1 be integers and
let F = {~u1, . . . , ~uk} ⊂ Nd. Let N be given by Theorem 1.11 applied with r and
alphabet F . Set n0 be sufficiently large such that m1~u1 + · · · + mk~uk ∈ [n0]d for
every choice of integers m1, . . . ,mk ≥ 0 with m1 + · · ·+mk = N .

Let n ≥ n0 and E1∪̇ . . . ∪̇Er be a partition of [n]d. We have to show that one
of the partition classes E1, . . . , Er contains a homothetic copy of F . We consider
the following partition E′1, ∪̇ . . . ∪̇E′r of FN defined for every f : [N ]→ F by

f ∈ E′j ⇐⇒
N∑
x=1

f(x) ∈ Ej .

Note that
∑N
x=1 f(x) is an element in [n0]d ⊆ [n]d due to the choice of n0. (For

N ≥ 2 the map f 7→
∑N
x=1 f(x) from AN to [n]d is not injective, but we do not

have to worry about that here.)
Theorem 1.11 guarantees a j ∈ [r] and a combinatorial line {f1, . . . , fk} ⊆ E′j ,

i.e., there exist a non-empty set X ⊆ [N ] and g : [N ] \X → F such that for every
i ∈ [k] we have

fi(x) =

{
~ui if x ∈ X,
g(x) otherwise,

and fi ∈ E′j .

Owing to the definition of the partition E′1∪̇ . . . ∪̇E′r we have

N∑
x=1

fi(x) ∈ Ej

and setting ~v0 =
∑
x∈[N ]\X g(x) and λ = |X| > 0 we see that

~v0 + λ~ui =

N∑
x=1

fi(x) ∈ Ej

for every i ∈ [k] In other words, Ej contains a homothetic copy of F . �

4.1.3. Ramsey’s theorem for vector spaces. In this section we present
Spencer’s proof from [83] of Ramsey’s theorem for (affine) vector spaces over finite
fields, Theorems 1.8 and 1.9. Those results were conjectured by Gian-Carlo Rota
and first proved by Graham, Leeb, and Rothschild [41]. We begin with the proof
of the affine version.
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4.1.3.1. Proof of Theorem 1.9. In this section let F = GF(q) be the finite field
consisting of q elements. For an affine subspace U ⊆ Fn we denote by dim(U)

the dimension of U and for an integer k ≥ 0 we denote by
[U
k

]
aff

the set of all

k-dimensional affine subspaces of U . In particular,
[Fn
k

]
aff

denotes the set of k-

dimensional affine subspaces of Fn and clearly we have
[U
k

]
aff
⊆
[Fn
k

]
aff

.

Suppose U ∈
[ Fn
d+1

]
aff

has the property that the projection πd : U → Fd onto

the first d coordinates is surjective, i.e., πd(U) = Fd. Note that for everyW ∈
[U
k

]
aff

we have dim(πd(W)) ∈ {k − 1, k}. We say W is transversal if dim(πd(W)) = k.

Let E1∪̇ . . . ∪̇Er be a partition of
[Fn
k

]
aff

. We say U ∈
[ Fn
d+1

]
aff

is special (with

respect to E1∪̇ . . . ∪̇Er =
[Fn
k

]
aff

) if πd(U) = Fd and for all transversal W1, W2 ∈[U
k

]
aff

with πd(W1) = πd(W2) we have that W1 and W2 are contained in the same

partition class from E1∪̇ . . . ∪̇Er =
[Fn
k

]
aff

. In other words, U is special if the

partition class of every transversal W ∈
[U
k

]
aff

is determined by its image under
the projection πd. The following proposition is the key lemma in the proof of

Theorem 1.9. It asserts the existence of special spaces U ∈
[ Fn
d+1

]
aff

for any d ≥ k

in any partition in a sufficiently high dimensional vector space over F.

Proposition 4.3. Let F be a finite field. For all integers d ≥ k ≥ 1 and r ≥ 1
there exists an m0 such that for every integer m ≥ m0, every partition E1∪̇ . . . ∪̇Er
of
[Fm
k

]
aff

, there exists a (d + 1)-dimensional affine space U ∈
[ Fm
d+1

]
aff

which is

special with respect to the partition E1∪̇ . . . ∪̇Er.

Proof. Let F be a finite field and d ≥ k ≥ 1 and r ≥ 1 be integers. Let µ
be the number of k-dimensional affine subspaces in a d-dimensional affine space
over F, i.e.,

µ =

∣∣∣∣[Fdk
]

aff

∣∣∣∣ .
The proof relies on an application of the Hales–Jewett theorem and we let n0

be given by Theorem 1.11 applied with the alphabet Fd+1 and number of partition
classes rµ. We set

m0 = n0 + d

and for m ≥ m0 let E1∪̇ . . . ∪̇Er be a partition of
[Fm
k

]
aff

. As above we denote by πd
the projection of Fm onto the first d coordinates. For convenience we set

m′ = m− d ≥ m0 . (4.1)

For ~c = (c0, . . . , cd) ∈ Fd+1 we consider the affine transformation f~c : Fd → F
defined for every ~x = (x1, . . . , xd) ∈ Fd by

f(~x) = c0 +

d∑
i=1

cixi .

Furthermore, for any C = (~c1, . . . ,~cm′) ∈ (Fd+1)m
′

let FC : Fd → Fm be the lift of
Fd to Fm defined for every ~x = (x1, . . . , xd) ∈ Fd by

FC =
(
x1, . . . , xd, fc1(~x), . . . , fcm′ (~x)

)
.

It follows from those definitions that for every C ∈ (Fd+1)m
′

the map FC is an
injective, affine transformation, which is inverse to the projection πd. In particular,

for every W ′ ∈
[Fd
k

]
aff

the image FC(W ′) is again a k-dimensional affine space

in Fm, i.e., FC(W ′) ∈
[Fm
k

]
aff

and, therefore, for every such W ′ the space FC(W ′)
is contained in one of the partition classes E1, . . . , Er.
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Next we consider a partition
⋃̇
~r∈[r]µE

′
~r of (Fd+1)m

′
into rµ parts. For that fix

some enumeration W ′1, . . . ,W ′µ of
[Fd
k

]
aff

. For ~r = (r1, . . . , rµ) ∈ [r]µ we include

C ∈ (Fd+1)m
′

in E′~r if

FC(W ′i) ∈ Eri for every i ∈ [µ] . (4.2)

Owing to (4.1) and the choice of m0 we infer from the Hales–Jewett theorem,
Theorem 1.11, that there exists some ~s = (s1, . . . , sµ) ∈ [r]µ such that E′~s contains

a combinatorial line L in (Fd+1)m
′
. Below we will show that the combinatorial

line L can be used to define a special space U ∈
[ Fm
d+1

]
aff

.

