# A counting lemma for sparse pseudorandom hypergraphs * 

Y. Kohayakawa ${ }^{\text {a }}$ G. O. Mota ${ }^{\text {a }}$ M. Schacht ${ }^{\text {b }}$ A. Taraz ${ }^{\text {c }}$<br>a Instituto de Matemática e Estatística<br>Universidade de São Paulo, Rua do Matão 1010<br>05508-090, São Paulo, Brazil<br>${ }^{\text {b }}$ Fachbereich Mathematik<br>Universität Hamburg, Bundesstraße 55<br>20146 Hamburg, Germany<br>c Technische Universität Hamburg-Harburg<br>Institut für Mathematik, Schwarzenbergstraße 95<br>21073 Hamburg, Germany


#### Abstract

Our main result tells us that mild density and pseudorandom conditions allow one to prove certain counting lemmas for a restricted class of subhypergraphs in a sparse setting. As an application, we present a variant of a universality result of Rödl for sparse, 3 -uniform hypergraphs contained in strongly pseudorandom hypergraphs.


Keywords: Embeddings, hypergraphs, pseudorandomness

[^0]
## 1 Introduction and main results

We say that a graph $G=(V, E)$ satisfies property $\mathcal{Q}(\eta, \delta, \alpha)$ if, for every subgraph $G[S]$ induced by $S \subset V$ such that $|S| \geq \eta|V|$, we have $(\alpha-\delta)\binom{|S|}{2}<$ $|E(G[S])|<(\alpha+\delta)\binom{|S|}{2}$. In [10], answering affirmatively a question posed by Erdős (see, e.g., [1] and [5]), Rödl proved that for every positive integer $m$ and for every positive $\alpha, \eta<1$ there exist $\delta>0$ and an integer $n_{0}>0$ such that, if $n \geq n_{0}$, then every $n$-vertex graph $G$ satisfying $\mathcal{Q}(\eta, \delta, \alpha)$ contains all graphs with $m$ vertices as induced subgraphs. Note that $\eta$ is not required to be small in this result, e.g., it could be, say, $1 / 2$. It is remarkable that uniform edge distribution over such 'large' sets suffices in Rödl's theorem. We prove a variant of this result, which allows one to count the number of embeddings (not necessarily induced labeled copies) of some fixed 3 -uniform hypergraphs into spanning subgraphs of "jumbled" 3-uniform hypergraphs.

Before we state our main results, we need some definitions. First, we generalize property $\mathcal{Q}(\eta, \delta, \alpha)$ to 3 -uniform hypergraphs. We say that a 3 uniform hypergraph $G=(V, E)$ satisfies property $\mathcal{Q}^{\prime}(\eta, \delta, q)$ if, for all $X \subset\binom{V}{2}$ and $Y \subset V$ with $|X| \geq \eta\binom{|V|}{2}$ and $|Y| \geq \eta|V|$, we have $(1-\delta) q|X||Y| \leq$ $\left|E_{G}(X, Y)\right| \leq(1+\delta) q|X||Y|$, where $E_{G}(X, Y)$ denotes the set of edges of $G$ containing a member of $X$ and a member of $Y$.

A 3-uniform hypergraph $\Gamma=(V, E)$ is called $(p, \beta)$-jumbled if, for all subsets $X \subset\binom{V}{2}$ and $Y \subset V$, we have $\left|\left|E_{\Gamma}(X, Y)\right|-p\right| X||Y|| \leq \beta \sqrt{|X||Y|}$. A $k$-uniform hypergraph $H$ is called linear if every pair of edges shares at most one vertex. An edge $e$ of a linear $k$-uniform hypergraph $E(H)$ is a connector if there exist $v \in V(H) \backslash\{e\}$ and $k$ edges $e_{1}, \ldots, e_{k}$ containing $v$ such that $\left|e \cap e_{i}\right|=1$ for $1 \leq i \leq k$. Note that, for $k=2$, a connector is an edge that is contained in a triangle.

Finally, we say that a $k$-uniform hypergraph $G$ satisfies property $\operatorname{BDD}(C, t, p)$ if, for all $1 \leq r \leq t$ and for all distinct $S_{1}, \ldots, S_{r} \in\binom{V(G)}{k-1}$, we have $\mid N_{G}\left(S_{1}\right) \cap$ $\ldots \cap N_{G}\left(S_{r}\right) \mid \leq C n p^{r}$.

