Note on strong refutation algorithms for random k-SAT formulas

Hiệp Hàn¹, Yury Person², and Mathias Schacht

Institut für Informatik Humboldt-Universität zu Berlin Unter den Linden 6, D-10099 Berlin, Germany

Abstract

We present a simple strong refutation algorithm for random k-SAT formulas. Our algorithm applies to random k-SAT formulas on n variables with $\omega(n)n^{(k+1)/2}$ clauses for any $\omega(n) \to \infty$. In contrast to the earlier results of Coja-Oghlan, Goerdt, and Lanka (for k = 3, 4) and Coja-Oghlan, Cooper, and Frieze (for $k \ge 5$), which address the same problem for even sparser formulas our algorithm is more elementary.

1 Introduction

The k-SAT problem is among the best studied NP-complete problems. We consider strong refutation algorithms for random k-SAT. Let $X_n = \{x_1, \ldots, x_n\}$ be a set of *n* propositional variables, let $p = p(n) \in [0, 1]$, and let $\mathcal{F}_k(n, p)$ be the probability space over all k-SAT formulas on X_n , for which each of the $(2n)^k$ possible (ordered) k-clauses will be included independently with probability *p*. It is well-known that for $p \gg n^{1-k}$ with high probability a random formula $F \in \mathcal{F}_k(n, p)$ is not satisfiable. However, there are no efficient refutation algorithms known. We are interested in deterministic algorithms which w.h.p. reject a k-SAT formula from $\mathcal{F}_k(n, p)$ for $p \gg n^{1-k}$, but which never reject a satisfiable formula.

An algorithm is a strong refutation algorithm if w.h.p. for $F \in \mathcal{F}_k(n, p)$ it approximates $\operatorname{unsat}(F)$ by a factor of $(1 - \varepsilon)$ and never outputs a number

 $[\]overline{^{1}}$ Author is supported by DFG within the RTG "Methods for Discrete Structures".

 $^{^{2}}$ Author is supported by GIF grant no. I-889-182.6/2005

bigger than unsat(F), where unsat(F) is the minimum number of unsatisfied clauses in F over all possible assignments. A simple averaging argument shows

$$\operatorname{unsat}(F) \le 2^{-k}|F|,\tag{1}$$

where |F| denotes the number of clauses of F. On the other hand, it follows from Chernoff's inequality that for $p \gg n^{1-k}$ w.h.p. $\operatorname{unsat}(F) \ge (2^{-k} - o(1))|F|$ for $F \in \mathcal{F}_k(n,p)$. From a strong refutation algorithm we demand that it verifies this bound on $\operatorname{unsat}(F)$.

Definition 1.1 Let $k \geq 3$, $\varepsilon > 0$, and p = p(n). An algorithm \mathcal{A} is an ε strong refutation algorithm for $\mathcal{F}_k(n, p)$ if for a given k-SAT formula F on X_n the algorithm \mathcal{A} outputs an integer $\mathcal{A}(F)$ such that

- (i) $\mathcal{A}(F) \leq \operatorname{unsat}(F)$ and
- (*ii*) $\lim_{n \to \infty} \mathbb{P}(\mathcal{A}(F) \ge (1 \varepsilon) \operatorname{unsat}(F)) = 1 \text{ for } F \in \mathcal{F}_k(n, p).$

Note that for $p \gg n^{1-k}$ the trivial algorithm, which returns $(2^{-k} - \varepsilon)|F|$ for every F, satisfies condition (*ii*), but fails to fulfill (*i*).

Refutation and strong refutation algorithms were studied by several researchers and to our knowledge the best strong refutation algorithms for k = 3, 4 are due to Coja-Oghlan, Goerdt, and Lanka [2] and for general $k \ge 5$ are due to Coja-Oghlan, Cooper, and Frieze [1] (see also [5,4]). Those authors found ε -strong refutation algorithms for every $\varepsilon > 0$ and $p \gg p_k$, where

$$p_k = \begin{cases} n^{-1.5} (\log n)^6 & \text{if } k = 3, \\ n^{-2} & \text{if } k = 4, \\ n^{-\lfloor k/2 \rfloor} & \text{if } k \ge 5. \end{cases}$$

The algorithms from [2] and [1] relied on tools from linear algebra. We present elementary ε -strong refutation algorithms for every $k \geq 3$ for $p \gg n^{-(k-1)/2}$.