Since L is a combinatorial line in (Fd+1)m
′
there exist a non-empty set M ⊆ [m′]

and a function g : [m′] \M → Fd+1 such that

L =
{
C~c = (~c1, . . . ,~cm′) : ~c ∈ Fd+1

}
, where ~c i =

{
~c if i ∈M,

g(i) otherwise.
(4.3)

Without loss of generality we may assume that M consists of the last |M | elements
of [m′], i.e., [m′] \M = [m′′] for m′′ = m′ − |M |. We set

U =
⋃
C∈L

⋃
~x∈Fd

FC(~x) =
⋃

~c∈Fd+1

⋃
~x∈Fd

FC~c (~x)

=
⋃
~x∈Fd

~x=(x1,...,xd)

⋃
~c∈Fd+1

{(
x1, . . . , xd, fg(1)(~x), . . . , fg(m′′)(~x), f~c (~x), . . . , f~c (~x)︸ ︷︷ ︸

|M |-times

)}
(4.4)

and claim that U has the desired properties.
Recall that for every ~c ∈ Fd+1 the map f~c maps Fd to F and

⋃
~c∈Fd f~c (~x) = F

for every ~x ∈ Fd. Consequently,

U =
⋃

~x=(x1,...,xd)∈Fd

⋃
y∈F

{(
x1, . . . , xd, fg(1)(~x), . . . , fg(m′′)(~x), y, . . . , y︸ ︷︷ ︸

|M |-times

)}
. (4.5)

Moreover, f~c is an affine transformation for every ~c ∈ Fd+1 and, hence,

(x1, . . . , xd, y) 7→
(
x1, . . . , xd, fg(1)(~x), . . . , fg(m′′)(~x), y, . . . , y︸ ︷︷ ︸

|M |-times

)
is an affine (and clearly injective) transformation. In other words, U is isomorphic

to Fd+1, i.e., U ∈
[ Fn
d+1

]
aff

. It also follows from (4.5) that πd(U) = Fd.
Let W1, W2 ∈

[U
k

]
aff

be transversal with

πd(W1) = πd(W2) ∈
[
Fd

k

]
aff

.

Recall, that we enumerated the elements of
[Fd
k

]
aff

and let W ′i = πd(W1) = πd(W2)

for some i ∈ [µ].
In order to show that U is special, it is left to show thatW1 andW2 are elements

from the same partition class of the given partition E1∪̇ . . . ∪̇Er =
[Fm
k

]
aff

. Observe

that there exist affine transformation F1, F2 : Fd → U ⊆ Fm such that

F1(W ′i) =W1 and F2(W ′i) =W2 .

In view of (4.3) and (4.4) there exist ~c1, ~c2 ∈ Fd+1 such that the functions

F1 = FC~c1
and F2 = FC~c2

have this property. Owing to C~c1
, C~c2

∈ L we have C~c1
, C~c2

∈ E′~s and it follows
from (4.2) that

W1 = F1(W ′i ) = FC~c1
(W ′i) ∈ Esi and W2 = F2(W ′i ) = FC~c2

(W ′i) ∈ Esi ,
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which concludes the proof of Proposition 4.3. �

Next we deduce Theorem 1.9 from Proposition 4.3. For the inductive proof it
will be convenient to consider the following version of Theorem 1.9.

Proposition 4.4. For all integers r ≥ 1 and `1, . . . , `r ≥ k ≥ 0 and every
finite field F there exists some integer N (k)(`1, . . . , `r) such that for every integer

n ≥ N (k)(`1, . . . , `r) the following holds. For any partition E1∪̇ . . . ∪̇Er of
[Fn
k

]
aff

there exist j ∈ [r] and S ∈
[Fn
`j

]
aff

such that
[S
k

]
aff
⊆ Ej.

Proof. Let F be a finite field. We proceed by double induction on k and∑r
j=1 `j .

For k = 0 Proposition 4.4 follows from the multidimensional Hales–Jewett
theorem. In fact, applying Theorem 4.2 with alphabet F and d = maxj∈[r] `j yields

for sufficiently large n and any partition E1∪̇ . . . ∪̇Er of Fn =
[Fn

0

]
aff

a d-dimensional

subspace S ′ completely contained in some Ej . Since every combinatorial d-space

in Fn is also a d-dimensional affine space in Fn, any choice of S ∈
[S′
`j

]
aff

yields the

conclusion in this case. Furthermore, Proposition 4.4 is trivial if `j = k for some
j ∈ [r] as every k-dimensional affine space only contains one k-dimensional affine
subspace. This establishes the induction start.

Let integers `1, . . . , `r > k > 0 be given. Applying the induction assumptions
we obtain integers `′1, . . . , `

′
r defined for every j ∈ [r] by

`′j = N (k)(`1, . . . , `j−1, `j − 1, `j+1, . . . , `r)

and we set

d = N (k−1)(`′1, . . . , `
′
r) .

Applying Proposition 4.3 for F with d, k, and r yields a constant m0 and finally we
set

N (k)(`1, . . . , `r) = m0 . (4.6)

Let n ≥ N (k)(`1, . . . , `r) and let E1∪̇ . . . ∪̇Er be an arbitrary partition of
[Fn
k

]
aff

.

Since n ≥ m0 there exists some (d + 1)-dimensional affine subspace U , which is
special with respect to the partition E1∪̇ . . . ∪̇Er. In particular, for the projection
πd : Fn → Fd onto the first d coordinates we have πd(U) = Fd. We observe that for

every integer ` ≤ d and any V ′ ∈
[Fd
`

]
aff

we have (π−1
d (V ′) ∩ U) ∈

[ U
`+1

]
aff

.

Consequently, we can define a partition E′1∪̇ . . . ∪̇E′r of
[ Fd
k−1

]
aff

. We include

V ′ ∈
[ Fd
k−1

]
aff

in the class E′j if (π−1
d (V ′) ∩ U) ∈ Ej . The choice of d allows us to

apply the induction assumption for k − 1 to the partition E′1∪̇ . . . ∪̇E′r =
[ Fd
k−1

]
aff

and as a result we obtain some j′ ∈ [r] and an affine subspace

S ′ ∈
[
Fd

`′j′

]
aff

such that

[
S ′

k − 1

]
aff

⊆ E′j′

We set S = π−1
d (S ′)∩U . Owing to S ∈

[ U
`′j+1

]
aff

, we have S is special with respect to

the partition E1∪̇ . . . ∪̇Er of
[Fn
k

]
aff

. Moreover, it follows from the definition of the

partition E′1∪̇ . . . ∪̇E′r =
[ Fd
k−1

]
aff

and the properties of S ′ that every non-transversal

subspace W ∈
[S
k

]
aff

is an element of Ej′ .

Next we consider a partition E′′1 ∪̇ . . . ∪̇E′′r of
[S′
k

]
aff

. For any transversal space

W ∈
[S
k

]
aff

we let πd(W) ∈ E′′j if W ∈ Ej . Note that this is well defined and the

partition class of πd(W ) is indeed independent of W. This is because S is special
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with respect to E1∪̇ . . . ∪̇Er and, therefore, all transversal spaces in
[S
k

]
aff

with the

same image under πd are contained in the same partition class of E1∪̇ . . . ∪̇Er.
Owing to the choice of `′j′ and since dim(S ′) = `′j′ we can appeal to the induc-

tion assumption for `1, . . . , `j′ − 1, . . . , `r ≥ k. Consequently, one of the following
two assertions must hold

(i ) either there exists some j′′ ∈ [r] with j′′ 6= j′ and some S ′′ ∈
[ S′
`j′′

]
aff

such

that
[S′′
k

]
aff
⊆ E′′j′′ ,

(ii ) or there exists some S ′′ ∈
[ S′
`j′−1

]
aff

such that
[S′′
k

]
aff
⊆ E′′j′ .

