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Abstract

Our main result tells us that mild density and pseudorandom conditions allow one
to prove certain counting lemmas for a restricted class of subhypergraphs in a sparse
setting. As an application, we present a variant of a universality result of Rödl for
sparse, 3-uniform hypergraphs contained in strongly pseudorandom hypergraphs.
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1 Introduction and main results

We say that a graph G = (V,E) satisfies property Q(η, δ, α) if, for every
subgraph G[S] induced by S ⊂ V such that |S| ≥ η|V |, we have (α− δ)

(|S|
2

)
<

|E(G[S])| < (α+ δ)
(|S|

2

)
. In [10], answering affirmatively a question posed by

Erdős (see, e.g., [1] and [5]), Rödl proved that for every positive integer m
and for every positive α, η < 1 there exist δ > 0 and an integer n0 > 0 such
that, if n ≥ n0, then every n-vertex graph G satisfying Q(η, δ, α) contains all
graphs with m vertices as induced subgraphs. Note that η is not required to
be small in this result, e.g., it could be, say, 1/2. It is remarkable that uniform
edge distribution over such ‘large’ sets suffices in Rödl’s theorem. We prove
a variant of this result, which allows one to count the number of embeddings
(not necessarily induced labeled copies) of some fixed 3-uniform hypergraphs
into spanning subgraphs of “jumbled” 3-uniform hypergraphs.

Before we state our main results, we need some definitions. First, we
generalize property Q(η, δ, α) to 3-uniform hypergraphs. We say that a 3-
uniform hypergraph G = (V,E) satisfies property Q′(η, δ, q) if, for all X ⊂

(
V
2

)
and Y ⊂ V with |X| ≥ η

(|V |
2

)
and |Y | ≥ η|V |, we have (1 − δ)q|X||Y | ≤

|EG(X, Y )| ≤ (1 + δ)q|X||Y |, where EG(X, Y ) denotes the set of edges of G
containing a member of X and a member of Y .

A 3-uniform hypergraph Γ = (V,E) is called (p, β)-jumbled if, for all sub-
sets X ⊂

(
V
2

)
and Y ⊂ V , we have

∣∣|EΓ(X, Y )| − p|X||Y |
∣∣ ≤ β

√
|X||Y |. A

k-uniform hypergraph H is called linear if every pair of edges shares at most
one vertex. An edge e of a linear k-uniform hypergraph E(H) is a connector
if there exist v ∈ V (H) \ {e} and k edges e1, . . . , ek containing v such that
|e ∩ ei| = 1 for 1 ≤ i ≤ k. Note that, for k = 2, a connector is an edge that is
contained in a triangle.

Finally, we say that a k-uniform hypergraphG satisfies property BDD(C, t, p)
if, for all 1 ≤ r ≤ t and for all distinct S1, . . . , Sr ∈

(
V (G)
k−1

)
, we have |NG(S1)∩

. . . ∩NG(Sr)| ≤ Cnpr.

We estimate the number of copies of small linear, connector-free 3-uniform
hypergraphs H contained in n-vertex 3-uniform spanning subhypergraphs Gn

of (p, γp2n3/2)-jumbled hypergraphs, for sufficiently small γ > 0 and suffi-
ciently large p and n. We remark that, if p � n−1/4, then the random 3-
uniform hypergraph, where each possible edge exists with probability p inde-
pendently of all other edges, is (p, γp2n3/2)-jumbled with high probability, for
all γ > 0. One of our main results is the following theorem. We denote the
family of embeddings of H into Gn by E(H,Gn).



Theorem 1.1 For all ε, α, η > 0, C > 1, and an integer m ≥ 4, there exist
δ′′, γ,D > 0 such that if p = p(n) ≥ Dn−1/m with p = p(n) = o(1) and n is
sufficiently large, then the following holds for every αp ≤ q ≤ p. Suppose that

(i) Γ is an n-vertex (p, β)-jumbled 3-uniform hypergraph;

(ii) Gn is a spanning subhypergraph of Γ with |E(Gn)| = q
(
n
3

)
and Gn satisfies

Q′(η, δ′′, q) and BDD(C,m, q).

If β ≤ γp2n3/2, then for every linear 3-uniform connector-free hypergraph H
on m vertices we have∣∣|E(H,Gn)| − nmqe(H)

∣∣ < εnmqe(H).

