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Abstract

Erdős conjectured that every n-vertex triangle-free graph contains a subset of bn/2c
vertices that spans at most n2/50 edges. Extending a recent result of Norin and
Yepremyan, we confirm this for graphs homomorphic to so-called Andrásfai graphs.
As a consequence, Erdős’ conjecture holds for every triangle-free graph G with
minimum degree δ(G) > 10n/29 and if χ(G) ≤ 3 the degree condition can be relaxed
to δ(G) > n/3. In fact, we obtain a more general result for graphs of higher odd-
girth.
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1 Introduction

We say an n-vertex graph G is (α, β)-dense if every subset of bαnc vertices
spans more than βn2 edges. Given α ∈ (0, 1] Erdős, Faudree, Rousseau, and
Schelp [5] asked for the minimum β = β(α) such that every (α, β)-dense graph
contains a triangle. For example, Mantel’s theorem asserts that β(1) = 1/4.
More generally, Erdős et al. conjectured that for α ≥ 17/30 the balanced
complete bipartite graph gives the best lower bound for the function β(α),
which leads to

β(α) =
1

4
(2α− 1) . (1)

The same authors verified this conjecture for α ≥ 0.648 and the best result
in this direction is due to Krivelevich [9], who verified it for every α ≥ 3/5.
We say a graph G is a blow-up of some graph F , if there exists a partition
V (G) =

.
∪x∈V (F )Vx such that

∀x, y ∈ V (F ) ∀a ∈ Vx ∀b ∈ Vy : ab ∈ E(G)⇔ xy ∈ E(F ) .

For α < 17/30 balanced blow-ups of the 5-cycle yield a better lower bound for
β(α) and Erdős et al. conjectured

β(α) =
1

25
(5α− 2) (2)

for α ∈ [53/120, 17/30]. For α < 53/120 it is known that balanced blow-ups of
the Andrásfai graph F3 (see Figure 1) lead to a better bound. The special case
β(1/2) = 1/50 was considered before by Erdős (see, e.g., [4] for a monetary
bounty for this problem).

Conjecture 1.1 (Erdős) Every (1/2, 1/50)-dense graph contains a triangle.

Besides the balanced blow-up of the 5-cycle Simonovits (see, e.g., [4]) noted
that balanced blow-ups of the Petersen graph yield the same lower bound for
Conjecture 1.1 and, more generally, for (2) in the corresponding range.

Conjecture 1.1 asserts that every triangle-free n-vertex graph G contains
a subset of bn/2c vertices that spans at most n2/50 edges. Our first result
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(see Theorem 1.2 below) verifies this for graphs G that are homomorpic to a
triangle-free graph from a special class.

1.1 Andrásfai graphs

A well studied family of triangle-free graphs, which appear in the lower bound
constructions for the function β(α) above, are the so-called Andrásfai graphs
(see also Woodall [12]). For an integer d ≥ 1 the Andrásfai graph Fd is the
d-regular graph with vertex set

V (Fd) = {v1, . . . , v3d−1} ,

where {vi, vj} forms an edge if

d ≤ |i− j| ≤ 2d− 1 . (3)

Note that F1 = K2 and F2 = C5 (see Figure 1). It is easy to check that
Andrásfai graphs are triangle-free and balanced blow-ups of these graphs play
a prominent role in connection with extremal problems for triangle-free graphs
(see, e.g., [1],[6],[7],[3]).
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Fig. 1. Andrásfai graphs F2, F3, and F4.

Our first result validates Conjecture 1.1 (stated in the contrapositive) for
graphs homomorphic to some Andrásfai graph.

Theorem 1.2 If a graph G is homomorphic to an Andrásfai graph Fd for
some integer d ≥ 1, then G is not (1/2, 1/50)-dense.

Since Fd is homomorphic to Fd′ if and only if d′ ≥ d, Theorem 1.2 extends
recent work of Norin and Yepremyan [11], who obtained such a result for
n-vertex graphs G homomorphic to F5 with the additional minimum degree
assumption δ(G) ≥ 5n/14.