Theorem 1.2 For every $k \geq 3$, $\varepsilon > 0$, and $o(1) = p(n) \gg n^{-(k-1)/2}$ there is an ε -strong refutation algorithm for $\mathcal{F}_k(n,p)$ with running time $O(n^{k2^{k-1}})$ independent of ε .

2 Proof of Theorem 1.2

Our work is based on results on quasi-random hypergraphs found in [3]. To every $F \in \mathcal{F}_k(n,p)$ we will associate a k-partite, k-uniform hypergraph H_F in the following way. Let X_n be the variables of F. We denote by $V_n =$ $\{x_1, \bar{x}_1, \ldots, x_n, \bar{x}_n\}$ the literals of F and let $V(H_F)$ consist of k copies of V_n , i.e., $V(H_F) = V_n \times [k]$. Moreover, the edges of H_F correspond to the clauses of F, i.e., $\{(v_1, 1), \ldots, (v_k, k)\}$ is an edge of H_F if and only if $v_1 \vee \cdots \vee v_k$ is a clause in F. Clearly, this defines a bijection between all k-SAT formulas on X_n (without multiple occurrences of the same clause) and all k-partite, k-uniform hypergraphs with vertex classes $(V_n \times \{1\}) \cup \ldots \cup (V_n \times \{k\})$. Moreover, it is well-known that $\operatorname{unsat}(F)$ is related to the *discrepancy* of H_F .

Definition 2.1 Suppose $H = (V_1 \cup ... \cup V_k, E)$ is a k-partite, k-uniform hypergraph with vertex classes of size N and density $p = |E|/N^k$. For $\varepsilon > 0$ we say that H satisfies $\text{DISC}(\varepsilon)$ if for all subsets $U_1 \subseteq V_1, \ldots, U_k \subseteq V_k$

$$\left|e_H(U_1,\ldots,U_k)-p|U_1|\cdots|U_k|\right|<\varepsilon pN^k$$

Note that every assignment β of the variables $\{x_1, \ldots, x_n\}$ corresponds to a bipartition of each $V_n \times \{i\}$ into equally large sets of literals $U_i = \{(v, i) \in V_n \times \{i\}: \beta(v) = 0\}$ and $(V_n \times \{i\}) \setminus U_i$. Furthermore, the number of clauses not satisfied by β corresponds to the number of edges spanned by $U_1 \cup \ldots \cup U_k$. This observation yields the following.

Fact 2.2 If H_F satisfies $\text{DISC}(\varepsilon)$ then $\text{unsat}(F) \ge (2^{-k} - \varepsilon)|F|$.

The property DISC cannot be naïvely verified in polynomial time. However, for dense hypergraphs it was shown in [3], that the property DISC is equivalent to an efficiently verifiable property, called DEV, which measures the distribution of the homomorphisms of a certain hypergraph M_k . We will show that the implication "hypergraphs satisfying DEV must satisfy DISC" still holds for hypergraphs of density p = o(1). Theorem 1.2 then follows from the observation that w.h.p. H_F satisfies DEV if $p \gg n^{-(k-1)/2}$.

The hypergraph M_k is the k-uniform, k-partite hypergraph which arises in the following way. For a k-uniform, k-partite hypergraph A with vertex classes Y_1, \ldots, Y_k and $i \in [k]$ we define $db_i(A)$, the doubling of A w.r.t. i, to be the k-uniform hypergraph obtained from A by taking two disjoint copies of A and identifying the vertices of Y_i . For the construction of M_k we will start with a single edge K_k , which can be seen as a k-partite k-uniform hypergraph with partition classes of size 1, and iteratively double this w.r.t. $i \in [k]$. More precisely, $M_0 = K_k$ and $M_i = db_i(M_{i-1})$. Thus, the graph M_2 is the 4-cycle and M_k consists of $k2^{k-1}$ vertices and 2^k edges. Further, let Y_1^j, \ldots, Y_k^j denote the partition classes of M_j and for a k-tuple of vertex sets $\mathcal{V} = (V_1, \ldots, V_k)$ we denote by $\operatorname{Hom}(M_j, \mathcal{V})$ all functions $\varphi \colon \bigcup_{i \in [k]} Y_i^j \to \bigcup_{i \in [k]} V_i$ with $\varphi(Y_i^j) \subseteq V_i$ for all $i \in [k]$. In other words, $\operatorname{Hom}(M_j, \mathcal{V})$ is the set of all (partition respecting) homomorphisms from M_j to the complete k-partite, k-uniform hypergraph on the partition classes $V_1 \cup \ldots \cup V_k$. For a k-partite, k-uniform hypergraph Hwith vertex partition $V_1 \cup \ldots \cup V_k$ and density p let $w_H \colon \prod_{i \in [k]} V_i \to [-1, 1]$ be the function defined by $w_H(e) = 1 - p$ if $e \in E(H)$ and $w_H(e) = -p$ otherwise.

