On the local density problem for graphs of given odd-girth

Wiebke Bedenknecht^{1,2}

Fachbereich Mathematik, Universität Hamburg 20146 Hamburg, Germany

Guilherme Oliveira Mota³

Instituto de Mathemática e Estatística Universidade de São Paulo, Rua do Matão 1010 05508-090, São Paul, Brazil

Christian Reiher and Mathias Schacht⁴

Fachbereich Mathematik, Universität Hamburg 20146 Hamburg, Germany

Abstract

Erdős conjectured that every *n*-vertex triangle-free graph contains a subset of $\lfloor n/2 \rfloor$ vertices that spans at most $n^2/50$ edges. Extending a recent result of Norin and Yepremyan, we confirm this for graphs homomorphic to so-called Andrásfai graphs. As a consequence, Erdős' conjecture holds for every triangle-free graph G with minimum degree $\delta(G) > 10n/29$ and if $\chi(G) \leq 3$ the degree condition can be relaxed to $\delta(G) > n/3$. In fact, we obtain a more general result for graphs of higher odd-girth.

Keywords: Andrásfai graphs, Erdős (1/2, 1/50) - conjecture, sparse halves

1 Introduction

We say an *n*-vertex graph G is (α, β) -dense if every subset of $\lfloor \alpha n \rfloor$ vertices spans more than βn^2 edges. Given $\alpha \in (0, 1]$ Erdős, Faudree, Rousseau, and Schelp [5] asked for the minimum $\beta = \beta(\alpha)$ such that every (α, β) -dense graph contains a triangle. For example, Mantel's theorem asserts that $\beta(1) = 1/4$. More generally, Erdős et al. conjectured that for $\alpha \geq 17/30$ the balanced complete bipartite graph gives the best lower bound for the function $\beta(\alpha)$, which leads to

$$\beta(\alpha) = \frac{1}{4}(2\alpha - 1). \tag{1}$$

The same authors verified this conjecture for $\alpha \ge 0.648$ and the best result in this direction is due to Krivelevich [9], who verified it for every $\alpha \ge 3/5$. We say a graph G is a *blow-up* of some graph F, if there exists a partition $V(G) = \bigcup_{x \in V(F)} V_x$ such that

$$\forall x, y \in V(F) \ \forall a \in V_x \ \forall b \in V_y : ab \in E(G) \Leftrightarrow xy \in E(F).$$

For $\alpha < 17/30$ balanced blow-ups of the 5-cycle yield a better lower bound for $\beta(\alpha)$ and Erdős et al. conjectured

$$\beta(\alpha) = \frac{1}{25}(5\alpha - 2) \tag{2}$$

for $\alpha \in [53/120, 17/30]$. For $\alpha < 53/120$ it is known that balanced blow-ups of the Andrásfai graph F_3 (see Figure 1) lead to a better bound. The special case $\beta(1/2) = 1/50$ was considered before by Erdős (see, e.g., [4] for a monetary bounty for this problem).

Conjecture 1.1 (Erdős) Every (1/2, 1/50)-dense graph contains a triangle.

Besides the balanced blow-up of the 5-cycle Simonovits (see, e.g., [4]) noted that balanced blow-ups of the Petersen graph yield the same lower bound for Conjecture 1.1 and, more generally, for (2) in the corresponding range.

Conjecture 1.1 asserts that every triangle-free *n*-vertex graph G contains a subset of |n/2| vertices that spans at most $n^2/50$ edges. Our first result

 $^{^1~}$ The second author was supported by FAPESP (Proc. 2013/11431-2, 2013/20733-2) and partially by CNPq (Proc. 459335/2014-6). The collaboration of the authors was supported by CAPES/DAAD PROBRAL (Proc. 430/15) and by FAPESP (Proc. 2013/03447-6).

² Email: Wiebke.Bedenknecht@uni-hamburg.de

³ Email: mota@ime.usp.br

⁴ Email: Christian.Reiher@uni-hamburg.de; schacht@math.uni-hamburg.de

(see Theorem 1.2 below) verifies this for graphs G that are homomorpic to a triangle-free graph from a special class.