We estimate the number of copies of small linear, connector-free 3-uniform hypergraphs $H$ contained in $n$-vertex 3 -uniform spanning subhypergraphs $G_{n}$ of ( $p, \gamma p^{2} n^{3 / 2}$ )-jumbled hypergraphs, for sufficiently small $\gamma>0$ and sufficiently large $p$ and $n$. We remark that, if $p \gg n^{-1 / 4}$, then the random 3uniform hypergraph, where each possible edge exists with probability $p$ independently of all other edges, is $\left(p, \gamma p^{2} n^{3 / 2}\right)$-jumbled with high probability, for all $\gamma>0$. One of our main results is the following theorem. We denote the family of embeddings of $H$ into $G_{n}$ by $\mathcal{E}\left(H, G_{n}\right)$.

Theorem 1.1 For all $\varepsilon, \alpha, \eta>0, C>1$, and an integer $m \geq 4$, there exist $\delta^{\prime \prime}, \gamma, D>0$ such that if $p=p(n) \geq D n^{-1 / m}$ with $p=p(n)=o(1)$ and $n$ is sufficiently large, then the following holds for every $\alpha p \leq q \leq p$. Suppose that
(i) $\Gamma$ is an n-vertex $(p, \beta)$-jumbled 3-uniform hypergraph;
(ii) $G_{n}$ is a spanning subhypergraph of $\Gamma$ with $\left|E\left(G_{n}\right)\right|=q\binom{n}{3}$ and $G_{n}$ satisfies $\mathcal{Q}^{\prime}\left(\eta, \delta^{\prime \prime}, q\right)$ and $\operatorname{BDD}(C, m, q)$.
If $\beta \leq \gamma p^{2} n^{3 / 2}$, then for every linear 3 -uniform connector-free hypergraph $H$ on $m$ vertices we have

$$
\left|\left|\mathcal{E}\left(H, G_{n}\right)\right|-n^{m} q^{e(H)}\right|<\varepsilon n^{m} q^{e(H)} .
$$

Part of the proof of Theorem 1.1 is based on a counting result for small linear, connector-free 3 -uniform hypergraphs into $n$-vertex "pseudorandom" hypergraphs. We say that a $k$-uniform hypergraph $G$ satisfies property $\operatorname{TUPLE}(t, \delta, p)$ if, for all $1 \leq r \leq t$, we have $\left|\left|N_{G}\left(S_{1}\right) \cap \ldots \cap N_{G}\left(S_{r}\right)\right|-n p^{r}\right|<\delta n p^{r}$ for all but at most $\delta\left(\begin{array}{c}n \\ k-1 \\ r\end{array}\right)$ distinct sets $S_{1}, \ldots, S_{r} \in\binom{V(G)}{k-1}$. If a $k$-uniform hypergraph $G$ satisfies properties $\operatorname{BDD}\left(C, t_{1}, q\right)$ and $\operatorname{TUPLE}\left(t_{2}, \delta, q\right)$, and $|E(G)|=q\binom{n}{k}$, then we say that $G$ is $\left(C, t_{1}, t_{2}, \delta, q\right)$-pseudorandom. We remark that similar notions of pseudorandomness in hypergraphs were considered in $[6,7]$.

Given a $k$-uniform hypergraph $H$, let $d_{H}=\max \{\delta(J): J \subset H\}$ and $D_{H}=$ $\min \left\{k \cdot d_{H}, \Delta(H)\right\}$. The next result, which is our second main theorem, is a generalization for $k$-uniform hypergraphs of a counting result for graphs proved in [9]. For related results, the reader is referred to [3] and [4].

Theorem 1.2 Let $k \geq 2$ and $m \geq 4$ be integers. Let $H$ be a $k$-uniform hypergraph on $m$ vertices and let $G_{n}$ be an n-vertex $k$-uniform hypergraph. For all $\varepsilon>0$ and $C>1$, there exist $\delta, D>0$ for which the following holds when $q \geq D n^{-1 / D_{H}}$ and $n$ is sufficiently large.

If $G_{n}$ is $\left(C, D_{H}, 2, \delta, q\right)$-pseudorandom and $H$ is linear and connector-free, then

$$
\left|\left|\mathcal{E}\left(H, G_{n}\right)\right|-n^{m} q^{e(H)}\right|<\varepsilon n^{m} q^{e(H)} .
$$

The first part of the proof of Theorem 1.1 involves proving that, if a graph $G_{n}$ is as in the statement of the theorem, then property $\mathcal{Q}^{\prime}\left(\eta, \delta^{\prime \prime}, q\right)$ implies $\operatorname{TUPLE}(2, \delta, q)$ for any given $\eta$ and $\delta$ if $\delta^{\prime \prime}$ is sufficiently small. The second part of the proof makes use of Theorem 1.2 for 3 -uniform hypergraphs. In Section 2 we sketch the proof of Theorem 1.1, explaining how we prove the implication $\mathcal{Q}^{\prime}\left(\eta, \delta^{\prime \prime}, q\right) \Rightarrow \operatorname{TUPLE}(2, \delta, q)$. The proof of Theorem 1.2 is sketched in Section 3. We finish with some concluding remarks in Section 4.