Definition 2.3 Suppose $H = (V_1 \cup ... \cup V_k, E)$ is a k-partite, k-uniform hypergraph with vertex classes of size N and density $p = |E|/N^k$. For $\varepsilon > 0$ we say that H satisfies $DEV(\varepsilon)$ if for $\mathcal{V} = (V_1, ..., V_k)$

$$\left|\sum_{\varphi \in \operatorname{Hom}(M_k, \mathcal{V})} \prod_{e \in E(M_k)} w_H(\varphi(e))\right| \le \varepsilon p^{2^k} N^{k2^{k-1}}$$

Lemma 2.4 For every $k \geq 3$ and $\varepsilon > 0$ exists n_0 such that for all $N \geq n_0$ the following holds. Suppose $H = (V_1 \cup ... \cup V_k, E)$ is a k-partite, k-uniform hypergraph with vertex classes of size N. If H satisfies $\text{DEV}(\varepsilon^{2^k})$, then H also satisfies $\text{DISC}(\varepsilon)$.

The property $\text{DEV}(\delta)$ can be verified in $O(N^{k2^{k-1}})$ time. Lemma 2.4 combined with Fact 2.2 shows that the algorithm \mathcal{A} , which for a k-SAT formula F outputs 0 if H_F fails to satisfy $\text{DISC}(\varepsilon^{2^k})$ and outputs $(2^{-k} - \varepsilon)|F|$ otherwise, fulfills part (i) of Definition 1.1. Moreover, the next lemma combined with (1) shows that the algorithm \mathcal{A} also satisfies part (ii) of Definition 1.1 for $F \in \mathcal{F}_k(n, p)$ with $p \gg n^{-(k-1)/2}$.

Lemma 2.5 For any $k \geq 3$, $\varepsilon > 0$, and $o(1) = p(n) \gg n^{-(k-1)/2}$ we have $\lim_{n\to\infty} \mathbb{P}(H_F \text{ satisfies DEV}(\varepsilon)) = 1$ for $F \in \mathcal{F}_k(n, p)$.

3 Proofs of Lemmas 2.4 and 2.5

Proof of Lemma 2.4 The proof follows the lines of [3, Lemma 13]. Let $H = (V_1 \cup \ldots \cup V_k, E)$ be a k-partite, k-uniform hypergraph with vertex classes of size N and density p, which satisfies $\text{DEV}(\varepsilon^{2^k})$. Let $U_1 \subseteq V_1, \ldots, U_k \subseteq V_k$. We show $|e_H(U_1, \ldots, U_k) - p \prod_{i \in [k]} |U_i|| \leq \varepsilon p N^k$. Set $\mathcal{U}_i = (V_1, \ldots, V_i, U_{i+1}, \ldots, U_k)$ and for $j \in \{0, \ldots, k\}$ let

$$f_H(M_j, \mathcal{U}_j) = \sum_{\varphi \in \operatorname{Hom}(M_j, \mathcal{U}_j)} \prod_{e \in E(M_j)} w_H(\varphi(e)).$$
(2)