We begin with case (i ). Recall that dim(S′) = `′j′ and dim(S) = `′j′ + 1. Hence,

dim(π−1
d (S′′) ∩ S) = `j′′ + 1. Consequently, we can fix some `j′′ -dimensional affine

subspace S∗ in π−1
d (S′′) ∩ S with the property πd(S

∗) = S′′. Owing to this choice,

everyW ∈
[
S∗

k

]
aff

is transversal. Hence it follows from the definition of the partition

E′′1 ∪̇ . . . ∪̇E′′r and the property of S ′′ that
[S∗
k

]
aff
⊆ Ej′′ , which concludes the proof

of Proposition 4.4 in this case.
Finally, we consider case (ii ). In this case we set S∗ = π−1

d (S ′′) ∩ S and it
follows that dim(S∗) = dim(S′′) + 1 = `j′ . Similarly, as in case (i ) it follows that

every transversal W ∈
[
S∗

k

]
aff

is contained in Ej′ . Since dim(S∗) = dim(S′′) + 1,

there are non-transversal spacesW ∈
[
S∗

k

]
aff

. However, every non-transversal space

W ∈
[
S∗

k

]
aff
⊆
[
S
k

]
aff

is also non-transversal in S. Owing to the properties of S
each such non-transversal W is contained in Ej′ and this concludes the proof in
this case. �

We close this section be reducing Theorem 1.8 to the affine version.

Proof of Theorem 1.8. For F, r, ` and k, we let n0 be given by Theorem 1.9
applied with the same parameters. For n ≥ n0 let E1∪̇ . . . ∪̇Er be a partition of the
k-dimensional subspaces of Fn. Note that for every affine subspace V in Fn there
exists a unique vector ~vV ∈ Fn such that the translate V − ~vV is subspace of Fn.

We will use this to extend the given partition to a partition E′1∪̇ . . . ∪̇E′r of
[Fn
k

]
aff

.

In fact, we include W in E′j if W − ~vW ∈ Ej . Then Theorem 1.9 yields

S ∈
[Fn
`

]
aff

and j ∈ [r] with
[S
k

]
aff
∈ E′j . Consequently, W − ~vW ∈ Ej for every

W ∈
[S
k

]
aff
∈ E′j and, hence, S − ~vS has the property that all its k-dimensional

subspaces belong to Ej . �

4.2. Shelah’s proof of the Hales–Jewett theorem

In this section we prove Theorem 1.11. We present the proof of Shelah from [80].
Currently this proof gives the best bound on n0 in Theorem 1.11. In fact, Shelah
proved the multidimensional version (Theorem 4.2) directly, which gives better
bounds for Theorem 4.2. However, we only present Shelah’s proof for the case of
combinatorial lines. This case is a bit simpler and we closely follow the presentation
from [50, Chapter 29] (see also [68]).

The following notation will be useful for the proof.

Definition 4.5 (line template). Let A = {a1, . . . , ak} be a finite set and let
∗ 6∈ A. For n ≥ 1 we say Λ ∈ (A ∪ {∗})n is a line template in An if at least one
coordinate of Λ equals ∗.

Moreover, for a ∈ A we denote by Λ(a) the element of An which we obtain
from Λ be replacing every ∗ by a. We set

LA(Λ) = {Λ(a) : a ∈ A} ,
i.e., LA(Λ) is the combinatorial line in A corresponding to the template Λ.
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For a sequence Λ = (Λ1, . . . ,Λm) of line templates with Λ` ∈ (A ∪ {∗})n`
for ` ∈ [m] and some a = (a1, . . . , am) ∈ Am we denote by Λ(a) the element in
A

∑m
`=1 n` given by

Λ(a) = Λ1(a1) ◦ · · · ◦ Λm(am) ,

where ◦ denotes the concatenation of vectors.

For fixed r ≥ 1 the proof of Theorem 1.11 is by induction on the cardinality of
the alphabet A. For |A| = 1 Theorem 1.11 is trivial. With out loss of generality we
may assume A = [k].

For the inductive step from an alphabet of size k to A = [k + 1] the fol-
lowing proposition will be crucial. We say two elements a = (a1, . . . , am) and
b = (b1, . . . , bm) ∈ [k + 1]m and are (k − 1)-indistinguishable if for every i ∈ [k − 1]
and ` ∈ [m] we have

a` = i ⇐⇒ b` = i .

In other words, a and b are (k − 1)-indistinguishable if they only differ in those
coordinates which take values k or k + 1.

Proposition 4.6. For all integers r, k, and m ≥ 1 there exist positive integers
n1, . . . , nm ≥ 1 such that for n =

∑m
i=` n` and every partition E1∪̇ . . . ∪̇Er = [k+1]n

there exists a sequence Λ = (Λ1, . . . ,Λm) of line templates with Λ` ∈ ([k+1]∪{∗})n`
for ` ∈ [m] such that for all (k − 1)-indistinguishable pairs a, b ∈ [k + 1]m there
exists some j ∈ [r] such that Λ(a), Λ(b) ∈ Ej.

Proof. Let r, k, and m be given. We inductively define the following sequence
of integers n1, . . . , nm. Set

N0 = 0 and n1 = r(k+1)m−1

and for ` = 2, . . . ,m set

N`−1 =

`−1∑
t=1

nt and n` = r(k+1)N`−1+m−`
(4.7)

and set

n = Nm =

m∑
`=1

nm .

Let E1∪̇ . . . ∪̇Em be an arbitrary partition of [k + 1]n. We obtain the required
sequence of line templates inductively and for s = 0, . . . ,m we verify the following
statement.

(Ss) For every integer t = m − s + 1, . . . ,m there exists a line template
Λt ∈ ([k + 1] ∪ {∗})nt such that Λs = (Λm−s+1, . . . ,Λm) has the prop-
erty that for every (k − 1)-indistinguishable pair as = (am−s+1, . . . , am),
bs = (bm−s+1, . . . , bm) ∈ [k+ 1]s and every x ∈ [k+ 1]Nm−s there exists a
j ∈ [r] such that x ◦Λs(as) and x ◦Λs(bs) are contained in Ej .

Clearly (Sm) is the conclusion of Proposition 4.6 and (S0) is a trivial statement.
For the induction step we assume the validity of (Ss−1) and let line templates

Λs−1 = (Λm−s+2, . . . ,Λm) be given. For t = 0, . . . , nm−s+1 we consider the follow-
ing vectors of length nm−s+1 defined by

yt = (k − 1, . . . , k − 1︸ ︷︷ ︸
(nm−s+1−t)-times

, k, . . . , k︸ ︷︷ ︸
t-times

) .

For every t = 0, . . . , nm−s+1 we consider a partition Et1∪̇ . . . ∪̇Etr of [k+1]Nm−s+s−1

defined for every x ◦ z with x ∈ [k + 1]Nm−s and z ∈ [k + 1]s−1 by

x ◦ z ∈ Etj ⇐⇒ x ◦ yt ◦Λs−1(z) ∈ Ej . (4.8)
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This way we defined nm−s+1 + 1 partitions. On the other hand, there are at most

r|[k+1]Nm−s+s−1| (4.7)
= nm−s+1 .

Consequently, by the pigeonhole principle two of the defined partitions must be
identical, i.e., there exist integers 0 ≤ t < t′ ≤ nm−s+1 such that Etj = Et

′

j for
every j ∈ [r]. We define the line template Λm−s+1 ∈ ([k + 1] ∪ {∗})nm−s+1 as

Λm−s+1 = (k − 1, . . . , k − 1︸ ︷︷ ︸
(nm−s+1−t′)-times

, ∗, . . . , ∗︸ ︷︷ ︸
(t′−t)-times

, k, . . . , k︸ ︷︷ ︸
t-times

)

and show that Λs = (Λm−s+1, . . . ,Λm) has the desired property.
Let as = (am−s+1, . . . , am) and bs = (bm−s+1, . . . , bm) ∈ [k + 1]s be a (k − 1)-

indistinguishable pair and x ∈ [k − 1]Nm−s be fixed.
We may assume am−s+1 6= bm−s+1. In fact, if am−s+1 = bm−s+1, then (Ss−1)

applied to

x′ = x ◦ Λm−s+1(am−s+1) = x ◦ Λm−s+1(bm−s+1)

and the (k − 1)-indistinguishable pair

a′s−1 = (am−s+2, . . . , am) , b′s−1 = (bm−s+2, . . . , bm) ∈ [k + 1]s−1

yields the claim.
So let am−s+1 6= bm−s+1 and without loss of generality we assume am−s+1 = k

and bm−s+1 = k − 1. Observe that

Λm−s+1(k) = yt′ and Λm−s+1(k − 1) = yt .

