Globally bounded local edge colourings of hypergraphs

Mathias Schacht ${ }^{1,2}$
Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany

Anusch Taraz ${ }^{3,4}$
Zentrum Mathematik, Technische Universität München, Boltzmannstraße 3, D-85747 Garching bei München, Germany

Abstract

We consider edge colourings of $K_{n}^{(r)}$ - the complete r-uniform hypergraph on n vertices. Our main question is: how 'colourful' can such a colouring be if we restrict the number of colours locally?

The local restriction is formulated as follows: for a fixed hypergraph H and an integer k we call a colouring (H, k)-local, if every copy of H in the complete hypergraph $K_{n}^{(r)}$ picks up at most k different colours. We will investigate the threshold of k which guarantees that every (H, k)-local colouring must have a bounded global number of colours as n tends to infinity.

Keywords: uniform hypergraphs, local edge colourings

[^0]
1 Introduction and results

We consider edge colourings of hypergraphs. Our central question is: How many different colours can we allow 'locally' while keeping the 'global' number of colours bounded?

Let $r \geq 2$ and denote by $E\left(K_{n}^{(r)}\right)$ the edge set of the r-uniform complete hypergraph on n vertices. Fix an r-uniform hypergraph H and a positive integer k. An (H, k)-local colouring is a mapping $\gamma: E\left(K_{n}^{(r)}\right) \rightarrow \mathbb{Z}$ that guarantees that (the edges of) every copy of H in $K_{n}^{(r)}$ are coloured with at most k different colours. Let us denote the set of all such local colourings by $\mathcal{L}_{n}^{(r)}(H, k)$. Local colourings of this kind were introduced by Truszczyński [6]. We are interested in the maximum total number of colours that a local colouring of $K_{n}^{(r)}$ can achieve, which we denote by

$$
t(H, k, n):=\max \left\{|\operatorname{im}(\gamma)|: \gamma \in \mathcal{L}_{n}^{(r)}(H, k)\right\} .
$$

For given H and k, how does $t(H, k, n)$ behave as a function in n ? To warm up, consider the following example for graphs. Let $r=2$ and $H=K_{5}$. We have that

$$
t\left(K_{5}, 1, n\right)=1 \text { and } t\left(K_{5}, 2, n\right)=2
$$

Indeed, the first is trivial and the latter is immediately verified as follows. Suppose for a contradiction that a colouring $\gamma \in \mathcal{L}_{n}^{(2)}\left(K_{5}, 2\right)$ uses colours 1,2 , and 3 on the edges $\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}$, and $\left\{x_{3}, y_{3}\right\}$. If these six vertices were not pairwise distinct, they would be contained in a copy of a K_{5} picking up 3 colours, which is forbidden. Also, the edge $\left\{x_{1}, x_{2}\right\}$ cannot have colour 3, so w.l.o.g. it has colour 1 . But then the vertices $x_{1}, x_{2}, y_{2}, x_{3}, y_{3}$ span a K_{5} with 3 colours. Continuing with our example, we claim next that

$$
t\left(K_{5}, 3, n\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+1
$$

This can be verified by considering a colouring $\gamma_{\text {match }}$, which assigns pairwise different colours to the edges of a fixed matching of size $\left\lfloor\frac{n}{2}\right\rfloor$, and colours all the other edges with an extra colour 0 . It is clear that $\gamma_{\text {match }} \in \mathcal{L}_{n}^{(2)}\left(K_{5}, 3\right)$, because any copy of a K_{5} can contain at most 2 matching edges. In other words, when we move from $t\left(K_{5}, 2, n\right)$ to $t\left(K_{5}, 3, n\right)$, the function suddenly changes from bounded to unbounded.

For a given H, we would like to determine the maximal k, for which
$t(H, k, n)$ is bounded. More precisely we are interested in

$$
\operatorname{Fin}(H):=\max _{k \in \mathbb{N}}\left\{k: \exists t_{0} \forall n t(H, k, n) \leq t_{0}\right\} .
$$

The above example shows that $\operatorname{Fin}\left(K_{5}\right)=2$. Clapsadle and Schelp [3] gave a nice description of $\operatorname{Fin}(H)$ for an arbitrary graph H.
Theorem 1.1 (Clapsadle \& Schelp [3]) Let H be a graph with at least two edges and let $\nu(H)$ be the cardinality of a maximum matching in H and $\Delta(H)$ the maximum degree of a vertex in H. Then $\operatorname{Fin}(H)=\min \{\nu(H), \Delta(H)\}$.
Clapsadle and Schelp consider in particular the case where $t(H, k, n)=k$ and observe that then H must contain every graph on k edges as a subgraph. They conjecture that the converse is also true.