Note that by definition $f_H(M_0, \mathcal{U}_0) = e_H(U_1, \ldots, U_k) - p \prod_{i \in [k]} |U_i|$ and, since H satisfies $\text{DEV}(\varepsilon^{2^k})$, $f_H(M_k, \mathcal{U}_k) \leq \varepsilon^{2^k} p^{2^k} N^{k2^{k-1}}$. On the other hand, we can rewrite (2) in the following way. For an arbitrary ordering $\boldsymbol{y} = (y_1, \ldots, y_{2^j})$ of the vertices in the *j*-th vertex class $Y_{j+1}(M_j)$ of M_j , we fix the image of \boldsymbol{y} to be $\boldsymbol{v} = (v_1, \ldots, v_{2^j}) \in U_{j+1}^{2^j}$, i.e. map y_i to v_i for all $i \in [2^j]$, and extend this

choice to a homomorphism $\varphi \in \text{Hom}(M_j, \mathcal{U}_j)$. Consequently,

$$f_H(M_j, \mathcal{U}_j) = \sum_{\boldsymbol{v} \in U_{j+1}^{2^j}} \sum_{\substack{\varphi \in \operatorname{Hom}(M_j, \mathcal{U}_j) \\ \varphi(\boldsymbol{y}) = \boldsymbol{v}}} \prod_{e \in E(M_j)} w_H(\varphi(e)).$$
(3)

Recall, that $M_{j+1} = db_{j+1}(M_j)$ arises from M_j by fixing the (j + 1)-st vertex class $Y_{j+1}(M_j)$ of M_j and "doubling" all the edges together with the remaining vertices. Thus, applying the Cauchy-Schwarz inequality to $f_H(M_j, \mathcal{U}_j)$ (to the form stated in (3)), we obtain $f_H(M_j, \mathcal{U}_j)^2 \leq |U_{j+1}|^{2^j} f_H(M_{j+1}, \mathcal{U}_{j+1})$ for every $j \in \{0, \ldots, k-1\}$. Applying this inductively for $j = 0, \ldots, k-1$ we obtain

$$\left| f_H(M_0, \mathcal{U}_0) \right|^{2^k} \le \prod_{i \in [k]} |U_i|^{2^{k-1}} \left| f_H(M_k, \mathcal{U}_k) \right| \le \varepsilon^{2^k} p^{2^k} N^{k2^k}.$$

Consequently, $|e(U_1, \ldots, U_k) - p \prod_{i \in [k]} |U_i|| = |f_H(M_0, \mathcal{U}_0)| \le \varepsilon p N^k$.

Proof of Lemma 2.5 For $k \geq 3$ and $\varepsilon > 0$ let $o(1) = p \gg n^{-(k-1)/2}$. Set $\delta = \varepsilon/(12 \cdot 2^{2^k})$ and let \mathcal{M} be the set of all spanning subgraphs of M_k . Let \mathcal{B} be the set of all labeled k-uniform hypergraphs B on $v_B < k2^{k-1}$ vertices such that there is a surjective homomorphism from M_k to B. For a k-partite hypergraph A let X_A be the random variable denoting the number of labeled partition respecting copies of A in H_F with $F \in \mathcal{F}_k(n, p)$.

Claim 3.1 With high probability we have

(a) $X_A = (1 \pm \delta) \mathbb{E} X_A$ for all $A \in \mathcal{M}$ and (b) $\sum_{B \in \mathcal{B}} X_B < \delta X_{M_k}$.

Proof (sketch) For part (a) we note that, since every vertex of M_k is contained in precisely two edges, the hypergraph M_k is balanced, i.e., $e_{M_k}/v_{M_k} = 2^k/k2^{k-1} = 2/k \ge e_A/v_A$ for all (not necessarily spanning) subhypergraphs $A \subseteq M_k$. Moreover, it is easy to check that for the *p* considered here, we have $\mathbb{E}X_A \ge \mathbb{E}X_{M_k} \to \infty$ for every $A \in \mathcal{M}$. Hence, part (a) follows easily from Chebyshev's inequality applied in a similar way as, e.g., in [6, Theorem 3.4].

Due to part (a), it suffices to show that w.h.p. $X_B \leq \delta p^{2^k}(2n)^{k2^{k-1}}/(2|\mathcal{B}|)$ for every $B \in \mathcal{B}$ to conclude assertion (b). Let $B \in \mathcal{B}$ and set $q = 2^k - e_B$ and $r = k2^{k-1} - v_B$. Hence, $p^{2^k}(2n)^{k2^{k-1}} = (1 - o(1))(p(2n)^{r/q})^q \mathbb{E} X_B$ and below we will show that $r \geq (k - 1)q/2$, which due to our choice of p yields that $\mathbb{E} X_B = o(p^{2^k}(2n)^{k2^{k-1}})$ and assertion (b) follows from Markov's inequality.