Setting cs = (k, bm−s+2, . . . , bm) it follows from the induction assumption that the
vectors

x ◦Λs(as) = x ◦ yt′ ◦Λs−1(am−s+2, . . . , am)

and

x ◦Λs(cs) = x ◦ yt′ ◦Λs−1(bm−s+2, . . . , bm)

are contained in the same partition class, say Ej . In particular, it follows from (4.8)

that x ◦ (bm−s+2, . . . , bm) ∈ Et′j . Owing to the choice of t and t′, we have Et
′

j = Etj
and, hence, (4.8) yields

x ◦Λs(bs) = x ◦ yt ◦Λs−1(bm−s+2, . . . , bm) ∈ Ej .

This establishes (Ss) and concludes the proof of Proposition 4.6. �

Below we prove Theorem 1.11 by induction on |A| and the induction step will
make use of Proposition 4.6.

Proof of Theorem 1.11. Let r ≥ 1 be fixed. Since Theorem 1.11 is trivial
for |A| = 1 we may assume Theorem 1.11 holds for alphabets of size k. Moreover,
without loss of generality we may assume that A = [k + 1].

Let m0 be given by the induction assumption, i.e., for every m ≥ m0 every
partition of [k]m into r classes yields a combinatorial line completely contained in
one of the classes. We appeal to Proposition 4.6 applied with r, k and m0, which
yields some integer n. We will show that this n is sufficiently large for Theorem 1.11
for r and A = [k + 1]. It is easy to check that if the conclusion of Theorem 1.11

holds for An, then it also holds for An
′

for every n′ ≥ n.
Let E1∪̇ . . . ∪̇Er be a partition of [k+1]n. Applying Proposition 4.6 yields a se-

quence of line templates Λ = (Λ1, . . . ,Λm0
) such that for all (k−1)-indistinguishable

pairs a, b ∈ [k + 1]m0 there exists some j ∈ [r] such that Λ(a) and Λ(b) are both
elements from Ej . We consider the following partition E′1∪̇ . . . ∪̇E′r of [k]m0 given
by letting a ∈ [k]m0 be contained in E′j if Λ(a) ∈ Ej .
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Owing to the choice of m0 it follows from the induction assumption that there
exists some j ∈ [r] such that E′j contains a combinatorial line L′ in [k]m0 and let

Λ′ = (λ′1 . . . λ
′
m0

) ∈ ([k] ∪ {∗})m0

be the template of this line, i.e.,

L′ = L[k](Λ
′) = {Λ′(i) : i ∈ [k]} ⊆ E′j .

We consider Λ(Λ′) =
(
Λ1(λ′1), . . . ,Λm0(λ′m0

)
)
, since Λ′ is a line template, it con-

tains at least one ∗ and, consequently, Λ(Λ′) contains at least one ∗ and is a line
template in [k + 1]n. We claim that L[k+1](Λ(Λ′)) is combinatorial line, which is
contained in Ej .

In fact, it follows from the definition of the partition class E′j ⊆ [k]m0 and from
L[k](Λ

′) ⊆ E′j that for every i ∈ [k] we have

(Λ(Λ′))(i) = Λ(Λ′(i)) ∈ Ej .
Moreover, Λ′(k) and Λ′(k+1) are (k−1)-indistinguishable in [k+1]m0 and, therefore,
Λ(Λ′(k)) and Λ(Λ′(k+1)) are contained in the same partition class of the partition
E1∪̇ . . . ∪̇Er = [k+1]n. In particular, Λ(Λ′(k+1)) = (Λ(Λ′))(k+1) is also contained
in Ej , which shows that the combinatorial line

L[k+1](Λ(Λ′)) = {Λ(Λ′(i)) : i ∈ [k + 1]}
is contained in Ej . �

4.3. Upper bounds for the Hales-Jewett numbers

We briefly introduce the following version of the Ackermann function. For every
integer x ∈ N we set

A1(x) = 2x

and for i ≥ 2 we set

Ai(x) = Axi−1(1) = (Ai−1 ◦ · · · ◦ Ai−1︸ ︷︷ ︸
x-times

)(1) .

In other words, Ai(x) is the x-times iterated function Ai−1 applied to 1. The
diagonal function

A(x) = Ax(x)

is a variant of the Ackermann function. It follows from those definitions that

A2(x) = 2x and A3(x) = 22
. .
.
2}

height x

and A4 is an iterated tower function and so on. The function A grows extremely
fast. For example, A(4) = A4(4) is given by a tower of 2’s of height 216. In fact, A
is not primitive recursive, while Ai is primitive recursive for every fixed i (see,
e.g., [3, 69, 76] for details).

A careful analysis of the proofs of Proposition 4.6 and Theorem 1.11 shows that
for r = 2 and an alphabet of size k ≥ 3 the constant n0 in Theorem 1.11 can be
bounded by

A4(k) < n0 < A4(k + 1)

(see [44, Section 2.7] for details). All known proofs before the work of Shelah [80]
gave much weaker bounds and were not primitive recursive as a function of k.





APPENDIX A

Topology

We briefly review a few definitions and results from general topology.

A.1. Topological and metric spaces

A.1.1. Topological spaces. We start with the basic definition of a topolog-
ical space.

Definition A.1 (toplogical space). A topological space is a pair (X,T ) con-
sisting of a set X and topology T ⊆ 2X , which satisfies the following conditions

(i ) ∅ ∈ T and X ∈ T ,
(ii ) T is closed under arbitrary unions, and

(iii ) T is closed under finite intersections.

The sets in T are called open sets and their complements are closed sets.
For a subset Y ⊆ X the induced topology TY = {Z∩Y : Z ∈ T } is a topology

and (Y,TY ) is a topological subspace.

Whenever the topology is clear from the context, then we suppress T and
simply identify X with the topological space. For an arbitrary set Y ⊆ X we
sometimes consider the “smallest closed” set cl(Y ) which contains Y .

Definition A.2 (closure, dense). Let (X,T ) be a topological space and Y ⊆
X. The closure of Y in the topological space (X,T ) (denoted by cl(Y )) is the
minimal (under inclusion) closed set, which contains Y , i.e., (X \ cl(Y )) ∈ T and
if some set Z satisfies Y ⊆ Z ⊆ X and (X \ Z) ∈ T , then we have cl(Y ) ⊆ Z.

Moreover, we say a set Y ⊆ X is dense in X, if cl(Y ) = X.

It is easy to check that cl(Y ) =
⋂
Z, where the intersection runs over all

closed sets Z which contain Y . Note, that it follows from de Morgan’s rule and
property (ii ) of a topology that

⋂
Z is indeed closed.

Definition A.3 (basis). A family of open sets B in a topological space (X,T )
is a basis of the topological space if every open set in O ∈ T there exists a subfamily
BO ⊆ B such that O =

⋃
B∈BO

B.
We say the basis B generates the topology and open sets B ∈ B are called

basic open sets.

Example A.4. The following simple topologies can be defined for any set X

trivial/indiscrete topology: T = {∅, X} has basis B = {∅, X},
discrete topology: T = 2X := {Y : Y ⊆ X} has basis B = {{x} : x ∈ X}.

