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Abstract. We deal with two very related subjects: quasi-randomness
and regular partitions. The purpose of the concept of quasi-randomness
is to measure how much a given graph “resembles” a random one. More-
over, a regular partition approximates a given graph by a bounded num-
ber of quasi-random graphs. Regarding quasi-randomness, we present a
new spectral characterization of low discrepancy, which extends to sparse
graphs. Concerning regular partitions, we present a novel concept of reg-
ularity that takes into account the graph’s degree distribution, and show
that if G = (V, E) satisfies a certain boundedness condition, then G ad-
mits a regular partition. In addition, building on the work of Alon and
Naor [4], we provide an algorithm that computes a regular partition of
a given (possibly sparse) graph G in polynomial time.
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1 Introduction and Results
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the expected edge distribution of a random graph. Furthermore, a regular parti-
tion approximates a given graph by a constant number of quasi-random graphs;
such partitions are of algorithmic importance, because a number of NP-hard
problems can be solved in polynomial time on graphs that come with regular
partitions. In this section we present our main results. References to related work
can be found in Section 2, and the remaining sections contain proof sketches and
detailed descriptions of the algorithms.

Quasi-Randomness: discrepancy and eigenvalues. Random graphs are
well known to have a number of remarkable properties (e.g., excellent expansion).
Therefore, quantifying how much a given graph “resembles” a random graph is
an important problem, both from a structural and an algorithmic point of view.
Providing such measures is the purpose of the notion of quasi-randomness. While
this concept is rather well developed for dense graphs (i.e., graphs G = (V,E)
with |E| = Ω(|V |2)), less is known in the sparse case, which we deal with in the
present work. In fact, we shall actually deal with (sparse) graphs with general
degree distributions, including but not limited to the ubiquitous power-law degree
distributions (cf. [1]).

We will mainly consider two types of quasi-random properties: low discrep-
ancy and eigenvalue separation. The low discrepancy property concerns the
global edge distribution and basically states that every set S of vertices ap-
proximately spans as many edges as we would expect in a random graph with
the same degree distribution. More precisely, if G = (V,E) is a graph, then we
let dv signify the degree of v ∈ V . Furthermore, the volume of a set S ⊂ V is
vol(S) =

∑
v∈S dv. In addition, e(S) denotes the number of edges spanned by S.

Disc(ε): We say that G has discrepancy at most ε (“G has Disc(ε)” for short)
if

∀S ⊂ V :
∣∣∣∣e(S)− vol(S)2

2vol(V )

∣∣∣∣ < ε · vol(V ). (1)

To explain (1), let d = (dv)v∈V , and let G(d) signify a uniformly distributed
random graph with degree distribution d. Then the probability pvw that two
vertices v, w ∈ V are adjacent in G(d) is proportional to the degrees of both
v and w, and hence to their product. Further, as the total number of edges is
determined by the sum of the degrees, we have

∑
(v,w)∈V 2 pvw = vol(V ), whence

pvw ∼ dvdw/vol(V ). Therefore, in G(d) the expected number of edges inside of
S ⊂ V equals 1

2

∑
(v,w)∈S2 pvw ∼ 1

2vol(S)2/vol(V ). Consequently, (1) just says
that for any set S the actual number e(S) of edges inside of S must not deviate
from what we expect in G(d) by more than an ε-fraction of the total volume.

An obvious problem with the bounded discrepancy property (1) is that it
is quite difficult to check whether G = (V,E) satisfies this condition. This is
because one would have to inspect an exponential number of subsets S ⊂ V .
Therefore, we consider a second property that refers to the eigenvalues of a
certain matrix representing G. More precisely, we will deal with the normalized
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Laplacian L(G), whose entries (`vw)v,w∈V are defined as

`vw =


1 if v = w and dv ≥ 1,

−(dvdw)−
1
2 if v, w are adjacent,

0 otherwise;

L(G) turns out to be appropriate for representing graphs with general degree
distributions.

Eig(δ): Letting 0 = λ1(L(G)) ≤ · · · ≤ λ|V |(L(G)) denote the eigenvalues of
L(G), we say that G has δ-eigenvalue separation (“G has Eig(δ)”) if 1− δ ≤
λ2(L(G)) ≤ λ|V |(L(G)) ≤ 1 + δ.