Let $\varphi \colon M_k \to B$ be a surjective homomorphism. For $e \in E(B)$ let $\{f_1, \ldots, f_m\} = \varphi^{-1}(e) \subseteq E(M_k)$. Fix f_1 and call f_i , $i \neq 1$, a lost edge and any vertex $v \in f_i \setminus f_1$ a lost vertex. There are q lost edges and every lost edge contains at least (k-1) lost vertices $(f_i \text{ and } f_1 \text{ intersect in at most one vertex, since } M_k$ is a linear hypergraph). On the other hand, the number of

lost vertices is at most r and every lost vertex is contained in at most two (lost) edges. Thus, by double counting we have $q(k-1) \leq 2r$.

We deduce Lemma 2.5 from Claim 3.1. Let $\operatorname{Inj}(M_k, \mathcal{V}) \subseteq \operatorname{Hom}(M_k, \mathcal{V})$ be the set of all injective mappings $\varphi \in \operatorname{Hom}(M_k, \mathcal{V})$. Thus, every $\varphi \in \operatorname{Inj}(M_k, \mathcal{V})$ corresponds to an $\tilde{A} \subseteq H$ which is a labeled copy of some $A \in \mathcal{M}$ in H, whereas any $\varphi \in \operatorname{Hom}(M_k, \mathcal{V}) \setminus \operatorname{Inj}(M_k, \mathcal{V})$ corresponds to a $\tilde{B} \subset H$ which is labeled copy of a hypergraph $B \in \mathcal{B}$. Let \hat{X}_A be the number of induced copies of A. Since p = o(1) we have w.h.p. $\hat{X}_A = (1-o(1))X_A$ and $(1-p)^{k2^{k-1}} \ge 1-\delta$. Since w.h.p. $e(H_F)/(2n)^k = (1+o(1))p$, part (a) of Claim 3.1 yields w.h.p.

$$\sum_{\varphi \in \operatorname{Inj}(M_k, \mathcal{V})} \prod_{e \in E(M_k)} w_H(\varphi(e)) = (1 - o(1)) \sum_{A \in \mathcal{M}} (1 - p)^{e_A} (-p)^{2^k - e_A} \hat{X}_A$$
$$= p^{2^k} \sum_{A \in \mathcal{M}} (1 \pm 3\delta) (-1)^{2^k - e_A} (2n)^{k2^{k-1}} \le 6\delta 2^{2^k} p^{2^k} (2n)^{k2^{k-1}} \le \frac{\varepsilon}{2} p^{2^k} (2n)^{k2^{k-1}}.$$

Moreover, due to parts (a) and (b) of the Claim 3.1 w.h.p. we can bound

$$\sum_{\varphi \in \operatorname{Hom}(M_k, \mathcal{V}) \setminus \operatorname{Inj}(M_k, \mathcal{V})} \prod_{e \in E(M_k)} w_H(\varphi(e)) \le \sum_{B \in \mathcal{B}} X_B \le \delta X_{M_k} \le \frac{\varepsilon}{2} p^{2^k} (2n)^{k2^{k-1}}.$$

Thus for $F \in \mathcal{F}_k(p, n)$ the hypergraph H_F satisfies w.h.p. $\text{DEV}(\varepsilon)$.

References

- Coja-Oghlan, A., C. Cooper and A. Frieze, An efficient regularity concept for sparse graphs and matrices, in: C. Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (2009), pp. 207–216.
- [2] Coja-Oghlan, A., A. Goerdt and A. Lanka, Strong refutation heuristics for random k-SAT, Combin. Probab. Comput. 16 (2007), pp. 5–28.
- [3] Conlon, D., H. Hàn, Y. Person and M. Schacht, Weak quasi-randomness for uniform hypergraphs, submitted.
- [4] Feige, U., J. H. Kim and E. Ofek, Witnesses for non-satisfiability of dense random 3CNF formulas, in: Proceedings of 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 2006, pp. 497–508.
- [5] Feige, U. and E. Ofek, Easily refutable subformulas of large random 3CNF formulas, Theory Comput. 3 (2007), pp. 25–43.
- [6] Janson, S., T. Łuczak and A. Ruciński, "Random graphs," Wiley-Interscience, New York, 2000, xii+333 pp.