The central aim of our paper is to generalise Theorem 1.1 to r-uniform hypergraphs. For this we introduce the following definitions. A sunflower (often also called a Δ-system) with core L is an r-uniform hypergraph with set of edges $\left\{e_{1}, \ldots, e_{s}\right\}$ such that $e_{i} \cap e_{j}=L$ for all $i \neq j$. The sets $p_{i}:=e_{i} \backslash L$ are called the petals, the cardinality of the core $|L|$ is denoted as the type, and the number of edges (or petals) is called the size of the sunflower. If $\ell=|L|$ denotes the type and s the size of the sunflower, we will speak of an (ℓ, s) sunflower and denote it by $S=\left(L, p_{1}, \ldots, p_{s}\right)$.

Denote by $\Delta_{\ell}(H)$ the maximum size of a sunflower of type ℓ in a hypergraph H. Obviously if H is a graph, then we have $\Delta_{1}(H)=\Delta(H)$ and $\Delta_{0}(H)=\nu(H)$. Motivated by Theorem 1.1, Bollobás, Kohayakawa, Taraz, and Rödl conjectured that $\operatorname{Fin}(H)=\min _{0 \leq \ell<r} \Delta_{\ell}(H)$ for every nontrivial r-uniform hypergraph H and they proved this conjecture for 3-uniform hypergraphs and for r-uniform hypergraphs H that satisfy $r \geq \min _{0 \leq \ell<r} \Delta_{\ell}(H)$. The main theorem of this note verifies the full conjecture.
Theorem 1.2 For any r-uniform hypergraph H with at least two edges we have that $\operatorname{Fin}(H)=\min _{0 \leq \ell<r} \Delta_{\ell}(H)$.

In the following section, we first prove that $\min _{0 \leq \ell<r} \Delta_{\ell}(H)$ is an upper bound on $\operatorname{Fin}(H)$. The proof that it is also a lower bound is more involved, and we will only sketch the most important ideas. The full proof of Theorem 1.2 and related results discussed in Section 3 will appear in a joint paper of Bollobás, Kohayakawa, Rödl, and the authors [2].

2 Proof of Theorem 1.2

Upper bound. To prove the upper bound in Theorem 1.2, we will show that

$$
\begin{equation*}
\operatorname{Fin}(H)<\min _{0 \leq \ell<r} \Delta_{\ell}(H)+1=: k . \tag{1}
\end{equation*}
$$

In order to verify (1) we give an example of a sequence of (H, k)-local colourings $\gamma_{n}: E\left(K_{n}^{(r)}\right) \rightarrow \mathbb{Z}$ such that $\left|\operatorname{im}\left(\gamma_{n}\right)\right|$ is unbounded.

By definition of k in (1), H contains no $\left(\ell_{0}, k\right)$-sunflower for some $\ell_{0} \in$ $[0, r-1]:=\{0, \ldots, r-1\}$. Fix in $K_{n}^{(r)}$ an $\left(\ell_{0}, \bar{n}\right)$-sunflower $S=\left(L, p_{1}, \ldots, p_{\bar{n}}\right)$, with $\bar{n}:=\left\lfloor\left(n-\ell_{0}\right) /\left(r-\ell_{0}\right)\right\rfloor$. Consider the colourings $\gamma_{n}: E\left(K_{n}^{(r)}\right) \rightarrow \mathbb{Z}$, where edges of S are coloured with $1, \ldots, \bar{n}$, and all other edges are coloured 0 . As H contains no $\left(\ell_{0}, k\right)$-sunflower, every copy of H in $K_{n}^{(r)}$ cannot pick up more than $k-1$ colours from those appearing in S, and thus at most k in total. Hence γ_{n} is (H, k)-local, but obviously $\left|\operatorname{im}\left(\gamma_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$.