Definition A.5 (continuity, homeomorphism). Let (X,T ) and (X ′,T ′) be
topological spaces. A map T : X → X ′ is continuous if for every open set O′ ∈ T ′

we have
T−1(O′) = {x ∈ X : f(x) ∈ O′} ∈ T .

A continuous map T : X → X ′ is a homeomorphism if it is a bijection and the
inverse map T−1 is continuous as well, i.e., f(O) ∈ T ′ for every open set O ∈ T .

The set of continuous maps T : X → X on a topological space forms a semi-
group with composition and the set of homeomorphisms is a group.

53



54 A. TOPOLOGY

A.1.2. Compactness and Tychonoff’s theorem. A very important con-
cept in mathematics is compactness.

Definition A.6 (compactness). A toplogical space (X,T ) is compact if for
any collection of open sets O = {Oι ∈ T : ι ∈ I} for some index set I with
X =

⋃
ι∈I Oι there exists a finite set J ⊆ I such that X =

⋃
ι∈J Oι.

The following well known observation yields an alternative definition of com-
pactness through families of closed sets. Proposition A.8 follows directly from de
Morgan’s rule.

Definition A.7 (finite intersection property). We say a family of sets C =
{Cι : ι ∈ I} has the finite intersection property if

⋂
ι∈J Cι 6= ∅ for every finite subset

J ⊆ I.

Proposition A.8. A topological space is compact if and only if any family
of closed sets C = {Cι : ι ∈ I} which has the finite intersection property satisfies⋂
ι∈I Cι 6= ∅.

Proof. Let (X,T ) be a compact topological space and let C = {Cι : ι ∈ I}
be a collection of closed subsets which satisfies the finite intersection property.
Suppose

⋂
ι∈I Cι = ∅. Owing to de Morgan’s law we have X =

⋃
ι∈I Cι. In other

words, {Cι : ι ∈ I} is a collection of open sets which covers X. The compactness
of (X,T ) yields a finite subset J ⊆ I such that X =

⋃
ι∈J Cι. Consequently,

another application of de Morgan’s law implies ∅ =
⋂
ι∈J Cι, which contradicts the

assumption that C satisfies the finite intersection property.
The proof of the opposite implication is very similar and we omit the details

here. �

Definition A.9 (product space). Let I be an arbitrary (not necessarily count-
able) index set and for every ι ∈ I let (Xι,Tι) be a topological space with basis Bι.
The product space X =

∏
ι∈I Xι is endowed with the product topology T , which

is generated by the basis B consisting of sets of the form
∏
ι∈I Oι where for some

finite set J the following holds

Oι

{
= Xι if ι ∈ I \ J
∈ Bι if ι ∈ J.

The following well known result of Tychonoff [88] asserts that products of
compact topological spaces are compact (for a proof see, e.g., [17, 48]).

Theorem A.10 (Tychonoff 1930). Let I 6= ∅ be an arbitrary (not necessarily
countable) index set and for every ι ∈ I let (Xι,Tι) be a non-empty toplogical space.

The product space X =
∏
ι∈I Xι (endowed with the product topology) is a com-

pact topological space if and only if (Xι,Tι) is compact for every ι ∈ I. �

A.1.3. Metric spaces. Often we will impose additional assumption on a
topological space X. For example, that is endowed with a metric.

Definition A.11 (metric space). LetX be a non-empty set. A function % : X×
X → R≥0 is a metric on X if for all x, y, z ∈ X we have

(i ) %(x, y) = 0 if and only if y = x,
(ii ) %(x, y) = %(y, x), and

(iii ) %(x, z) ≤ %(x, y) + %(y, z).

A metric space is a pair (X, %) consisting of a set and a metric on it.
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Whenever the metric is clear from the context, then we suppress % and sim-
ply identify X with the metric space. We recall that a metric % on X induces a
topology T% on X, where the basis of T% consists of all open balls

Bε(x) = {y ∈ X : %(x, y) < ε}

with x ∈ X and ε ∈ R>0. Moreover, we transfer definitions made for topological
spaces to metric spaces, by imposing the conditions for the topology induced by
the metric. For example, we say a metric space (X, %) is compact if the topological
space (X,T%) is compact. It is easy to check that for continuous maps between
metric spaces, such a definition coincides with the well known ε-δ-criteria, i.e., a
map T : X → X ′ between two metric spaces (X, %) and (X ′, %′) is continuous if
and only if for every x ∈ X and every ε > 0 there exists a δ > 0 such that for every
y ∈ Bδ(x) we have T (y) ∈ Bε(T (x)). In addition we define uniform continuity for
maps between metric spaces.

Definition A.12 (uniformly continuous). Let (X, %) and (X ′, %′) be metric
spaces. A map T : X → X ′ is uniformly continuous if for every ε > 0 there exists
a δ > 0 such that %′(T (x), T (y)) < ε for all x, y ∈ X with %(x, y) < δ.

We recall the Heine-Cantor theorem, which asserts that continuity and uniform
continuity coincide on compact metric spaces.

Theorem A.13 (Heine-Cantor theorem). Suppose (X, %) and (X ′, %′) are com-
pact metric spaces. If f : X → X ′ is continuous, then f is uniformly continuous.

Proof. Suppose for a contradiction that f is not uniformly continuous. Hence,
there exists some ε > 0 such that for every n ∈ N there exist some points xn, yn ∈ X
such that %(xn, yn) < 1/n, but %′(f(xn), f(yn)) ≥ ε. Owing to the compactness of
X there exist convergent subsequences (xij )j∈N and (yij )j∈N, i.e., there exist x and
y ∈ X such that %(xij , x)→ 0 and %(yij , y)→ 0 as j →∞. Consequently,

%(x, y) ≤ %(xij , x) + %(xij , yij ) + %(yij , y)→ 0

as j →∞, i.e., x = y. Moreover, the continuity of f yields that %′(f(xij ), f(x))→ 0
and %′(f(yij ), f(y))→ 0 for j →∞. But since x = y this yields

%′(f(xij ), f(yij )) ≤ %′(f(xij ), f(x)) + %′(f(yij ), f(y))→ 0

for j → ∞. In particular, for sufficiently large j we have %′(f(xij ), f(yij )) < ε,
which contradicts the assumption %′(f(xn), f(yn)) ≥ ε for every n ∈ N. �

Example A.14. The following metric can be defined for any non-empty set X

discrete metric: Setting %(x, y) = 0 if x = y and %(x, y) = 1 if x 6= y, defines the
discrete metric on X. The topology induced by % is in fact the discrete
topology. Moreover, every map on such a space is uniformly continuous.

A.2. Topological dynamics

Topological dynamics concerns continuous maps T : X → X on a set X. Re-
quiring thatX is a topological space and that the continuous maps form a semigroup
leads to the notion of a dynamical system.

A.2.1. Dynamical systems and recurrence. Recall that the set of con-
tinuous maps on a topological space X forms a semigroup (with identity) under
composition. Any sub-semigroup of these continuous maps together with X is a
dynamical system.
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Definition A.15 (dynamical system). A dynamical system is a pair (X,Γ),
where X is a non-empty topological space and Γ is a semigroup of continuous maps
on X. If Γ = {Tn : n ∈ N} for a continuous map T , then we simply denote the
dynamical system by (X,T ).

Often we will impose additional assumptions on X and Γ. For example, that X
is compact or that it is a metric space (or both) or that Γ is a subgroup of the set
of homeomorphisms on X.