Part of the proof of Theorem 1.1 is based on a counting result for small lin-
ear, connector-free 3-uniform hypergraphs into n-vertex “pseudorandom” hy-
pergraphs. We say that a k-uniform hypergraphG satisfies property TUPLE(t, δ, p)
if, for all 1 ≤ r ≤ t, we have

∣∣|NG(S1)∩ . . .∩NG(Sr)|−npr
∣∣ < δnpr for all but

at most δ
(( n

k−1)
r

)
distinct sets S1, . . . , Sr ∈

(
V (G)
k−1

)
. If a k-uniform hypergraph

G satisfies properties BDD(C, t1, q) and TUPLE(t2, δ, q), and |E(G)| = q
(
n
k

)
,

then we say that G is (C, t1, t2, δ, q)-pseudorandom. We remark that similar
notions of pseudorandomness in hypergraphs were considered in [6,7].

Given a k-uniform hypergraph H, let dH = max{δ(J) : J ⊂ H} and DH =
min{k · dH ,∆(H)}. The next result, which is our second main theorem, is
a generalization for k-uniform hypergraphs of a counting result for graphs
proved in [9]. For related results, the reader is referred to [3] and [4].

Theorem 1.2 Let k ≥ 2 and m ≥ 4 be integers. Let H be a k-uniform
hypergraph on m vertices and let Gn be an n-vertex k-uniform hypergraph.
For all ε > 0 and C > 1, there exist δ,D > 0 for which the following holds
when q ≥ Dn−1/DH and n is sufficiently large.

If Gn is (C,DH , 2, δ, q)-pseudorandom and H is linear and connector-free,
then ∣∣|E(H,Gn)| − nmqe(H)

∣∣ < εnmqe(H).

The first part of the proof of Theorem 1.1 involves proving that, if a graph
Gn is as in the statement of the theorem, then property Q′(η, δ′′, q) implies
TUPLE(2, δ, q) for any given η and δ if δ′′ is sufficiently small. The sec-
ond part of the proof makes use of Theorem 1.2 for 3-uniform hypergraphs.
In Section 2 we sketch the proof of Theorem 1.1, explaining how we prove
the implication Q′(η, δ′′, q) ⇒ TUPLE(2, δ, q). The proof of Theorem 1.2 is
sketched in Section 3. We finish with some concluding remarks in Section 4.



2 Overview of the proof of Theorem 1.1

We start by defining some hypergraph properties. Let G be a 3-uniform
hypergraph and let X, Y ⊂ V (G). We say that (X, Y ) satisfies property
DISC(q, p, ε′) in G if, for all X ′ ⊂

(
X
2

)
and Y ′ ⊂ Y , we have

∣∣|EG(X ′, Y ′)| −
q|X ′||Y ′|

∣∣ ≤ ε′p
(|X|

2

)
|Y |. Furthermore, if (V (G), V (G)) satisfies DISC(q, p, ε′)

in G, then we say that the hypergraph G satisfies DISC(q, p, ε′). We say that
(X, Y ) satisfies property PAIR(q, p, δ′) in G if the following conditions hold:

∑
{x1,x′1}∈(

X
2 )

∣∣|NG({x1, x
′
1}, Y )| − q|Y |

∣∣ ≤ δ′p

(
|X|
2

)
|Y |,

∑
{x1,x′1}∈(

X
2 )

∑
{x2,x′2}∈(

X
2 )

∣∣|NG({x1, x
′
1}, {x2, x

′
2}, Y )| − q2|Y |

∣∣ ≤ δ′p2

(
|X|
2

)2

|Y |,

where NG({x1, x
′
1}, Y ) denotes the set of vertices y ∈ Y such that {x1, x

′
1, y} ∈

E(G) and NG({x1, x
′
1}, {x2, x

′
2}, Y ) denotes the set of vertices y ∈ Y such that

{x1, x
′
1, y} ∈ E(G) and {x2, x

′
2, y} ∈ E(G). Furthermore, if (V (G), V (G))

satisfies PAIR(q, p, δ′) in G, then we say that G satisfies PAIR(q, p, δ′).

Consider the setup of Theorem 1.1. The proof of Theorem 1.1 is divided
into the following four parts. Below, for simplicity, we use o(1) terms in our
assertions, following standard practice in the area of quasi-randomness [2].

(i) Gn ∈ Q′(η, o(1), q) implies (X, Y ) ∈ DISC(q, p, o(1)) for large X ⊂
(
V (Gn)

2

)
and Y ⊂ V (Gn);

(ii) (X, Y ) ∈ DISC(q, p, o(1)) implies (X, Y ) ∈ PAIR(q, p, o(1));

(iii) Gn ∈ PAIR(q, p, o(1)) implies Gn ∈ TUPLE(2, o(1), q);

(iv) Since Gn ∈ BDD(C,m, q) and Gn ∈ TUPLE(2, o(1), q), the counting result
(Theorem 1.2) implies the conclusion of Theorem 1.1.