Lower bound (sketch). Now we outline the proof of the lower bound of Theorem 1.2: we have to show that for every r-uniform hypergraph H with at least two edges

$$
\begin{equation*}
\operatorname{Fin}(H) \geq \min _{0 \leq \ell<r} \Delta_{\ell}(H)=: s_{H} \tag{2}
\end{equation*}
$$

That means we have to show that for every n, every $\left(H, s_{H}\right)$-local colouring $\gamma: E\left(K_{n}^{(r)}\right) \rightarrow \mathbb{Z}$ is t_{0}-bounded, i.e., $|\operatorname{im}(\gamma)| \leq t_{0}$ for some constant $t_{0}=t_{0}(H)$ independent of n. The special case $s_{H}=1$ is rather uninteresting and from now on we assume that $s_{H} \geq 2$.

For a given colouring γ, an (ℓ, k)-sunflower in $K_{n}^{(r)}$ will be called injective, if all of its k edges receive different colours. A colouring γ that yields no injective (ℓ, k)-sunflower in $K_{n}^{(r)}$ for all $\ell \in[0, r-1]$ will be called k-local. The next proposition shows that it is sufficient to prove that every $\left(H, s_{H}\right)$-local colouring γ is k-local.

Proposition 2.1 For all integers $k, r \geq 2$ there exists an integer $t_{0}=t_{0}(k, r)$ such that for every n and every k-local colouring $\gamma: E\left(K_{n}^{(r)}\right) \rightarrow \mathbb{Z}$ we have $|\operatorname{im}(\gamma)| \leq t_{0}$.
We easily deduce Proposition 2.1 from the following Theorem of Erdős and Rado.

Theorem 2.2 (Erdős \& Rado [4]) If an r-uniform hypergraph contains more than $r!(k-1)^{r}$ edges, then it contains an (ℓ, k)-sunflower for some $\ell \in[0, r-1]$.
In fact for $k=3$ Erdős offered $\$ 1000$ for the proof that r ! can be replaced
by c^{r} for some constant c independent of r. Currently the best bound for that case is given by Kostochka [5].

Proof of Proposition 2.1 Let integers $k, r \geq 2$ be given. Set $t_{0}=r!(k-1)^{r}$ and suppose that $\gamma: E\left(K_{n}^{(r)}\right) \rightarrow \mathbb{Z}$ is a k-local colouring, but fails to satisfy $|\operatorname{im}(\gamma)| \leq t_{0}$. Then Theorem 2.2 immediately implies that any collection of $|\operatorname{im}(\gamma)|$ mutually different coloured hyperedges of $K_{n}^{(r)}$ contains an injective (ℓ, k)-sunflower for some $\ell \in[0, r-1]$, which is a contradiction to the assumption that γ is k-local.

The following lemma then forms the heart of the proof of Theorem 1.2.
Lemma 2.3 Suppose $s_{H} \geq 2$. For all integers $\tilde{k}>0$ and $i \in[0, r-1]$ there exists some integer $k=k(\tilde{k}, i)$ such that if $\gamma \in \mathcal{L}_{n}^{(r)}\left(H, s_{H}\right)$ yields an injective (i, k)-sunflower, then it yields an injective (j, \tilde{k})-sunflower for some $j>i$.

Moreover, there exists some integer $\hat{k}=\hat{k}(H)>0$ so that every $\gamma \in$ $\mathcal{L}_{n}^{(r)}\left(H, s_{H}\right)$ yields no injective $(r-1, \hat{k})$-sunflower.

Let us first see how this lemma implies (2). In view of Proposition 2.1 it suffices to show that every $\left(H, s_{H}\right)$-local colouring $\gamma \in \mathcal{L}_{n}^{(r)}\left(H, s_{H}\right)$ is k-local for some constant $k=k(H)$. Suppose for a contradiction that it were not k-local for some large k.. Then a repeated application of Lemma 2.3 shows that γ must have an injective ($r-1, \tilde{k}$)-sunflower for some (arbitrarily large) \tilde{k}. But as Lemma 2.3 also bounds the maximum size of an injective sunflower of type $r-1$ by some absolute constant \hat{k}, this yields a contradiction.