## 2 Overview of the proof of Theorem 1.1

We start by defining some hypergraph properties. Let $G$ be a 3 -uniform hypergraph and let $X, Y \subset V(G)$. We say that $(X, Y)$ satisfies property $\operatorname{DISC}\left(q, p, \varepsilon^{\prime}\right)$ in $G$ if, for all $X^{\prime} \subset\binom{X}{2}$ and $Y^{\prime} \subset Y$, we have $\left|\left|E_{G}\left(X^{\prime}, Y^{\prime}\right)\right|-\right.$ $\left.q\left|X^{\prime}\right|\left|Y^{\prime}\right|\left|\leq \varepsilon^{\prime} p\binom{|X|}{2}\right| Y \right\rvert\,$. Furthermore, if $(V(G), V(G))$ satisfies $\operatorname{DISC}\left(q, p, \varepsilon^{\prime}\right)$ in $G$, then we say that the hypergraph $G$ satisfies $\operatorname{DISC}\left(q, p, \varepsilon^{\prime}\right)$. We say that $(X, Y)$ satisfies property $\operatorname{PAIR}\left(q, p, \delta^{\prime}\right)$ in $G$ if the following conditions hold:

$$
\begin{array}{r}
\sum_{\left\{\begin{array}{c}
\left.x_{1}, x_{1}^{\prime}\right\} \in\binom{X}{2}
\end{array}\right.}| | N_{G}\left(\left\{x_{1}, x_{1}^{\prime}\right\}, Y\right)|-q| Y| | \leq \delta^{\prime} p\binom{|X|}{2}|Y|, \\
\sum_{\left\{x_{1}, x_{1}^{\prime}\right\} \in\binom{X}{2}} \sum_{\left\{x_{2}, x_{2}^{\prime}\right\} \in\binom{X}{2}} \| N_{G}\left(\left\{x_{1}, x_{1}^{\prime}\right\},\left\{x_{2}, x_{2}^{\prime}\right\}, Y\right)\left|-q^{2}\right| Y| | \leq \delta^{\prime} p^{2}\binom{|X|}{2}^{2}|Y|,
\end{array}
$$

where $N_{G}\left(\left\{x_{1}, x_{1}^{\prime}\right\}, Y\right)$ denotes the set of vertices $y \in Y$ such that $\left\{x_{1}, x_{1}^{\prime}, y\right\} \in$ $E(G)$ and $N_{G}\left(\left\{x_{1}, x_{1}^{\prime}\right\},\left\{x_{2}, x_{2}^{\prime}\right\}, Y\right)$ denotes the set of vertices $y \in Y$ such that $\left\{x_{1}, x_{1}^{\prime}, y\right\} \in E(G)$ and $\left\{x_{2}, x_{2}^{\prime}, y\right\} \in E(G)$. Furthermore, if $(V(G), V(G))$ satisfies $\operatorname{PAIR}\left(q, p, \delta^{\prime}\right)$ in $G$, then we say that $G$ satisfies $\operatorname{PAIR}\left(q, p, \delta^{\prime}\right)$.

Consider the setup of Theorem 1.1. The proof of Theorem 1.1 is divided into the following four parts. Below, for simplicity, we use $o(1)$ terms in our assertions, following standard practice in the area of quasi-randomness [2].
(i) $G_{n} \in \mathcal{Q}^{\prime}(\eta, o(1), q)$ implies $(X, Y) \in \operatorname{DISC}(q, p, o(1))$ for large $X \subset\binom{V\left(G_{n}\right)}{2}$ and $Y \subset V\left(G_{n}\right)$;
(ii) $(X, Y) \in \operatorname{DISC}(q, p, o(1))$ implies $(X, Y) \in \operatorname{PAIR}(q, p, o(1))$;
(iii) $G_{n} \in \operatorname{PAIR}(q, p, o(1))$ implies $G_{n} \in \operatorname{TUPLE}(2, o(1), q)$;
(iv) Since $G_{n} \in \operatorname{BDD}(C, m, q)$ and $G_{n} \in \operatorname{TUPLE}(2, o(1), q)$, the counting result (Theorem 1.2) implies the conclusion of Theorem 1.1.
The jumbledness property of $\Gamma$ is needed in the proof of items (i) and (ii). The proof of (i) is inspired by ideas in [10]. We partition large sets $X \subset\binom{V\left(G_{n}\right)}{2}$ and $Y \subset V\left(G_{n}\right)$ into sufficiently small pieces. Then we analyze the edge densities between these small pieces of $X$ and $Y$. The proof of (ii) is quite long and is based on generalizations of results in [8]. The proof of (iii) is trivial and (iv) is just an application of Theorem 1.2.