Dynamical systems of the form (X,T ) might be viewed as a dynamical process
in the following way: Suppose X is the initial state of some system of particles or
elements and T describes the evolution of X over time, i.e., at time n the element
x ∈ X moved to Tn(x). Basic questions concern the behaviour of Tn(x) for n→∞.
For example, is it true that Tn(x) is periodic, i.e., does there exist an integer m > 0
such that Tm(x) = x. In such a case Tn(x) returns to x for infinitely many n ∈ N.
Weakening this notion by requiring that Tn(x) only returns “arbitrarily close” to x
leads to the concept of recurrence.

Definition A.16 (recurrent point). Let (X,Γ) be a dynamical system. A point
x ∈ X is recurrent for Γ is for every open set U (in the topology on X) with x ∈ U ,
there exists some T ∈ Γ such that T (x) ∈ U .

The first recurrence result is attributed to Poincaré [70] and concerns recurrence
in finite measure spaces under measure preserving maps. The following recurrence
theorem for compact topological spaces goes back to Birkhoff [5].

Theorem A.17 (Birkhoff’s recurrence theorem – 1927). For every compact
dynamical system (X,Γ) there exists a recurrent point x ∈ X.

In the proof of Theorem A.17 we will make use of minimal subsystems.

Definition A.18 (minimal system). Let (X,Γ) be a dynamical system. We
say (X,Γ) is minimal, if the only non-empty, closed set Y ⊆ X which is invariant
under Γ (i.e., T (Y ) ⊆ Y for every T ∈ Γ) is Y = X.

The following characterisation of minimal systems based on orbits is very useful.

Definition A.19 (orbit). Let (X,Γ) be a dynamical system and x ∈ X. The
orbit of x is defined by Ox = {T (x) : T ∈ Γ}.

Proposition A.20. A dynamical system (X,Γ) is minimal if, and only if,
every orbit is dense in X, i.e., cl(Ox) = X for every x ∈ X.

Proof. “⇒ ”: By definition the set cl(Ox) is non-empty and closed. Moreover,
since for every y ∈ Ox there exists some S ∈ Γ with S(x) = y we have for every
T ∈ Γ that T (y) = T (S(x)) = (T ◦ S)(x) ∈ Ox. In other words, T (Ox) ⊆ Ox for
every T ∈ Γ. Hence, the continuity of every T ∈ Γ (applied in (∗) below) yields

cl(Ox) ⊇ cl(T (Ox)) =
⋂

C′ closed
C′⊇T (Ox)

C ′
(∗)
⊇

⋂
C closed
C⊇Ox

T (C) ⊇ T

( ⋂
C closed
C⊇Ox

C

)
= T (cl(Ox)) .

Consequently, it follows from the minimality of (X,Γ) that cl(Ox) = X.
“ ⇐ ”: Let Y be non-empty, closed, and invariant and y ∈ Y . In particular,

Y ⊇ cl(Oy) for every y ∈ Y and, hence, Y = X. �

For minimal systems (X,Γ), when X is a compact metric space and Γ is a
group of homeomorphisms, we have the following characterisation.
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Proposition A.21. Let (X, %) be a compact metric space and let Γ be a group
of homeomorphisms on X. The dynamical system (X,Γ) is minimal if, and only
if, for every ε > 0 there exists a finite set Γ′ ⊆ Γ such that for every x, y ∈ X there
exists T ∈ Γ′ such that %(x, T (y)) < ε.

Proof. “⇒ ”: Let U 6= ∅ be some open set in X and set VU =
⋃
T∈Γ T

−1(U).
The set VU is open and invariant under Γ, i.e., T (VU ) ⊆ VU for every T ∈ Γ.
Moreover, since Γ is a group of homeomorphisms, it follows that X \ VU is closed
and invariant under Γ and, hence, the minimality of (X,Γ) implies X \VU = ∅ and
VU = X for every non-empty, open set U . Owing to the compactness of X, we
obtain that for every non-empty, open set U ⊆ X there exists a finite subset Γ′ ⊆ Γ
such that X = VU =

⋃
T∈Γ′ T

−1(U).
Let ε > 0 be given. It also follows from the compactness of X that there

exists some finite subset X ′ ⊆ X such that
⋃
x′∈X′ Bε/2(x′) = X. Applying the

observation above to Ux′ = Bε/2(x′) for every x′ ∈ X ′ yields finite sets Γ′x′ ⊆ Γ

such that
⋃
T∈Γ′

x′
T−1(Bε/2(x′)) = X.

We claim that the finite set Γ′′ =
⋃
x′∈X′ Γ

′
x′ satisfies the conclusion of this

implication of Proposition A.21. In fact, for every x ∈ X there exists some x′ ∈ X ′
such that x ∈ Bε/2(x′) and for every y ∈ X there exists some T ∈ Γ′x′ ⊆ Γ′′ such

that y ∈ T−1(Bε/2(x′)) and, therefore, %(x, T (y)) ≤ %(x, x′) + %(x′, T (y)) < ε.
“ ⇐ ”: This implication follows from Proposition A.20, since the assumption

asserts that for every y ∈ X the orbit Oy is dense in X. �

The following result asserts that compact dynamical systems contain a minimal
subsystem.

Proposition A.22. Let (X,Γ) be a compact dynamical system. There exists
a closed, non-empty subset Z ⊆ X such that T (Z) ⊆ Z for every T ∈ Γ and (Z,Γ)
is a minimal dynamical system, where Z is endowed with the subspace topology.

The proof of Proposition A.22 presented here is based on a standard application
of Zorn’s lemma [93].

Theorem A.23 (Zorn’s lemma). Let (P,≤) be a partially ordered set. Suppose
(P,≤) has the property, that for every totally ordered subset (a so-called chain)
C ⊆ P , there exists an element p ∈ P such that c ≤ p for every c ∈ C. Then there
exists a maximal element in P , i.e., there exists a p∗ ∈ P such that there is no
p ∈ P with p∗ < p.

Moreover, for every element p ∈ P there exists a maximal element p∗ ∈ P such
that p ≤ p∗.

Furthermore, reversing the partial order yields, that if for chain C ⊆ P , there
exists an element p ∈ P such that p ≤ c for every c ∈ C, then there exists a minimal
element in P . �

Remark A.24. We remark that Zorn considered the “maximum principle”
involved in Theorem A.23 at the time, when he was working at Universität Hamburg
(shortly before he immigrated to the United States). However, similar “maximum
and minimum principles” were already considered before and, in particular, Zorn’s
lemma appeared already more than ten years earlier in the work of Kuratowski [54].

Proof of Proposition A.22. Let Y ⊆ 2X be the family of subsets Y ⊆ X,
which are non-empty, closed, and invariant under Γ, i.e., T (Y ) ⊆ Y for every T ∈ Γ.
Clearly, (Y ,⊆) is partially ordered set. Since, X is a topological space, it follows
from de Morgan’s rule and property (ii ) in Definition A.1 that for every family
C ⊆ Y the set

ZC =
⋂
Y ∈C

Y
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is closed. Moreover, since T (
⋂
Y ∈C Y ) ⊆

⋂
Y ∈C T (Y ) for any map T and any family

of sets C , we obtain from C ⊆ Y that T (ZC ) ⊆ ZC for every T ∈ Γ. Furthermore,
since C is a chain, it enjoys the finite intersection property and since X is compact
the set ZC is non-empty (see Proposition A.8).

Summarising the above, we verified that for every chain C ⊆ Y the set ZC is
closed, non-empty, and invariant under Γ, i.e., ZC ∈ Y . Therefore, (Y ,⊆) satisfies
the assumptions of Zorn’s lemma. Theorem A.23 yields the existence of a minimal
set Z ∈ Y and it follows that (Z,Γ) is a minimal dynamical system. �

Birkhoff’s recurrence theorem follows directly from Propositions A.20 and A.22.