1.1 Andrásfai graphs

A well studied family of triangle-free graphs, which appear in the lower bound constructions for the function $\beta(\alpha)$ above, are the so-called *Andrásfai graphs* (see also Woodall [12]). For an integer $d \geq 1$ the Andrásfai graph F_d is the *d*-regular graph with vertex set

$$V(F_d) = \{v_1, \ldots, v_{3d-1}\},\$$

where $\{v_i, v_j\}$ forms an edge if

$$d \le |i-j| \le 2d - 1. \tag{3}$$

Note that $F_1 = K_2$ and $F_2 = C_5$ (see Figure 1). It is easy to check that Andrásfai graphs are triangle-free and balanced blow-ups of these graphs play a prominent role in connection with extremal problems for triangle-free graphs (see, e.g., [1],[6],[7],[3]).

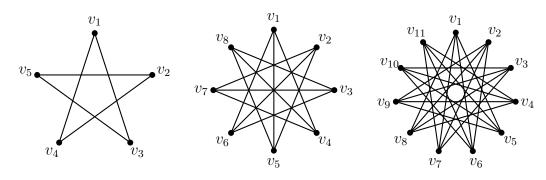


Fig. 1. Andrásfai graphs F_2 , F_3 , and F_4 .

Our first result validates Conjecture 1.1 (stated in the contrapositive) for graphs homomorphic to some Andrásfai graph.

Theorem 1.2 If a graph G is homomorphic to an Andrásfai graph F_d for some integer $d \ge 1$, then G is not (1/2, 1/50)-dense.

Since F_d is homomorphic to $F_{d'}$ if and only if $d' \ge d$, Theorem 1.2 extends recent work of Norin and Yepremyan [11], who obtained such a result for *n*-vertex graphs *G* homomorphic to F_5 with the additional minimum degree assumption $\delta(G) \ge 5n/14$. Owing to the work of Chen, Jin, and Koh [3], which asserts that every triangle-free 3-chromatic *n*-vertex graph G with minimum degree $\delta(G) > n/3$ is homomorphic to some Andrásfai graph, we deduce from Theorem 1.2 that Conjecture 1.1 holds for all such graphs G.

Similarly, combining Theorem 1.2 with a result of Jin [7], which asserts that triangle-free graphs G with $\delta(G) > 10n/29$ are homomorphic to F_9 , implies Conjecture 1.1 for those graphs as well. We summarise these direct consequences of Theorem 1.2 in the following corollary.

Corollary 1.3 Let G be a triangle-free graph on n vertices.

- (i) If $\delta(G) > 10n/29$, then G is not (1/2, 1/50)-dense.
- (ii) If $\delta(G) > n/3$ and $\chi(G) \le 3$, then G is not (1/2, 1/50)-dense.

We remark that part (i) slightly improves earlier results of Krivelevich [9] and of Norin and Yepremyan [11] (see also [8] where an average degree condition was considered).

1.2 Generalised Andrásfai graphs of higher odd-girth

We consider the following straightforward variation of Andrásfai graphs of odd-girth at least 2k + 1, i.e., graphs without odd cycles of length at most 2k - 1. For integers $k \ge 2$ and $d \ge 1$ let F_d^k be the d-regular graph with vertex set

$$V(F_d^k) = \{v_1, \dots, v_{(2k-1)(d-1)+2}\}$$

where $\{v_i, v_j\}$ forms an edge if

$$(k-1)(d-1) + 1 \le |i-j| \le k(d-1) + 1.$$
(4)

In particular, for k = 2 we recover the definition of the Andrásfai graphs from (3) and for general $k \ge 2$ we have $F_1^k = K_2$, $F_2^k = C_{2k+1}$ and for every $d \ge 2$ the graph F_d^k has odd-girth 2k + 1 (see Figure 2).

Our main result generalises Theorem 1.2 for graphs of odd-girth at least 2k+1. In fact, the constant $\frac{1}{2(2k+1)^2}$ appearing in Theorem 1.4 is best possible as balanced blow-ups of C_{2k+1} show.

Theorem 1.4 If a graph G is homomorphic to a generalised Andrásfai graph F_d^k for some integers $k \ge 2$ and $d \ge 1$, then G is not $(\frac{1}{2}, \frac{1}{2(2k+1)^2})$ -dense.

