Loose Hamiltonian cycles forced by large (k-2)-degree - sharp version

J. de O. Bastos^{c,1,4}, G. O. Mota^{a,2,5}, M. Schacht^{b,6}, J. Schnitzer^{b,6}, and F. Schulenburg^{b,6}

^a Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil ^b Fachbereich Mathematik, Universität Hamburg, Germany

^c Departamento de Engenharia da Computação, Universidade Federal do Ceará, Sobral, Brazil

Abstract

We prove for all $k \ge 4$ and $1 \le \ell < k/2$ the sharp minimum (k-2)-degree bound for a k-uniform hypergraph \mathcal{H} on n vertices to contain a Hamiltonian ℓ -cycle if $k - \ell$ divides n and n is sufficiently large. This extends a result of Han and Zhao for 3-uniform hypergraphs.

Keywords: hypergraphs, Hamiltonian cycles, degree conditions

 $[\]overline{^{1}}$ Supported by CAPES.

 $^{^2}$ Supported by FAPESP (Proc. 2013/11431-2 and 2013/20733-2) and CNPq (Proc. 477203/2012-4 and 456792/2014-7).

 $^{^{3}}$ The cooperation was supported by a joint CAPES/DAAD PROBRAL (Proc. 430/15).

⁴ Email: josefran@ime.usp.br

⁵ Email: mota@ime.usp.br

⁶ Email: {mathias.schacht,jakob.schnitzer,fabian.schulenburg}@uni-hamburg.de

1 Introduction

Given $k \ge 2$, a k-uniform hypergraph \mathcal{H} is a pair (V, E) with vertex set Vand edge set $E \subseteq V^{(k)}$ being a subset of all k-element subsets of V. Given a k-uniform hypergraph $\mathcal{H} = (V, E)$ and a subset $S \in V^{(s)}$, we denote by d(S) the number of edges in E containing S and we denote by N(S) the (k-s)-element sets $T \in V^{(k-s)}$ such that $T \cup S \in E$, so d(S) = |N(S)|. The minimum s-degree of \mathcal{H} is denoted by $\delta_s(\mathcal{H})$ and it is defined as the minimum of d(S) over all sets $S \in V^{(s)}$.

We say that a k-uniform hypergraph \mathcal{C} is an ℓ -cycle if there exists a cyclic ordering of its vertices such that every edge of \mathcal{C} is composed of k consecutive vertices, two (vertex-wise) consecutive edges share exactly ℓ vertices, and every vertex is contained in an edge. Moreover, if the ordering is not cyclic, then \mathcal{C} is an ℓ -path and we say that the first and last ℓ vertices are the ends of the path. The problem of finding minimum degree conditions that ensure the existence of Hamiltonian cycles, i.e. cycles that contain all vertices of a given hypergraph, has been extensively studied over the last years (see, e.g., the surveys [11, 14]). Katona and Kierstead [7] started the study of this problem, posing a conjecture that was confirmed by Rödl, Ruciński, and Szemerédi [12, 13], who proved the following result: For every $k \ge 3$, if \mathcal{H} is a k-uniform n-vertex hypergraph with $\delta_{k-1}(\mathcal{H}) \ge (1/2 + o(1))n$, then \mathcal{H} contains a Hamiltonian (k-1)-cycle. Kühn and Osthus proved that 3-uniform hypergraphs \mathcal{H} with $\delta_2(\mathcal{H}) \ge (1/4 + o(1))n$ contain a Hamiltonian 1-cycle [10], and Hàn and Schacht [4] (see also [8]) generalized this result to arbitrary k and ℓ -cycles with $1 \leq \ell < k/2$. In [9], Kühn, Mycroft, and Osthus generalized this result to $1 \leq \ell < k$, settling the problem of the existence of Hamiltonian ℓ -cycles in k-uniform hypergraphs with large minimum (k-1)-degree. In Theorem 1.1 below (see [1,3]) we have minimum (k-2)-degree conditions that ensure the existence of Hamiltonian ℓ -cycles for $1 \leq \ell < k/2$.

Theorem 1.1 For all integers $k \ge 3$ and $1 \le \ell < k/2$ and every $\gamma > 0$ there exists an n_0 such that every k-uniform hypergraph $\mathcal{H} = (V, E)$ on $|V| = n \ge n_0$ vertices with $n \in (k - \ell)\mathbb{N}$ and

$$\delta_{k-2}(\mathcal{H}) \ge \left(\frac{4(k-\ell)-1}{4(k-\ell)^2} + \gamma\right) \binom{n}{2}$$

contains a Hamiltonian ℓ -cycle.