The jumbledness property of Γ is needed in the proof of items (i) and (ii).
The proof of (i) is inspired by ideas in [10]. We partition large sets X ⊂

(
V (Gn)

2

)
and Y ⊂ V (Gn) into sufficiently small pieces. Then we analyze the edge
densities between these small pieces of X and Y . The proof of (ii) is quite
long and is based on generalizations of results in [8]. The proof of (iii) is trivial
and (iv) is just an application of Theorem 1.2.



3 Overview of the proof of Theorem 1.2

Consider the setup of Theorem 1.2. The next lemma allows us to replace
property TUPLE(2, δ, q) by TUPLE(dH , δ

′, q) in Theorem 1.2 as long as δ is
sufficiently small.

Lemma 3.1 For all δ′ > 0, C > 1 and integers k, t ≥ 2, there exist δ,D > 0
such that the following holds when q = q(n) ≥ Dn−1/t and n is sufficiently
large.

If Gn is a k-uniform hypergraph such that Gn ∈ BDD(2, C, q), Gn ∈
TUPLE(2, δ, q) and |E(Gn)| = q

(
n
k

)
, then Gn ∈ TUPLE(t, δ′, q).

Overview of the proof of Lemma 3.1. Fix δ′ > 0, C > 1 and integers k, t ≥ 2.
Consider 2 ≤ r ≤ t and let Gn and q be as in the statement of the theorem.
We have to show that the conditions of a defect version of Cauchy–Schwarz in-
equality hold. In order to verify the validity of these conditions, we prove that
if Gn satisfies BDD(C, 2, q), then Gn also satisfies a “version” of BDD(C, 2, q)
for vertices instead sets of k − 1 vertices. This is proved by induction on the
size of the considered sets of vertices. We also have to prove that, for suffi-
ciently small δ, property TUPLE(2, δ, q) together with BDD(C, 2, q) implies a
version of TUPLE(2, δ, q) for vertices. This is proved by induction, Cauchy–
Schwarz inequality and some counting arguments.

To sketch the proof of Theorem 1.2 we must consider the following defi-
nitions. Let X ⊂

(
V (H)
k−1

)
. If f is an embedding of H into Gn, we denote by

fk−1(X) the family of sets {f(x1), . . . , f(xk−1)}, for all {x1, . . . , xk−1} ∈ X.
Given 1 ≤ r ≤ k and a setX = {X1, . . . , Xr}, whereXi = {xi,1, . . . , xi,k−1} ∈

(
V (H)
k−1

)
for 1 ≤ i ≤ r, we define Xset = {x1,1, . . . , x1,k−1, . . . , xr,1, . . . , xr,k−1}.

Overview of the proof of Theorem 1.2. Fix k, m, ε and C. In our proof we
need that Gn ∈ TUPLE(dH , δ

′, q) for a sufficiently small δ′. Let δ be given
by an application of Lemma 3.1 with δ′, C and t = dH . Therefore, since
Gn ∈ TUPLE(2, δ, q), we conclude that Gn ∈ TUPLE(dH , δ

′, q).

Let H, Gn and q be as in the statement. Given 1 ≤ h ≤ m, let Hh =
H[{v1, . . . , vh}] where {v1, . . . , vm} is a dH-degenerate ordering of V (H). We
will use induction on h to prove that

∣∣|E(Hh, Gn)| − nhq|E(Hh)|
∣∣ ≤ εnhq|E(Hh)|.

First, by using that Gn ∈ TUPLE(dH , δ
′, q) and Gn ∈ BDD(C,DH , q)

we prove that most of the embeddings of H into Gn are induced and most
of the embeddings f : V (Hh−1) → Gn are clean, where by “clean” we mean∣∣NGn(fk−1(NHh

(vh)))− npdHh
(vh)
∣∣ < δ′npdHh

(vh) and N set
Hh

(vh) is stable. There-



fore, we can focus on clean and induced embeddings only.

Consider a clean and induced embedding f ′ from V (Hh−1) into Gn. Since
H is linear and connector-free, N set

Hh
(vh) is stable in Hh. But since f ′ is in-

duced, f ′(N set
Hh

(vh)) is stable in Gn. Since f ′ is clean, we also conclude that

|NGn(f ′k−1(NHh
(vh)))− nqdHh

(vh)| < δ′nqdHh
(vh). To finish the proof, we count

in how many ways we can extend f ′ to obtain an embedding of Hh into Gn.

4 Concluding remarks

Unfortunately, a version of Theorem 1.1 for k-uniform hypergraphs, for k
larger than 3, present new difficulties and it will be considered elsewhere.
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