As the eigenvalues of L(G) can be computed in polynomial time (within arbitrary
numerical precision), we can essentially check efficiently whether G has Eig(δ)
or not.

It is not difficult to see that Eig(δ) provides a sufficient condition for Disc(ε).
That is, for any ε > 0 there is a δ > 0 such that any graph G that has Eig(δ) also
has Disc(ε). However, while the converse implication is true if G is dense (i.e.,
vol(V ) = Ω(|V |2)), it is false for sparse graphs. In fact, providing a necessary
condition for Disc(ε) in terms of eigenvalues has been an open problem in the
area of sparse quasi-random graphs since the work of Chung and Graham [8].
Concerning this problem, we basically observe that the reason why Disc(ε) does
in general not imply Eig(δ) is the existence of a small set of “exceptional” ver-
tices. With this in mind we refine the definition of Eig as follows.

ess-Eig(δ): We say G has essential δ-eigenvalue separation (“G has ess-Eig(δ)”)
if there is a set W ⊂ V of volume vol(W ) ≥ (1− δ)vol(V ) such that the fol-
lowing is true. Let L(G)W = (`vw)v,w∈W denote the minor of L(G) induced
on W ×W , and let λ1(L(G)W ) ≤ · · · ≤ λ|W |(L(G)W ) signify its eigenvalues;
then we require that 1− δ < λ2(L(G)W ) < λ|W |(L(G)W ) < 1 + δ.

Theorem 1. There is a constant γ > 0 such that the following is true for all
graphs G = (V,E) and all ε > 0.

1. If G has ess-Eig(ε), then G satisfies Disc(10
√

ε).
2. If G has Disc(γε3), then G satisfies ess-Eig(ε).

The proof of Theorem 1 is based on Grothendieck’s inequality and the duality
theorem for semidefinite programs. In effect, the proof actually provides us with
an efficient algorithm that computes a set W as in the definition of ess-Eig(ε),
provided that the input graph has Disc(δ). In the full version of the paper we
show that the second part of Theorem 1 is best possible, up to the precise value
of the constant γ.
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The algorithmic regularity lemma. Loosely speaking, a regular partition
of a graph G = (V,E) is a partition of (V1, . . . , Vt) of V such that for “most”
index pairs i, j the bipartite subgraph spanned by Vi and Vj is quasi-random.
Thus, a regular partition approximates G by quasi-random graphs. Furthermore,
the number t of classes may depend on a parameter ε that rules the accuracy
of the approximation, but it does not depend on the order of the graph G
itself. Therefore, if for some class of graphs we can compute regular partitions
in polynomial time, then this graph class will admit polynomial time algorithms
for quite a few problems that are NP-hard in general.

In the sequel we introduce a new concept of regular partitions that takes into
account the degree distribution of the graph. If G = (V,E) is a graph and A,B ⊂
V are disjoint, then the relative density of (A,B) in G is %(A,B) = e(A,B)

vol(A)vol(B) .

Further, we say that the pair (A,B) is ε-volume regular if for all X ⊂ A, Y ⊂ B
satisfying vol(X) ≥ εvol(A), vol(Y ) ≥ εvol(B) we have

|e(X, Y )− %(A,B)vol(X)vol(Y )| ≤ ε · vol(A)vol(B)/vol(V ), (2)

where e(X, Y ) denotes the number of X-Y -edges in G. This condition essentially
means that the bipartite graph spanned by A and B is quasi-random, given the
degree distribution of G. Indeed, in a random graph the proportion of edges
between X and Y should be proportional to both vol(X) and vol(Y ), and hence
to vol(X)vol(Y ). Moreover, %(A,B) measures the overall density of (A,B).

Finally, we state a condition that ensures the existence of regular partitions.
While every dense graph G (of volume vol(V ) = Ω(|V |2)) admits a regular
partition, such partitions do not necessarily exist for sparse graphs, the basic
obstacle being extremely “dense spots”. To rule out such dense spots, we say
that a graph G is (C, η)-bounded if for all X, Y ⊂ V with vol(X ∪ Y ) ≥ ηvol(V )
we have %(X, Y )vol(V ) ≤ C.