The minimum degree condition in Theorem 1.1 is asymptotically optimal as the following well-known example confirms. The construction of the example

varies slightly depending on whether n is an odd or an even multiple of $k - \ell$. We first consider the case that $n = (2m + 1)(k - \ell)$ for some integer m. Let $\mathcal{X}_{k,\ell}(n) = (V, E)$ be a k-uniform hypergraph on n vertices such that an edge belongs to E if and only if it contains at least one vertex from $A \subset V$, where $|A| = \left\lfloor \frac{n}{2(k-\ell)} \right\rfloor$. It is easy to see that $\mathcal{X}_{k,\ell}(n)$ contains no Hamiltonian ℓ -cycle, as it would have to contain $\frac{n}{k-\ell}$ edges and each vertex in A is contained in at most two of them. Indeed any maximal ℓ -cycle includes all but $k - \ell$ vertices and adding any additional edge to the hypergraph would imply a Hamiltonian ℓ -cycle. Let us now consider the case that $n = 2m(k - \ell)$ for some integer m. Similarly, let $\mathcal{X}_{k,\ell}(n) = (V, E)$ be a k-uniform hypergraph on n vertices that contains all edges incident to $A \subset V$, where $|A| = \frac{n}{2(k-\ell)} - 1$. Additionally, fix some $\ell + 1$ vertices of $B = V \setminus A$ and let $\mathcal{X}_{k,\ell}(n)$ contain all edges on B that contain all of these vertices, i.e., an $(\ell + 1)$ -star. Again, of the $\frac{n}{k-\ell}$ edges that a Hamiltonian ℓ -cycle would have to contain, at most $\frac{n}{k-\ell} - 2$ can be incident to A. So two edges would have to be completely contained in Band be disjoint or intersect in exactly ℓ vertices, which is impossible since the induced subhypergraph on B only contains an $(\ell + 1)$ -star. Note that for the minimum (k-2)-degree the $(\ell+1)$ -star on B is only relevant if $\ell = 1$, in which case this star increases the minimum (k-2)-degree by one. In Theorem 1.2 below we obtain the optimal bound for $\delta_{k-2}(\mathcal{H})$ for any $k \ge 4$.

Theorem 1.2 For all integers $k \ge 4$ and $1 \le \ell < k/2$ there exists n_0 such that every k-uniform hypergraph $\mathcal{H} = (V, E)$ on $|V| = n \ge n_0$ vertices with $n \in (k - \ell)\mathbb{N}$ and

$$\delta_{k-2}(\mathcal{H}) > \delta_{k-2}(\mathcal{X}_{k,\ell}(n)) \tag{1}$$

contains a Hamiltonian ℓ -cycle. In particular, if

$$\delta_{k-2}(\mathcal{H}) \ge \frac{4(k-\ell)-1}{4(k-\ell)^2} \binom{n}{2},$$

then \mathcal{H} contains a Hamiltonian ℓ -cycle.

The following notion of extremality is motivated by the hypergraph $\mathcal{X}_{k,\ell}(n)$. A k-uniform hypergraph $\mathcal{H} = (V, E)$ is called (ℓ, ξ) -extremal if there exists a partition $V = A \cup B$ such that $|A| = \left\lceil \frac{n}{2(k-\ell)} - 1 \right\rceil$, $|B| = \left\lfloor \frac{2(k-\ell)-1}{2(k-\ell)}n + 1 \right\rfloor$ and $e(B) = |E \cap B^{(k)}| \leq \xi {n \choose k}$. We say that $A \cup B$ is an (ℓ, ξ) -extremal partition of V. Theorem 1.2 follows easily from the next two results, the so-called extremal case (see Theorem 1.3 below) and non-extremal case (see Theorem 1.4, which was addressed in [1]). **Theorem 1.3** For any integers $k \ge 3$ and $1 \le \ell < k/2$, there exists $\xi > 0$ such that the following holds for sufficiently large n. Suppose \mathcal{H} is a k-uniform hypergraph on n vertices with $n \in (k - \ell)\mathbb{N}$ such that \mathcal{H} is (ℓ, ξ) -extremal and

$$\delta_{k-2}(\mathcal{H}) > \delta_{k-2}(\mathcal{X}_{k,\ell}(n)).$$

Then \mathcal{H} contains a Hamiltonian ℓ -cycle.

Theorem 1.4 For any $0 < \xi < 1$ and all integers $k \ge 4$ and $1 \le \ell < k/2$, there exists $\gamma > 0$ such that the following holds for sufficiently large n. Suppose \mathcal{H} is a k-uniform hypergraph on n vertices with $n \in (k - \ell)\mathbb{N}$ such that \mathcal{H} is not (ℓ, ξ) -extremal and

$$\delta_{k-2}(\mathcal{H}) \ge \left(\frac{4(k-\ell)-1}{4(k-\ell)^2}-\gamma\right)\binom{n}{2}$$

Then \mathcal{H} contains a Hamiltonian ℓ -cycle.