## 3 Overview of the proof of Theorem 1.2

Consider the setup of Theorem 1.2. The next lemma allows us to replace property $\operatorname{TUPLE}(2, \delta, q)$ by $\operatorname{TUPLE}\left(d_{H}, \delta^{\prime}, q\right)$ in Theorem 1.2 as long as $\delta$ is sufficiently small.

Lemma 3.1 For all $\delta^{\prime}>0, C>1$ and integers $k, t \geq 2$, there exist $\delta, D>0$ such that the following holds when $q=q(n) \geq D n^{-1 / t}$ and $n$ is sufficiently large.

If $G_{n}$ is a $k$-uniform hypergraph such that $G_{n} \in \operatorname{BDD}(2, C, q), G_{n} \in$ $\operatorname{TUPLE}(2, \delta, q)$ and $\left|E\left(G_{n}\right)\right|=q\binom{n}{k}$, then $G_{n} \in \operatorname{TUPLE}\left(t, \delta^{\prime}, q\right)$.

Overview of the proof of Lemma 3.1. Fix $\delta^{\prime}>0, C>1$ and integers $k, t \geq 2$. Consider $2 \leq r \leq t$ and let $G_{n}$ and $q$ be as in the statement of the theorem. We have to show that the conditions of a defect version of Cauchy-Schwarz inequality hold. In order to verify the validity of these conditions, we prove that if $G_{n}$ satisfies $\operatorname{BDD}(C, 2, q)$, then $G_{n}$ also satisfies a "version" of $\operatorname{BDD}(C, 2, q)$ for vertices instead sets of $k-1$ vertices. This is proved by induction on the size of the considered sets of vertices. We also have to prove that, for sufficiently small $\delta$, property $\operatorname{TUPLE}(2, \delta, q)$ together with $\operatorname{BDD}(C, 2, q)$ implies a version of TUPLE $(2, \delta, q)$ for vertices. This is proved by induction, CauchySchwarz inequality and some counting arguments.

To sketch the proof of Theorem 1.2 we must consider the following definitions. Let $X \subset\binom{V(H)}{k-1}$. If $f$ is an embedding of $H$ into $G_{n}$, we denote by $f_{k-1}(X)$ the family of sets $\left\{f\left(x_{1}\right), \ldots, f\left(x_{k-1}\right)\right\}$, for all $\left\{x_{1}, \ldots, x_{k-1}\right\} \in X$. Given $1 \leq r \leq k$ and a set $X=\left\{X_{1}, \ldots, X_{r}\right\}$, where $X_{i}=\left\{x_{i, 1}, \ldots, x_{i, k-1}\right\} \in\binom{V(H)}{k-1}$ for $1 \leq i \leq r$, we define $X^{\text {set }}=\left\{x_{1,1}, \ldots, x_{1, k-1}, \ldots, x_{r, 1}, \ldots, x_{r, k-1}\right\}$.

Overview of the proof of Theorem 1.2. Fix $k, m, \varepsilon$ and $C$. In our proof we need that $G_{n} \in \operatorname{TUPLE}\left(d_{H}, \delta^{\prime}, q\right)$ for a sufficiently small $\delta^{\prime}$. Let $\delta$ be given by an application of Lemma 3.1 with $\delta^{\prime}, C$ and $t=d_{H}$. Therefore, since $G_{n} \in \operatorname{TUPLE}(2, \delta, q)$, we conclude that $G_{n} \in \operatorname{TUPLE}\left(d_{H}, \delta^{\prime}, q\right)$.

Let $H, G_{n}$ and $q$ be as in the statement. Given $1 \leq h \leq m$, let $H_{h}=$ $H\left[\left\{v_{1}, \ldots, v_{h}\right\}\right]$ where $\left\{v_{1}, \ldots, v_{m}\right\}$ is a $d_{H}$-degenerate ordering of $V(H)$. We will use induction on $h$ to prove that $\left|\left|\mathcal{E}\left(H_{h}, G_{n}\right)\right|-n^{h} q^{\left|E\left(H_{h}\right)\right|}\right| \leq \varepsilon n^{h} q^{\left|E\left(H_{h}\right)\right|}$.