Theorem 2. For any two numbers C > 0 and ε > 0 there exist η > 0 and
n0 > 0 such that for all n > n0 the following holds. If G = (V,E) is a (C, η)-
bounded graph on n vertices such that vol(V ) ≥ η−1n, then there is a partition
P = {Vi : 0 ≤ i ≤ t} of V that enjoys the following two properties.

REG1. For all 1 ≤ i ≤ t we have ηvol(V ) ≤ vol(Vi) ≤ εvol(V ), and vol(V0) ≤
εvol(V ).

REG2. Let L be the set of all pairs (i, j) ∈ {1, . . . , t}2 such that the pair
(Vi, Vj) is not ε-volume-regular. Then

∑
(i,j)∈L vol(Vi)vol(Vj) ≤ εvol2(G).

Furthermore, for fixed C > 0 and ε > 0 such a partition P of V can be com-
puted in time polynomial in n. More precisely, the running time is O(vol(V ) +
ApxCutNorm(n)), where ApxCutNorm(n) is the running time of the algorithm from
Theorem 5 for an n × n matrix, which can be solved via semidefinite program-
ming.

Theorem 2 can be applied to the MAX CUT problem. While approximating
MAX CUT within a ratio better than 16

17 is NP-hard on general graphs [14,19],
the following theorem provides a polynomial time approximation scheme for
(C, η)-bounded graphs.
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Theorem 3. For any δ > 0 and C > 0 there exist two numbers η > 0, n0 and
a polynomial time algorithm ApxMaxCut such that for all n > n0 the following is
true. If G = (V,E) is a (C, η)-bounded graph on n vertices and vol(V ) > η−1|V |,
then ApxMaxCut(G) outputs a cut (S, S̄) of G that approximates the maximum
cut within a factor of 1− δ.

The details of the proof of Theorem 3 will be given in the full version of the
paper. The proof folows the ideas of Frieze and Kannan from [10], where the
corresponding result for dense graps was obtained.

2 Related Work

Quasi-random graphs. Quasi-random graphs with general degree distribu-
tions were first studied by Chung and Graham [7]. They considered the proper-
ties Disc(ε) and Eig(δ), and a number of further related ones (e.g., concerning
weighted cycles). Chung and Graham observed that Eig(δ) implies Disc(ε), and
that the converse is true in the case of dense graphs (i.e., vol(V ) = Ω(|V |2)).

Regarding the step from Disc(ε) to Eig(δ), Butler [6] proved that any graph
G such that for all sets X, Y ⊂ V the bound

|e(X, Y )− vol(X)vol(Y )/vol(V )| ≤ ε
√

vol(X)vol(Y ) (3)

holds, satisfies Eig(O(ε(1− ln ε))). The proof builds heavily on the work of Bilu
and Linial [5], who derived a similar result for regular graphs.

Butler’s result relates to the second part of Theorem 1 as follows. The r.h.s.
of (3) refers to the volumes of the sets X, Y , and may thus be significantly smaller
than εvol(V ). By contrast, the second part of Theorem 1 just requires that the
“original” discrepancy condition Disc(δ) is true, i.e., we just need to bound
|e(S)− 1

2vol(S)2/vol(V )| in terms of the total volume vol(V ). Thus, Theorem 1
requires a considerably weaker assumption. Indeed, providing a characterization
of Disc(δ) in terms of eigenvalues, Theorem 1 answers a question posed by Chung
and Graham [7,8]. Furthermore, relying on Grothendieck’s inequality and SDP
duality, the proof of Theorem 1 employs quite different techniques than those
used in [5,6].

In the present work we consider a concept of quasi-randomness that takes
into account the graph’s degree sequence. Other concepts that do not refer to the
degree sequence (and are therefore restricted to approximately regular graphs)
were studied by Chung, Graham and Wilson [9] (dense graphs) and by Chung
and Graham [8] (sparse graphs). Also in this setting it has been an open problem
to derive eigenvalue separation from low discrepancy, and concerning this simpler
concept of quasi-randomness, our techniques yield a similar result as Theorem 1
as well (details omitted).