Proof of Theorem A.17. Since (X,Γ) is compact, Proposition A.22 yields
a minimal subsytem (Z,Γ). Hence, by Proposition A.20 we have Z = cl(Oz) for
every z ∈ Z. In particular, z ∈ cl(Oz). If z ∈ Oz, then there exists some T ∈ Γ
such that T (z) = z and we are done. If, on the other hand, z ∈ cl(Oz) \ Oz,
then every open set U containing z intersects Oz, which concludes the proof of
Theorem A.17. �

A.3. Ultrafilter

Definition A.25 (filter and ultrafilter). A family F ⊆ 2X of subsets of a set
X is a filter on X if

(i ) ∅ 6∈ F and X ∈ F ,
(ii ) F is upwards closed, i.e., if A ∈ F and A ⊆ B ⊆ X, then B ∈ F , and

(iii ) F is closed under intersection, i.e., for all A, B ∈ F we have (A∩B) ∈ F .

A filter F on X is an ultrafilter if in addition

(iv ) for every set A ⊆ X either A ∈ F or (X \A) ∈ F .

It follows from properties (i ) and (iii ) of filters, that the “either-or” in prop-
erty (iv ) is in fact exclusive. Moreover, the next observation follows directly from
the definition.

Proposition A.26. Let F be an ultrafilter on X, let A be a member of F , and
let A1∪̇ . . . ∪̇Ar = A be a partition of A. Then there exists a unique index j ∈ [r]
such that Aj ∈ F .

Proof. It follows from properties (i ) and (iii ) of filters, that there exists at
most one such index j ∈ [r].

Suppose Aj 6∈ F for every j ∈ [r]. Owing to property (iv ) we have (X \Aj) ∈ F
for every j ∈ [r]. Consequently, property (iii ) yields

⋂r
j=1(X \ Aj) ∈ F . On the

other hand,
⋂r
j=1(X \ Aj) = X \ A. Since A ∈ F by assumption, this contradicts

that the “either-or” in property (iv ) is exclusive. �

Example A.27.

trivial filter: For any set X is F = {X} the trivial filter.
principal filter: For any ∅ 6= Z ⊆ X is FY = {A ∈ 2X : Y ⊆ A} the principal

filter generated by Y .
co-finite/Fréchet filter: Let X be an infinite set. The co-finite filter (sometimes

called Fréchet filter) consists of the complements of finite sets, i.e., Fco =
{A ⊆ X : |X \A| <∞}.

maximal filter: A filter F is maximal if it is not properly contained in any other
filter, i.e., there exists no filter F ′ with F ( F ′. Clearly, every principal
ultrafilter is a maximal filter and, in fact, we will see that a filter is
maximal if and only if it is an ultrafilter (see Theorem A.28).
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principal/trivial/fixed ultrafilter: Let X be a set. It is easy to check that the
only principal filters which are ultrafilters are generated by a one-element
set, i.e., they are of the form Fx = {A ∈ 2X : x ∈ A} for some x ∈ X.
These ultrafilters are principal (also called trivial or fixed) ultrafilters.
Ultrafilters which are not of this form are called non-principal or non-
trivial or free.

Below we give a few equivalent formulations for ultrafilters.

Theorem A.28. Let X be a set and let F be a filter on X. The following
statements are equivalent:

(i ) F is an ultrafilter;
(ii ) if A ∪B = X, then either A ∈ F or B ∈ F ;

(iii ) F is maximal.

Proof. (i ) ⇒ (ii ): Let A ∪ B = X. If A 6∈ F , then (X \ A) ∈ F because
of (iv ) of Definition A.25. Since (X \A) ⊆ B, it follows from property (ii ) of filters
that B ∈ F .

(ii ) ⇒ (iii ): Let F be a filter, which satisfies property (ii ). Suppose F ( F ′
for some filter F ′. Hence, there exists a set A ⊆ X in F ′ \ F . Owing to (ii ), we
have (X \ A) ∈ F and, therefore, (X \ A) ∈ F ′. Consequently, A and X \ A are
both members of F ′ and property (iii ) of filters yields A∩ (X \A) = ∅ ∈ F ′, which
contradicts property (i ) of filters.

(iii ) ⇒ (i ): Let F be a maximal filter and suppose F is not an ultrafilter.
Hence, there exists a set Z ⊆ X such that neither Z nor X \ Z is in F . Note that

A ∩ Z 6= ∅ for every A ∈ F , (A.1)

since otherwise we would have A ⊆ (X \ Z), which would yield (X \ Z) ∈ F by
property (ii ). We set

F ′ = {A′ ⊆ X : (A ∩ Z) ⊆ A′ for some A ∈ F} .

It is easy to check that F ′ is a filter. In fact, owing to (A.1) we have ∅ 6∈ F ′
and obviously, X ∈ F ′ and F ′ is upwards closed. Property (iii ) of Definition A.25
follows since for all sets A′1, A′2 ∈ F ′ and for all sets A′1 and A′2 satisfying (A1∩Z) ⊆
A′1 ∈ F ′ and (A2 ∩ Z) ⊆ A′2 ∈ F ′ we have (A1 ∩ A2) ∈ F (owing to property (iii )
of the filter F) and (A1 ∩ A2 ∩ Z) ⊆ (A′1 ∩ A′2). Consequently, (A′1 ∩ A′2) ∈ F ′ as
well.

Moreover, F ⊆ F ′ and Z ∈ F ′ \ F . This contradicts the assumption that F is
a maximal filter. �

Principal ultrafilters can be characterised in several ways and it follows from
this charecterisation, that non-principal ultrafilters only exist for infinite sets X.

Proposition A.29. Let X be a set and let F be an ultrafilter on X. The
following statements are equivalent:

(i ) F is a principal ultrafilter;
(ii )

⋂
A∈F A 6= ∅;

(iii ) F contains a finite set.

In particular it follows from (iii ), that for every finite set X all ultrafilters are
principal and for every infinite set X every non-principal ultrafilter contains the
co-finite filter.

Proof. (i ) ⇒ (ii ): This implication is obvious.
(ii )⇒ (iii ): Set A0 =

⋂
A∈F A. Since F is an ultrafilter and since (X\A0) 6∈ F ,

the set A0 is a member of F .
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Suppose A0 contains more than one element. Consequently, there exists a
proper subset B, ∅ 6= B ( A0. Since F is an ultrafilter either B or X \ B is a
member of F . Since neither B nor X \ B contains A0, this yields a contradiction
to the definition of A0. Therefore the set A0 ∈ F is finite (in fact it only contains
one element).

(iii ) ⇒ (i ): Let A0 ∈ F be a set of smallest size. If A0 = {x}, then every
member B ∈ F must contain x and, therefore, F ⊆ Fx = {A ∈ 2X : x ∈ A}.
On the other hand, we recall that F is an ultrafilter and, hence, for every A with
x ∈ A ⊆ X we must have A ∈ F . If (X \ A) ∈ F , then (X \ A) ∩ A0 = ∅ ∈ F due
to property (iii ) of filters, which contradicts property (i ). Therefore, F = Fx and
we are done.

Hence, we assume A0 is finite, but contains more than just one element.
Then A0 contains a proper subset B, ∅ 6= B ( A0 and since F is an ultrafilter
either B or B \X is in F . Consequently, either A0∩B or A0∩ (X \B) is a member
of F . In either case, F contains a set of size smaller than A0, which contradicts
the choice of A0. �

After we have shown that non-principal ultrafilters can only exist for infinite
sets, we show that indeed for every infinite set there exists a non-principal ultra-
filter. However, this result requires the axiom of choice in form of Zorn’s lemma,
Theorem A.23.