Owing to the work of Chen, Jin, and Koh [3], which asserts that every
triangle-free 3-chromatic n-vertex graph G with minimum degree δ(G) > n/3
is homomorphic to some Andrásfai graph, we deduce from Theorem 1.2 that
Conjecture 1.1 holds for all such graphs G.
Similarly, combining Theorem 1.2 with a result of Jin [7], which asserts that
triangle-free graphs G with δ(G) > 10n/29 are homomorphic to F9, implies
Conjecture 1.1 for those graphs as well. We summarise these direct conse-
quences of Theorem 1.2 in the following corollary.

Corollary 1.3 Let G be a triangle-free graph on n vertices.

(i) If δ(G) > 10n/29, then G is not (1/2, 1/50)-dense.

(ii) If δ(G) > n/3 and χ(G) ≤ 3, then G is not (1/2, 1/50)-dense.

We remark that part (i) slightly improves earlier results of Krivelevich [9]
and of Norin and Yepremyan [11] (see also [8] where an average degree condi-
tion was considered).

1.2 Generalised Andrásfai graphs of higher odd-girth

We consider the following straightforward variation of Andrásfai graphs of
odd-girth at least 2k + 1, i.e., graphs without odd cycles of length at most
2k−1. For integers k ≥ 2 and d ≥ 1 let F k

d be the d-regular graph with vertex
set

V (F k
d ) = {v1, . . . , v(2k−1)(d−1)+2} ,

where {vi, vj} forms an edge if

(k − 1)(d− 1) + 1 ≤ |i− j| ≤ k(d− 1) + 1 . (4)

In particular, for k = 2 we recover the definition of the Andrásfai graphs
from (3) and for general k ≥ 2 we have F k

1 = K2, F
k
2 = C2k+1 and for every

d ≥ 2 the graph F k
d has odd-girth 2k + 1 (see Figure 2).

Our main result generalises Theorem 1.2 for graphs of odd-girth at least
2k+1. In fact, the constant 1

2(2k+1)2
appearing in Theorem 1.4 is best possible

as balanced blow-ups of C2k+1 show.

Theorem 1.4 If a graph G is homomorphic to a generalised Andrásfai graph
F k
d for some integers k ≥ 2 and d ≥ 1, then G is not (1

2
, 1
2(2k+1)2

)-dense.

Analogous to the relation between Conjecture 1.1 and Theorem 1.2 one
may wonder if every (1

2
, 1
2(2k+1)2

)-dense graph contains an odd cycle of length
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Fig. 2. Generalised Andrásfai graphs F 3
2 , F 3

3 , and F 3
4 of odd-girth 7.

at most 2k − 1. For n-vertex graphs G with δ(G) > 3n
4k

such a result follows
from Theorem 1.4 combined with the work from [10].

Corollary 1.5 Let G be a graph with odd-girth at least 2k + 1 on n vertices.
If δ(G) > 3n

4k
, then G is not (1

2
, 1
2(2k+1)2

)-dense.

For k = 2 Theorem 1.4 reduces to Theorem 1.2. For the proof of Theo-
rem 1.4 it will be convenient to work with a geometric representation of such
graphs G. In that representation we will arrange the vertices of G on the unit
circle R/Z and edges between two vertices x and y may only appear depending
on their angle with respect to the centre of the circle.
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Fig. 3. A copy of F2 = C5 and a representation of a blow-up on the unit circle.

For example, let G be a blow-up of F2 = C5. One can distribute the
vertices of F2 equally spaced on the unit circle (see Figure 3). Then we place
all vertices of G that correspond to the blow-up class of vi into a small ε-ball
around vi on the unit circle (cf. green arcs in Figure 3). For a sufficiently
small ε, all vertices in an ε-ball around vi have the same neighbours and they
can be characterised by having their smaller angle with respect to the centre
bigger than 120◦ (cf. red and blue lines in Figure 3).



For the proof of Theorem 1.2 we distinguish two cases depending on the
independence number α(G) and refer to [2].
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