Regular partitions. Szemerédi’s original regularity lemma [18] shows that
any dense graph G = (V,E) (with |E| = Ω(|V |2)) can be partitioned into a



6

bounded number of sets V1, . . . , Vt such that almost all pairs (Vi, Vj) are quasi-
random. This statement has become an important tool in various areas, including
extremal graph theory and property testing. Furthermore, Alon, Duke, Lefmann,
Rödl, and Yuster [3] presented an algorithmic version, and showed how this
lemma can be used to provide polynomial time approximation schemes for dense
instances of NP-hard problems (see also [16] for a faster algorithm). Moreover,
Frieze and Kannan [10] introduced a different algorithmic regularity concept,
which yields better efficiency in terms of the desired approximation guarantee.

A version of the regularity lemma that applies to sparse graphs was estab-
lished independently by Kohayakawa [15] and Rödl (unpublished). This result
is of significance, e.g., in the theory of random graphs. The regularity concept
of Kohayakawa and Rödl is related to the notion of quasi-randomness from [8]
and shows that any graph that satisfies a certain boundedness condition has a
regular partition.

In comparison to the Kohayakawa-Rödl regularity lemma, the new aspect of
Theorem 2 is that it takes into account the graph’s degree distribution. There-
fore, Theorem 2 applies to graphs with very irregular degree distributions, which
were not covered by prior versions of the sparse regularity lemma. Further, Theo-
rem 2 yields an efficient algorithm for computing a regular partition (see e.g. [11]
for a non-polynomial time algorithm in the sparse setting). To achieve this algo-
rithmic result, we build upon the algorithmic version of Grothendieck’s inequality
due to Alon and Naor [4]. Besides, our approach can easily be modified to obtain
a polynomial time algorithm for computing a regular partition in the sense of
Kohayakawa and Rödl.

3 Preliminaries

If S ⊂ V is a subset of some set V , then we let 1S ∈ RV denote the vector whose
entries are 1 on the entries corresponding to elements of S, and 0 otherwise.
Moreover, if A = (avw)v,w∈V is a matrix, then AS = (avw)v,w∈S denotes the
minor of A induced on S × S. In addition, if ξ = (ξv)v∈V is a vector, then
diag(ξ) signifies the V ×V matrix with diagonal ξ and off-diagonal entries equal
to 0. Further, for a vector ξ ∈ RV we let ‖ξ‖ signify the `2-norm, and for a matrix
we let ‖M || = sup0 6=ξ∈RV

‖Mξ‖
‖ξ‖ denote the spectral norm. If M is symmetric,

then λmax(M) denotes the largest eigenvalue of M .
An important ingredient to our proofs and algorithms is Grothendieck’s in-

equality. Let M = (mij)i,j∈I be a matrix. Then the cut-norm of M is ‖M‖cut =

maxI,J⊂I

∣∣∣∑i∈I,j∈J mij

∣∣∣ . In addition, consider the following optimization prob-
lem:

SDP(M) = max
∑

i,j∈I
mij 〈xi, yj〉 s.t. ‖xi‖ = ‖yi‖ = 1, xi, yi ∈ RI .

Then SDP(M) can be reformulated as a linear optimization problem over the
cone of positive semidefinite 2|I| × 2|I| matrices, i.e., as a semidefinite pro-



7

gram (cf. Alizadeh [2]). Hence, an optimal solution to SDP(M) can be ap-
proximated within any numerical precision, e.g., via the ellipsoid method [13].
Grothendieck [12] proved the following relation between SDP(M) and ‖M‖cut.

Theorem 4. There is a constant θ > 1 such that for all matrices M we have
‖M‖cut ≤ SDP(M) ≤ θ · ‖M‖cut .

The best current bounds on the above constant are π
2 ≤ θ ≤ π

2 ln(1+
√

2)
[12,17].

Furthermore, by applying an appropriate rounding procedure to a near-optimal
solution to SDP(M), Alon and Naor [4] obtained the following algorithmic result.

Theorem 5. There exist θ′ > 0 and a polynomial time algorithm ApxCutNorm

that computes on input M sets I, J ⊂ I such that θ′ · ‖M‖cut ≤ |
∑

i∈I,j∈J mij |.

Alon and Naor presented a randomized algorithm that guarantees an approxi-
mation ration θ′ > 0.56, and a deterministic one with θ′ ≥ 0.03.