Analogous to the relation between Conjecture 1.1 and Theorem 1.2 one may wonder if every $(\frac{1}{2}, \frac{1}{2(2k+1)^2})$ -dense graph contains an odd cycle of length

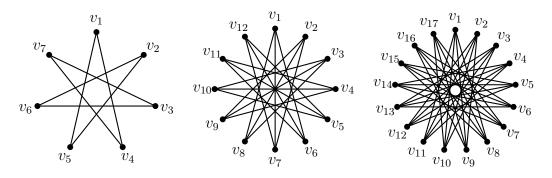


Fig. 2. Generalised Andrásfai graphs F_2^3 , F_3^3 , and F_4^3 of odd-girth 7.

at most 2k - 1. For *n*-vertex graphs G with $\delta(G) > \frac{3n}{4k}$ such a result follows from Theorem 1.4 combined with the work from [10].

Corollary 1.5 Let G be a graph with odd-girth at least 2k + 1 on n vertices. If $\delta(G) > \frac{3n}{4k}$, then G is not $(\frac{1}{2}, \frac{1}{2(2k+1)^2})$ -dense.

For k = 2 Theorem 1.4 reduces to Theorem 1.2. For the proof of Theorem 1.4 it will be convenient to work with a geometric representation of such graphs G. In that representation we will arrange the vertices of G on the unit circle \mathbb{R}/\mathbb{Z} and edges between two vertices x and y may only appear depending on their angle with respect to the centre of the circle.

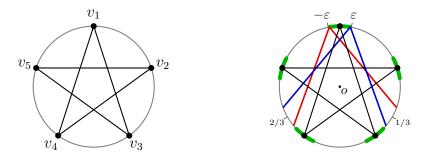


Fig. 3. A copy of $F_2 = C_5$ and a representation of a blow-up on the unit circle.

For example, let G be a blow-up of $F_2 = C_5$. One can distribute the vertices of F_2 equally spaced on the unit circle (see Figure 3). Then we place all vertices of G that correspond to the blow-up class of v_i into a small ε -ball around v_i on the unit circle (cf. green arcs in Figure 3). For a sufficiently small ε , all vertices in an ε -ball around v_i have the same neighbours and they can be characterised by having their smaller angle with respect to the centre bigger than 120° (cf. red and blue lines in Figure 3).

For the proof of Theorem 1.2 we distinguish two cases depending on the independence number $\alpha(G)$ and refer to [2].

References

- Andrásfai, B., P. Erdős, and V. T. Sós, On the connection between chromatic number, maximal clique and minimal degree of a graph, Discrete Math. 8 (1974), pp. 205–218.
- [2] Bedenknecht, W., G. O. Mota, C. Reiher, and M. Schacht, On the local density problem for graphs if given odd-girth, submitted.
- [3] Chen, C. C., G.P. Jin, and K.M. Koh, Triangle-free graphs with large degree, Combin. Probab. Comput. 6 (1997), no. 4, pp. 381–396.
- [4] Erdős, P., Some old and new problems in various branches of combinatorics, Graphs and combinatorics (Marseille, 1995), Discrete Math. 165/166 (1997), pp. 227–231.
- [5] Erdős, P., R. J. Faudree, C. C. Rousseau, and R. H. Schelp, A local density condition for triangles, Graph theory and applications (Hakone, 1990), Discrete Math. 127 (1994), no. 1-3, pp. 153–161.
- [6] Häggkvist, R., "Odd cycles of specified length in nonbipartite graphs," Graph theory (Cambridge, 1981), North-Holland Math. Stud., vol. 62, North-Holland, Amsterdam-New York (1982), pp. 89–99.
- [7] Jin, G. P., Triangle-free four-chromatic graphs, Discrete Math. 145 (1995), no. 1-3, pp. 151–170.
- [8] Keevash, P., and B. Sudakov, Sparse halves in triangle-free graphs, J. Combin. Theory Ser. B 96 (2006), no. 4, pp. 614–620.
- [9] Krivelevich, M., On the edge distribution in triangle-free graphs, J. Combin. Theory Ser. B 63 (1995), no. 2, pp. 245–260.
- [10] Messuti, S., and M. Schacht, On the structure of graphs with given odd girth and large minimum degree, J. Graph Theory 80 (2015), no. 1, pp. 69–81.
- [11] Norin, S., and L. Yepremyan, Sparse halves in dense triangle-free graphs, J. Combin. Theory Ser. B 115 (2015), pp. 1–25.
- [12] Woodall, D. R., The binding number of a graph and its Anderson number, J. Combin. Theory (1973), pp. 225-255.