First, by using that $G_{n} \in \operatorname{TUPLE}\left(d_{H}, \delta^{\prime}, q\right)$ and $G_{n} \in \operatorname{BDD}\left(C, D_{H}, q\right)$ we prove that most of the embeddings of $H$ into $G_{n}$ are induced and most of the embeddings $f: V\left(H_{h-1}\right) \rightarrow G_{n}$ are clean, where by "clean" we mean $\left|N_{G_{n}}\left(f_{k-1}\left(N_{H_{h}}\left(v_{h}\right)\right)\right)-n p^{d_{H_{h}}\left(v_{h}\right)}\right|<\delta^{\prime} n p^{d_{H_{h}}\left(v_{h}\right)}$ and $N_{H_{h}}^{\text {set }}\left(v_{h}\right)$ is stable. There-
fore, we can focus on clean and induced embeddings only.
Consider a clean and induced embedding $f^{\prime}$ from $V\left(H_{h-1}\right)$ into $G_{n}$. Since $H$ is linear and connector-free, $N_{H_{h}}^{\text {set }}\left(v_{h}\right)$ is stable in $H_{h}$. But since $f^{\prime}$ is induced, $f^{\prime}\left(N_{H_{h}}^{\text {set }}\left(v_{h}\right)\right)$ is stable in $G_{n}$. Since $f^{\prime}$ is clean, we also conclude that $\left|N_{G_{n}}\left(f_{k-1}^{\prime}\left(N_{H_{h}}\left(v_{h}\right)\right)\right)-n q^{d_{H_{h}}\left(v_{h}\right)}\right|<\delta^{\prime} n q^{d_{H_{h}}\left(v_{h}\right)}$. To finish the proof, we count in how many ways we can extend $f^{\prime}$ to obtain an embedding of $H_{h}$ into $G_{n}$.

## 4 Concluding remarks

Unfortunately, a version of Theorem 1.1 for $k$-uniform hypergraphs, for $k$ larger than 3, present new difficulties and it will be considered elsewhere.

## References

[1] Bollobás, B., The evolution of sparse graphs, in: Graph theory and combinatorics (Cambridge, 1983), Academic Press, London, 1984 pp. 35-57.
[2] Chung, F. R. K., R. L. Graham and R. M. Wilson, Quasi-random graphs, Combinatorica 9 (1989), pp. 345-362.
[3] Conlon, D., J. Fox and Y. Zhao, Extremal results in sparse pseudorandom graphs, ArXiv (2012).
[4] Conlon, D., J. Fox and Y. Zhao, A relative Szemerédi theorem, ArXiv (2013).
[5] Erdős, P., Some old and new problems in various branches of combinatorics, in: Proc. 10th Southeastern Conference on Combinatorics, Graph Theory and Computing (1979), pp. 19-37.
[6] Frieze, A. and M. Krivelevich, Packing Hamilton cycles in random and pseudorandom hypergraphs, Random Structures Algorithms 41 (2012), pp. 1-22.
[7] Frieze, A., M. Krivelevich and P.-S. Loh, Packing tight Hamilton cycles in 3uniform hypergraphs, Random Structures Algorithms 40 (2012), pp. 269-300.
[8] Kohayakawa, Y., V. Rödl, M. Schacht and J. Skokan, On the triangle removal lemma for subgraphs of sparse pseudorandom graphs, in: An irregular mind, Bolyai Soc. Math. Stu. 21, J. Bolyai Math. Soc., Budapest, 2010 pp. 359-404.
[9] Kohayakawa, Y., V. Rödl and P. Sissokho, Embedding graphs with bounded degree in sparse pseudorandom graphs, Israel J. Math. 139 (2004), pp. 93-137.
[10] Rödl, V., On universality of graphs with uniformly distributed edges, Discrete Math. 59 (1986), pp. 125-134.


[^0]:    * This work was partially supported by a joint CAPES/DAAD/PROBRAL project. Y. Kohayakawa was partially supported by FAPESP (2013/03447-6, 2013/07699-0), CNPq (459335/2014-6, 310974/2013-5, 477203/2012-4), NUMEC/USP (Project MaCLinC/USP) and the NSF (DMS 1102086). G. O. Mota was supported by FAPESP (2009/06294-0, 2013/20733-2). M. Schacht was supported by DFG grant SCHA 1263/4-1. A. Taraz was supported in part by DFG grant TA 309/2-2.
    Email: \{yoshi|mota\}@ime.usp.br, schacht@math.uni-hamburg.de, taraz@tuhh.de