4 Quasi-Randomness: Proof of Theorem 1

The proof of the first part of Theorem 1 is similar to the proof given in [7,
Section 4]. Thus, we focus on the second implication, and hence assume that
G = (V,E) is a graph that has Disc(γε3), where γ > 0 signifies some small
enough constant (e.g., γ = (6400θ)−1 suffices for the proof below). Moreover, we
let dv denote the degree of v ∈ V , n = |V |, and d̄ = n−1

∑
v∈V dv. In addition,

we introduce a further property.

Cut(ε): We say G has Cut(ε), if the matrix M = (mvw)v,w∈V with entries
mvw = dvdw

vol(V ) − e({v}, {w}) has cut norm ‖M‖cut < ε · vol(V ), where
e({v}, {w}) = 1 if {v, w} ∈ E and 0 otherwise.

Since for any S ⊂ V we have 〈M1S ,1S〉 = vol(S)2

vol(V ) − 2e(S), one can easily derive
the following.

Proposition 6. Each graph that has Disc(0.01δ) enjoys Cut(δ).

To show that Disc(γε3) implies ess-Eig(ε), we proceed as follows. By Propo-
sition 6, Disc(γε3) implies Cut(100γε3). Moreover, if G satisfies Cut(100γε3),
then Theorem 4 entails that not only the cut norm of M is small, but even the
semidefinite relaxation SDP(M) satisfies SDP(M) < βε3vol(V ), for some β with
0 < β ≤ 100θγ. This bound on SDP(M) can be rephrased in terms of an eigen-
value minimization problem for a matrix closely related to M . More precisely,
using the duality theorem for semidefinite programs, we can infer the following.

Lemma 7. For any symmetric n× n matrix Q we have

SDP(Q) = n · min
z∈Rn, z⊥1

λmax

[(
0 1
1 0

)
⊗Q− diag

(
z

z

)]
.
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Let D = diag(dv)v∈V . Then Lemma 7 entails the following.

Lemma 8. Suppose that SDP(M) < βε3vol(V ) for some β, 0 < β < 1/64.
Then there exists a subset W ⊂ V of volume vol(W ) ≥ (1− ε) · vol(V ) such that
the matrix M = D− 1

2 MD− 1
2 satisfies ‖MW ‖ < ε.

Proof. Let U = {v ∈ V : dv > β
1
3 εd̄}. Then

vol(V \ U) ≤ β
1
3 εd̄|V \ U | ≤ εvol(V )/2. (4)

Since SDP(MU ) ≤ SDP(M), Lemma 7 entails that there is a vector 1 ⊥ z ∈ RU

such that λmax

[(
0 1
1 0

)
⊗MU − diag

(
z
z

)]
< βε3d̄. Hence, setting y = D−1

U z, we

obtain

λmax

[(
0 1
1 0

)
⊗MU − diag

(
y

y

)]
< β

2
3 ε2, (5)

because all entries of the diagonal matrix DU exceed β
1
3 εd̄. Moreover, as z ⊥ 1,

we have
y ⊥ DU1. (6)

Now, let W = {v ∈ U : |yv| < β
1
3 ε} consist of all vertices v on which the

“correcting vector” y is small. Since on W all entries of the diagonal matrix
diag

(
y
y

)
are smaller than β

1
3 ε in absolute value, (5) yields

λmax

[(
0 1
1 0

)
⊗MW

]
< β

1
3 ε + β

2
3 ε2 ≤ 2β

1
3 ε; (7)

in other words, on W the effect of y is negligible. Further, (7) entails that
‖MW ‖ ≤ 2β

1
3 ε < ε.