In Section 2 we give an overview of the proof of Theorem 1.3.

2 Overview

Let $\mathcal{H} = (V, E)$ be a k-uniform hypergraph and let $X, Y \subset V$ be disjoint subsets. Given a vertex set $L \subset V$ we denote by $d(L, X^{(i)}Y^{(j)})$ the number of edges of the form $L \cup I \cup J$, where $I \in X^{(i)}, J \in Y^{(j)}$, and |L| + i + j = k. We allow for $Y^{(j)}$ to be omitted when j is zero and write $d(v, X^{(i)}Y^{(j)})$ for $d(\{v\}, X^{(i)}Y^{(j)})$.

Let $\rho > 0$ and integers $k \ge 3$ and $1 \le \ell < k/2$ be given and fix small ε and $\xi \ll \varepsilon$. The proof of Theorem 1.3 follows ideas from [5], where a corresponding result with a (k-1)-degree condition is proved. Let $n \in (k-\ell)\mathbb{N}$ be sufficiently large and let \mathcal{H} be an (ℓ, ξ) -extremal k-uniform hypergraph on n vertices that satisfies the (k-2)-degree condition

$$\delta_{k-2}(\mathcal{H}) > \delta_{k-2}(\mathcal{X}_{k,\ell}(n)).$$

Let $A \cup B = V(\mathcal{H})$ be a minimal extremal partition of $V(\mathcal{H})$, i.e. a partition satisfying

$$a = |A| = \left[\frac{n}{2(k-\ell)} - 1\right], \quad b = |B| = n - a, \text{ and } e(B) \le \xi \binom{n}{k},$$

which minimises e(B). We first construct an ℓ -path \mathcal{Q} in \mathcal{H} with ends L_0 and L_1 such that there is a partition $A_* \cup B_*$ of $(V(\mathcal{H}) \smallsetminus V(\mathcal{Q})) \cup L_0 \cup L_1$ composed only of "typical" vertices (see (*ii*) and (*iii*) below). The set $A_* \cup B_*$ is suitable for an application of Lemma 3.10 from [5], which ensures the existence of an ℓ -path \mathcal{Q}' on $A_* \cup B_*$ with L_0 and L_1 as ends. Note that the existence of a Hamiltonian ℓ -cycle in \mathcal{H} is guaranteed by \mathcal{Q} and \mathcal{Q}' . So, in order to prove Theorem 1.3, we only need to prove the following.

(i) $|B_*| = (2k - 2\ell - 1)|A_*| + \ell$, (ii) $d(v, B_*^{(k-1)}) \ge (1 - \varrho) \binom{|B_*|}{k-1}$ for any vertex $v \in A_*$, (iii) $d(v, A_*^{(1)} B_*^{(k-2)}) \ge (1 - \varrho)|A_*| \binom{|B_*|}{k-2}$ for any vertex $v \in B_*$, (iv) $d(L_0, A_*^{(1)} B_*^{(k-\ell-1)}), d(L_1, A_*^{(1)} B_*^{(k-\ell-1)}) \ge (1 - \varrho)|A_*| \binom{|B_*|}{k-\ell-1}$.

Since $e(B) \leq \xi\binom{n}{k}$, we expect most vertices $v \in B$ to have low degree $d(v, B^{(k-1)})$ into B. Also, most $v \in A$ must have high degree $d(v, B^{(k-1)})$ into B such that the degree condition for (k-2)-sets in B can be satisfied. Thus, we define the sets A_{ε} and B_{ε} to consist of vertices of high respectively low degree into B by

$$A_{\varepsilon} = \left\{ v \in V \colon d(v, B^{(k-1)}) \ge (1-\varepsilon) \binom{|B|}{k-1} \right\},\$$
$$B_{\varepsilon} = \left\{ v \in V \colon d(v, B^{(k-1)}) \le \varepsilon \binom{|B|}{k-1} \right\},\$$

and put $V_{\varepsilon} = V \setminus (A_{\varepsilon} \cup B_{\varepsilon})$. It follows from these definitions that

if
$$A \cap B_{\varepsilon} \neq \emptyset$$
, then $B \subset B_{\varepsilon}$, otherwise $A \subset A_{\varepsilon}$. (2)

Actually, we can show that the sets A_{ε} and B_{ε} are not too different from Aand B respectively and that V_{ε} is small. Since we are interested in ℓ -cycles, the degree of ℓ -tuples in B_{ε} will be of interest, which motivates the following definition. An ℓ -set $L \subset B_{\varepsilon}$ is called ε -typical if $d(L, B^{(k-\ell)}) \leq \varepsilon {|B| \choose k-\ell}$. Indeed, most ℓ -sets in B_{ε} are ε -typical and ε -typical sets can be connected using ℓ -paths of size two in a robust way, i.e., avoiding any small set of vertices.