Theorem A.30. For every infinite set X there exists a non-principal ultrafilter.

Proof. Let F ⊆ 22X be the set of all filters on X. Clearly, (F ,⊆) is a
partially ordered set under inclusion. It is easy to check, that if C ⊆ F is a totally
ordered subset of filters, then

⋃
F∈C F is a filter as well. Consequently, for every

F ′ ∈ C we have F ′ ⊆
⋃
F∈C F ∈ F . Hence, it follows from Zorn’s lemma that

every filter is contained in a maximal filter and Theorem A.28 yields that such a
maximal filter is an ultrafilter.

In particular, since X is infinite there exists the co-finite filter

Fco = {A ⊆ X : |X \A| <∞}
on X and there exists a maximal filter F∗ which contains Fco. Suppose A is a
co-finite set (i.e., |X \ A| is finite), then A ∈ Fco ⊆ F∗. Since, F∗ is a filter the
finite set X \A is not contained in F∗. Repeating this argument for every co-finite
set A yields that F∗ contains no finite set. In particular, F∗ is not a principal
ultrafilter (see Proposition A.29). �



APPENDIX B

Analysis

We review a few basic facts from analysis.

B.1. Subadditive functions

Definition B.1 (subadditive). A function f : N → R is subadditive if for all
integers n, m ∈ N we have f(n+m) ≤ f(n) + f(m).

It follows from the definition of subadditivity that for all a and m ∈ N we have

f(am) ≤ af(m) .

The following result was used by Fekete [31].

Proposition B.2 (Fekete’s lemma – 1923). Let f : N→ R≥0 be a subadditive
function. The limit α = limn→∞ f(n)/n exists and α ≤ f(n)/n for every n ∈ N.

Proof. Note that f(n)/n ≥ 0 for every n ∈ N and set α = lim infn→∞ f(n)/n.
Let ε > 0 and fix somem ∈ N such that f(m)/m < α+ε/2. SetB = maxb∈[m−1] f(b)
and let n ≥ 2B/ε.

If n = am for some a ∈ N then

f(n)

n
=
f(am)

am
≤ af(m)

am
< α+

ε

2

and, similarly, if n = am+ b for some a ∈ N and b ∈ [m− 1], then

f(n)

n
=
f(am+ b)

n
≤ f(am)

n
+
f(b)

n
≤ af(m)

am+ b
+
B

n
≤ af(m)

am
+
ε

2
< α+

ε

2
+
ε

2
.

Hence, f(n)/n < α + ε for every sufficiently large n, i.e., lim supn→∞ f(n)/n = α.
Therefore,

lim sup
n→∞

f(n)

n
= α = lim inf

n→∞

f(n)

n

and limn→∞ f(n)/n = α.
The second assertion easily follows by contradiction. Suppose f(n)/n = β < α

for some n ∈ N. Then for every a ∈ N we have

f(an)

an
≤ af(n)

an
= β < α ,

which yields the contradiction lim infn→∞ f(n)/n ≤ β < α. �

B.2. Discrete Fourier analysis

For a more concise notation we introduce the function en(·) from the cyclic
group Z/nZ to the complex numbers defined by

en(x) = exp
(2πi

n
x
)

= cos
(x
n

)
+ i sin

(x
n

)
.

Clearly, en(xr) = en(x)r for all x, r ∈ Z/nZ and the complex conjugate of en(x) is
given by

en(x) = en(−x) . (B.1)

61
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Moreover, since en(x) is an n-th root of unity for any x ∈ Z/nZ we obtain for n ≥ 2
and x ∈ Z/nZ \ {0}∑

r∈Z/nZ

en(xr) =
∑

r∈Z/nZ

en(x)r =
1− en(x)n

1− en(x)
= 0 .

Therefore, for every x ∈ Z/nZ and n ∈ N we have

∑
r∈Z/nZ

en(xr) =

{
0 if x 6= 0 ,

n if x = 0 .
(B.2)

For a function f : Z/nZ → C, we define the Fourier transform f̂ : Z/nZ → C
to be

f̂(r) =
∑

x∈Z/nZ

f(x)en(−xr) . (B.3)

The following estimate is a direct consequence of the definition of the Fourier trans-
form. For every r ∈ Z/nZ

|f̂(r)| =

∣∣∣∣∣∣
∑

x∈Z/nZ

f(x)en(−xr)

∣∣∣∣∣∣ ≤
∑

x∈Z/nZ

|f(x)||en(−xr)| =
∑

x∈Z/nZ

|f(x)| . (B.4)

For any x ∈ Z/nZ we have∑
r∈Z/nZ

f̂(r)en(xr) =
∑

r∈Z/nZ

∑
y∈Z/nZ

f(y)en((x− y)r)
(B.2)
= nf(x) ,

which yields the inversion formula

f(x) =
1

n

∑
r∈Z/nZ

f̂(r)en(xr) . (B.5)

Applying the inversion formula to both functions f and g : Z/nZ→ C gives

∑
x∈Z/nZ

f(x)g(x)
(B.5)
=

∑
x∈Z/nZ

(
1

n

∑
r∈Z/nZ

f̂(r)en(rx)

)(
1

n

∑
s∈Z/nZ

ĝ(s) en(sx)

)
(B.1)
=

1

n2

∑
r∈Z/nZ

∑
s∈Z/nZ

f̂(r)ĝ(s)
∑

x∈Z/nZ

en((r − s)x)

(B.2)
=

1

n

∑
r∈Z/nZ

f̂(r)ĝ(r) .

For the special case g = f this yields Parseval’s identity∑
r∈Z/nZ

|f̂(r)|2 = n
∑

x∈Z/nZ

|f(x)|2 . (B.6)

For two functions f , g : Z/nZ→ C we define the convolution h = f ∗ g by

h(x) =
∑

y∈Z/nZ

f(y)g(x− y)
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and we observe that

ĥ(r) =
∑

x∈Z/nZ

(f ∗ g)(x)en(−xr)

=
∑

x∈Z/nZ

∑
y∈Z/nZ

f(y)g(x− y)en(−xr)

=
∑

y∈Z/nZ

f(y)en(−yr)
∑

x∈Z/nZ

g(x− y)en(−(x− y)r)

=
∑

y∈Z/nZ

f(y)en(−yr)
∑

z∈Z/nZ

g(z)en(−zr)

= f̂(r)ĝ(r) .

(B.7)





Notation

N = {1, 2, 3, . . . } – the set of natural numbers

N0 = {0, 1, 2, 3, . . . } – the set of natural numbers including zero

R – the set of real numbers

R≥0 = {x ∈ R : x ≥ 0} – the set of non-negative real numbers

R>0 = {x ∈ R : x > 0} – the set of positive real numbers

[n] = {1, 2, . . . , n} – first n positive integers (n ∈ N)

[a, b] = {a, a+ 1, . . . , b− 1, b} – integers between integers a and b (a, b ∈ Z)

2X = {A : A ⊆ X} – powerset of X(
X
k

)
= {A ∈ 2X : |A| = k} – k-element subsets of X

X∪̇Y = X ∪ Y – union of disjoint sets X and Y

X + x = X ∪ {x} – joining one element x to a set X

X − x = X \ {x} – removing one element x from a set X

fn = f ◦ f ◦ · · · ◦ f – n-times iterated function f : X → X,

where f0 is the identity on X and if f is invertible,

then f−n is the n-times iterated inverse function f−1
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