Finally, we need to show that vol(W ) is large. To this end, we consider the

set S = {v ∈ U : yv < 0} and let ζ = D
1
2
U1S . Thus, for each v ∈ U the entry ζv

equals d
1
2
v if yv < 0, while ζv = 0 if yv ≥ 0, so that ‖ζ‖2 = vol(S). Hence, (5)

yields that

2β
2
3 ε2vol(S) = 2β

2
3 ε2‖ζ‖2 ≥

〈[(
0 1
1 0

)
⊗MU − diag

(
y

y

)]
·
(

ζ

ζ

)
,

(
ζ

ζ

)〉
= 2 〈MUζ, ζ〉 − 2

∑
v∈S

dvyv = 2 〈MU1S ,1S〉 − 2
∑
v∈S

dvyv. (8)

Furthermore, as SDP(MU ) ≤ SDP(M) ≤ βε3vol(V ), Theorem 4 entails that
〈MU1S ,1S〉 ≤ ‖MU‖cut ≤ βε3vol(V ). Plugging this bound into (8) and recalling
that yv < 0 for all v ∈ S, we conclude that∑

v∈S

dv|yv| ≤ β
2
3 ε2vol(S) + βε3vol(V ) ≤ 2β

2
3 ε2vol(V ). (9)

Hence, (6) entails that actually
∑

v∈U dv|yv| ≤ 4β
2
3 ε2vol(V ). As |yv| ≥ β

1
3 ε for

all v ∈ U \W , we obtain vol(U \W ) ≤ 4β
1
3 εvol(V ) < 1

2εvol(V ). Thus, (4) yields
vol(V \W ) < εvol(V ), as desired. ut
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Finally, setting γ = (6400θ)−1 and combining Theorem 4, Proposition 6,
and Lemma 8, we conclude if G has Disc(γε3), then there is a set W such that
vol(W ) ≥ (1− ε)vol(V ) and ‖MW ‖ < ε. As M is closely related to the normal-
ized Laplacian L(G), one can infer via elementary linear algebra that the minor
L(G)W corresponding to W satisfies 1−ε ≤ λ2(L(G)W ) ≤ λ|W |(L(G)W ) ≤ 1+ε,
whence G has ess-Eig(ε).

5 The Algorithmic Regularity Lemma

In this section we present a polynomial time algorithm Regularize that com-
putes for a given graph G = (V,E) a partition satisfying REG1 and REG2,
provided that G satisfies the assumptions of Theorem 2. In particular, this will
show that such a partition exists. We will outline Regularize in Section 5.1.
The crucial ingredient is a subroutine Witness for checking whether a given pair
(A,B) of subsets of V is ε-volume regular. This subroutine is the content of
Section 5.2.

Throughout this section, we let ε > 0 be an arbitrarily small but fixed and
C > 0 an arbitrarily large but fixed number. In addition, we define a sequence
(tk)k≥1 by letting t1 = d2/εe and tk+1 = tk2tk . Let k∗ = dCε−3e, η = t−6

k∗ ε−8k∗ ,
and choose n0 > 0 big enough.

We always assume that G = (V,E) is a graph on n = |V | > n0 vertices that
is (C, η)-bounded, and that vol(V ) ≥ η−1n.

5.1 The Algorithm Regularize

In order to compute the desired regular partition of its input graph G, the al-
gorithm Regularize proceeds as follows. In its first step, Regularize computes
any initial partition P1 = {V 1

i : 0 ≤ i ≤ s1} such that each class Vi (1 ≤ i ≤ s1)
has a decent volume.

Algorithm 9. Regularize(G)
Input: A graph G = (V,E). Output: A partition of V .
1. Compute an initial partition P1 = {V 1

0 : 0 ≤ i ≤ s1} such that 1
4
εvol(V ) ≤ vol(V 1

i ) ≤
3
4
εvol(V ) for all 1 ≤ i ≤ s1; thus, s1 ≤ 4ε−1. Set V 1

0 = ∅.

Then, in the subsequent steps, Regularize computes a sequence Pk of par-
titions such that Pk+1 is a “more regular” refinement of Pk (k ≥ 1). As soon as
Regularize can verify that Pk satisfies both REG1 and REG2, the algorithm
stops.

To check whether the current partition Pk = {V k
i : 1 ≤ i ≤ s1} satis-

fies REG2, Regularize employs a subroutine Witness. Given a pair (V k
i , V k

j ),
Witness tries to check whether (V k

i , V k
j ) is ε-volume-regular.