We want to construct an ℓ -path \mathcal{Q} with ends L_0 and L_1 , such that $V_{\varepsilon} \subset V(\mathcal{Q})$ and the remaining sets $A_* = A_{\varepsilon} \smallsetminus V(\mathcal{Q})$ and $B_* = (B_{\varepsilon} \smallsetminus V(\mathcal{Q})) \cup L_0 \cup L_1$ have the right proportion of vertices, i.e., one to $(2k - 2\ell - 1)$. We can find $|V_{\varepsilon}|$ paths of size two with ε -typical ends that each contain a distinct vertex of V_{ε} and otherwise contain vertices from B_{ε} . If $|A \cap B_{\varepsilon}| > 0$, then $B \subset B_{\varepsilon}$ and so \mathcal{Q} should cover V_{ε} and contain the right number of vertices from B_{ε} . For this, we can find $2|A \cap B_{\varepsilon}|$ disjoint paths of size three, each of which contains exactly one vertex from A_{ε} and has two ε -typical sets as its ends. If on the other hand A_{ε} overlaps into B, we can extend one of paths with single edges using exactly one vertex from A_{ε} to obtain the right proportion.

In both cases, we can connect all the short ℓ -paths as the ends are ε -typical, again keeping the right proportion of vertices in A_{ε} and B_{ε} , i.e., satisfying (*i*). Since the constructed path Q is small and the difference between A_{ε} and A as well as B_{ε} and B is small, the remaining required properties (*ii*)-(*iv*) follow from the definition of A_{ε} and B_{ε} .

References

- Bastos, J. de O., G. O. Mota, M. Schacht, J. Schnitzer, and F. Schulenburg, Loose Hamiltonian cycles forced by large (k-2)-degree – approximate version, submitted.
- [2] Bastos, J. de O., G. O. Mota, M. Schacht, J. Schnitzer, and F. Schulenburg, Loose Hamiltonian cycles forced by large (k-2)-degree – sharp version, submitted.
- [3] Buß, E., H. Hàn, and M. Schacht, Minimum vertex degree conditions for loose Hamilton cycles in 3-uniform hypergraphs, J. Combin. Theory Ser. B 103 (2013) no. 6, 658–678.
- [4] Hàn, H. and M. Schacht, Dirac-type results for loose Hamilton cycles in uniform hypergraphs, J. Combin. Theory Ser. B 100 (2010) no. 3, 332–346.
- [5] Han, J. and Y. Zhao, Minimum codegree threshold for Hamilton l-cycles in k-uniform hypergraphs, J. Combin. Theory Ser. A 132 (2015), 194–223.
- [6] Han, J. and Y. Zhao, Minimum vertex degree threshold for loose Hamilton cycles in 3-uniform hypergraphs, J. Combin. Theory Ser. B 114 (2015), 70–96.
- [7] Katona, Gy. Y. and H. A. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory 30 (1999) no. 3, 205–212.
- [8] Keevash, P., D. Kühn, R. Mycroft, and D. Osthus, *Loose Hamilton cycles in hypergraphs*, Discrete Math. **311** (2011) no. 7, 544–559.
- Kühn, D., R. Mycroft, and D. Osthus, Hamilton l-cycles in uniform hypergraphs, J. Combin. Theory Ser. A 117 (2010) no. 7, 910–927.
- [10] Kühn, D., and D. Osthus, Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree, J. Combin. Theory Ser. B 96 (2006) no. 6, 767–821.
- [11] Rödl, V. and A. Ruciński, Dirac-type questions for hypergraphs—a survey (or more problems for Endre to solve), in Bolyai Soc. Math. Stud., An irregular mind, 21 (2010), Budapest, 561–590.
- [12] Rödl, V., A. Ruciński, and E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, Combin. Probab. Comput. 15 (2006) no. 1-2, 229–251.
- [13] Rödl, V., A. Ruciński, and E. Szemerédi, An approximate Dirac-type theorem for k-uniform hypergraphs, Combinatorica 28 (2008) no. 2, 229–260.
- [14] Zhao, Y., Recent advances on Dirac-type problems for hypergraphs, in IMA Vol. Math. Appl., Recent trends in combinatorics, 159 (2016), Springer, 145–165.