Proposition 10. There is a polynomial time algorithm Witness that satisfies
the following. Let A,B ⊂ V be disjoint.
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1. If Witness(G, A,B) answers “yes”, then the pair (A,B) is ε-volume regular.
2. On the other hand, if the answer is “no”, then (A,B) is not ε/200-volume

regular. In this case Witness outputs a pair (X∗, Y ∗) of subsets X∗ ⊂
A, Y ∗ ⊂ B such that vol(X∗) ≥ ε

200vol(A), vol(Y ∗) ≥ ε
200vol(B), and

|e(X∗, Y ∗)− %(A,B)vol(X∗)vol(Y ∗)| > εvol(A)vol(B)
200vol(V ) .

We call a pair (X∗, Y ∗) as in 2. an ε
200 -witness for (A,B).

By applying Witness to each pair (V k
i , V k

j ) of the partition Pk, Regularize
can single out a set Lk such that all pairs Vi, Vj with (i, j) 6∈ Lk are ε-volume reg-
ular. Hence, if

∑
(i,j)∈Lk vol(V k

i )vol(V k
j ) < εvol(V )2, then Pk satisfies REG2.

As we will see below that by construction Pk satisfies REG1 for all k, in this
case Pk is a feasible regular partition, whence Regularize stops.

2. For k = 1, 2, 3, . . . , k∗ do

3. Initially, let Lk = ∅.
For each pair (V k

i , V k
j ) (i < j) of classes of the previously partition Pk

4. call the procedure Witness(G, V k
i , V k

j , ε).
If it answers “no” and hence outputs an ε

200
-witness (Xk

ij , X
k
ji) for (V k

i , V k
j ),

then add (i, j) to Lk.
5. If

P
(i,j)∈Lk vol(V k

i )vol(V k
j ) < εvol(V )2, then output the partition Pk and halt.

If Step 5 does not halt, Regularize constructs a refinement Pk+1 of Pk. To
this end, the algorithm decomposes each class V k

i of Pk into up to 2sk pieces.
Consider the sets Xij with (i, j) ∈ Lk and define an equivalence relation ≡k

i on
Vi by letting u ≡k

i v iff for all j such that (i, j) ∈ Lk it is true that u ∈ Xij ↔ v ∈
Xij . Thus, the equivalence classes of ≡k

i are the regions of the Venn diagram of
the sets Vi and Xij with (i, j) ∈ Lk. Then Regularize obtains Pk+1 as follows.

6. Let Ck be the set of all equivalence classes of the relations ≡k
i (1 ≤ i ≤ sk).

Moreover, let Ck
∗ = {V k+1

1 , . . . , V k+1
sk+1} be the set of all classes W ∈ C such that

vol(W ) > ε4(k+1)vol(V )/(15t3k+1). Finally, let V k+1
0 = V k

0 ∪
S

W∈Ck\Ck
∗

W , and

set Pk+1 = {V k+1
i : 0 ≤ i ≤ sk+1}.

Since for each i there are at most sk indices j such that (i, j) ∈ Lk, in
Pk+1 every class V k

i gets split into at most 2sk pieces. Hence, sk+1 ≤ sk2sk .
Thus, as s1 ≤ t1, we conclude that sk ≤ tk for all k. Therefore, our choice of
η ensures that vol(V k+1

i ) ≥ ηvol(V ) for all 1 ≤ i ≤ sk+1 (because Step 6 puts
all equivalence classes W ∈ Ck of “extremely small” volume into the exceptional
class). Moreover, it is easily seen that vol(V k+1

0 ) ≤ ε(1− 2k+2)vol(V ). In effect,
Pk+1 satisfies REG1.

Thus, to complete the proof of Theorem 2 it just remains to show that
Regularize will actually succeed and output a partition Pk for some k ≤ k∗.
To show this, we define the index of a partition P = {Vi : 0 ≤ i ≤ s} as

ind(P) =
∑

1≤i<j≤s

%(Vi, Vj)2vol(Vi)vol(Vj) =
∑

1≤i<j≤s

e(Vi, Vj)2

vol(Vi)vol(Vj)
.
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Note that we do not take into account the (exceptional) class V0 here. Using the
boundedness-condition, we derive the following.

Proposition 11. If G = (V,E) is (C, η)-bounded and P = {Vi : 0 ≤ 1 ≤ t} is
a partition of V with vol(Vi) ≥ ηvol(V ) for all i ∈ {1, . . . , t}, then ind(P) ≤ C.

Lemma 11 entails that ind(Pk) ≤ C for all k. In addition, since Regularize
obtains Pk+1 by refining Pk according to the witnesses of irregularity computed
by Witness, the index of Pk+1 is actually considerably larger than the index of
Pk. More precisely, the following is true.

Lemma 12.
∑

(i,j)∈Lk vol(V k
i )vol(V k

j )≥ εvol(V )2 ⇒ ind(Pk+1)≥ ind(Pk)+ ε3

8 .

Since the index of the initial partition P1 is non-negative, Lemmas 11 and 12
readily imply that Regularize will terminate and output a feasible partition Pk

for some k < k∗.
Finally, we point out that the overall running time of Regularize is polyno-

mial. For the running time of Steps 1–3 and 5–6 is O(vol(V )), and the running
time of Step 4 is polynomial due to Proposition 10.

5.2 The Procedure Witness

The subroutine Witness for Proposition 10 employs the algorithm ApxCutNorm
from Theorem 5 for approximating the cut norm as follows.

Algorithm 13. Witness(G, A,B)
Input: A graph G = (V,E), disjoint sets A,B ⊂ V , and a number ε > 0.
Output: A partition of V .

1. Set up a matrix M = (mvw)(v,w)∈A×B with entries mvw = 1 − %(A, B)dvdw if v, w
are adjacent in G, and mvw = −%(A, B)dvdw otherwise. Call ApxCutNorm(M) to
compute sets X ⊂ A, Y ⊂ B such that | 〈M1X ,1Y 〉 | ≥ 3

100
‖M‖cut.

2. If | 〈M1X ,1Y 〉 | < 3ε/100, then return “yes”.

3. Otherwise, pick X ′ ⊂ A \X of volume 3ε
100

vol(A) ≤ vol(X ′) ≤ 4ε
100

vol(A).

– If vol(X) ≥ 3ε
100

vol(A), then let X∗ = X.

– If vol(X) < 3ε
100

vol(A) and |e(X ′, Y )− %(A, B)vol(X ′)vol(Y )| > εvol(A)vol(B)
100vol(V )

,

set X∗ = X ′.
– Otherwise, set X∗ = X ∪X ′.

4. Pick a further set Y ′ ⊂ B \ Y of volume ε
200

vol(B) ≤ vol(Y ′) ≤ 2ε
300

vol(B).

– If vol(Y ) ≥ ε
200

vol(B), then let Y ∗ = Y .

– If vol(Y ) < ε
200

vol(B) and |e(X∗, Y ′)− %(A, B)vol(X∗)vol(Y ′)| > εvol(A)vol(B)
200vol(V )

,

let Y ∗ = Y ′.
– Otherwise, set Y ∗ = Y ∪ Y ′.

5. Answer “no” and output (X∗, Y ∗) as an ε/8-witness.
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Given the graph G along with two disjoint sets A,B ⊂ V , Witness sets up a
matrix M . The crucial property of M is that for any two subsets S ⊂ A and T ⊂
B we have 〈M1S ,1T 〉 = e(S, T )− %(A,B)vol(S)vol(T ). Therefore, if ‖M‖cut ≤
εvol(A)vol(B)/vol(V ), then the pair (A,B) is ε-volume regular. Hence, in order
to find out whether (A,B) is ε-volume regular, Witness employs the algorithm
ApxCutNorm to approximate ‖M‖cut. If Step 2 of Witness answers “yes”, then
(A,B) is ε-volume regular, because ApxCutNorm achieves an approximation ratio
> 3

100 by Theorem 5.
On the other hand, if ApxCutNorm yields sets X, Y such that |〈M1X ,1Y 〉| >

3εvol(A)vol(B)
100vol(V ) , then Witness constructs an ε/200-witness for (A,B). Indeed, if

the volumes of X and Y are “large enough” – say, vol(X) ≥ ε
200vol(A) and

vol(Y ) ≥ ε
200vol(B) – then (X, Y ) actually is an ε/200-witness. However, as

ApxCutNorm does not guarantee any lower bound on vol(X), vol(Y ), Steps 3–5
try to enlarge the sets X, Y a little if their volume is too small. Finally, it is
straightforward to verify that this procedure yields an ε/200-witness (X∗, Y ∗),
which entails Proposition 10.
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