Proof of Lemma 2.3 (sketch) The proof splits into two parts. First one shows that if there is no injective (j, \tilde{k})-sunflower in $K_{n}^{(r)}$ for $j>i$, then H must have a special structure. More precisely, H contains a subhypergraph $H^{\prime}=S^{\prime}+e^{\prime}$, where S^{\prime} is an (i, s_{H})-sunflower and e^{\prime} intersects at least two petals of S^{\prime} and contains at least i vertices outside the petals. The fact that H must contain an $\left(i, s_{H}\right)$-sunflower S^{\prime} follows from the definition of s_{H} in (2). Moreover, since $s_{H} \geq 2$ it follows by an averaging argument that there exists an $e^{\prime} \in E(H) \backslash E\left(S^{\prime}\right)$ with at least i vertices outside the petals of S^{\prime}. It then follows by some case analysis that e^{\prime} must intersect at least two petals of S^{\prime} or otherwise one could show that $\gamma \notin \mathcal{L}_{n}^{(r)}\left(H, s_{H}\right)$. In particular, this proves the moreover part of the lemma, since an edge e^{\prime} with $r-1$ vertices outside the petals can intersect at most one petal.

In the second part of the proof we use the special structure of $H^{\prime} \subseteq H$ (especially the properties of e^{\prime}) combined with the right (sufficiently large) choice of $k=k(\tilde{k}, i)$ to ensure the existence of an injective (j, \tilde{k})-sunflower in
$K_{n}^{(r)}$. The proof of this part relies on the fact that whenever we find an edge e in $K_{n}^{(r)}$ which intersects an appropriate $\left(i, s_{H}\right)$-subsunflower S of the given injective (i, k)-sunflower in the same way as e^{\prime} intersects S^{\prime}, then $\gamma(e) \in \gamma(S)$. (Otherwise we find a copy of H^{\prime} in $K_{n}^{(r)}$ which picks up $s_{H}+1$ colours.) Iterating this observation over the 'right' choices of e then yields an injective (j, \tilde{k})-sunflower in $K_{n}^{(r)}$.

3 Related results

Let $k=\operatorname{Fin}(H)+1$ for some hypergraph H. Then by definition there are (H, k)-local colourings which use an unbounded total number of colours, like the colouring $\gamma_{\text {match }}$ in our introductory example with $r=2, H=K_{5}$ and $k=3$. Note however, that $\gamma_{\text {match }}$ exhibits this richness in colours only on a vanishing proportion of the edges: the deletion of a suitable set of $o\left(n^{2}\right)$ edges would lead to a bounded number of remaining colours (in fact, only one). This gives rise to the question whether being ($K_{5}, 3$)-local forces every colouring to be limited to an 'essentially bounded' total number of colours?

The answer is yes. More generally for an arbitrary r-uniform hypergraph H, denote by $\operatorname{EssFin}(H)$ the maximal integer k, such that there exists an integer t_{0} so that for every (H, k)-local colouring γ we can find a set $E^{\prime} \subseteq E\left(K_{n}^{(r)}\right)$ with

$$
\left|E^{\prime}\right|=(1-o(1))\binom{n}{r} \quad \text { and } \quad\left|\gamma\left(E^{\prime}\right)\right| \leq t_{0} .
$$

In other words, EssFin (H) is the largest integer such that every (H, k)-local colouring can only use an essentially bounded number of colours in total. The forthcoming paper [2] (and building on the work from [1]) gives a characterization of EssFin (H) for any hypergraph H. Very roughly spoken, the proof of this result is based on showing that any essentially unbounded colouring must be at least as colourful as a non-monochromatic canonical colouring.

Let us return to our example for a last time. From the result in [2] it follows that $\operatorname{EssFin}\left(K_{5}\right)>\operatorname{Fin}\left(K_{5}\right)=2$. Moreover, it is easy to see that $\operatorname{EssFin}\left(K_{5}\right)<4$ by considering the colouring where each edge $\{x, y\}$ with $x<y$ is coloured with colour x, thus $\operatorname{EssFin}\left(K_{5}\right)=3$ as claimed earlier.

References

[1] B. Bollobás, Y. Kohayakawa, and R. H. Schelp, Essentially infinite colourings of graphs, J. London Math. Soc. (2) 61 (2000), no. 3, 658-670.
[2] B. Bollobás, Y. Kohayakawa, V. Rödl, M. Schacht, and A. Taraz, Essentially infinite colourings of hypergraphs, manuscript.
[3] R. A. Clapsadle and R. H. Schelp, Local Edge colourings that are global, Journal of Graph Theory, 18 (1994), no. 4, 389-399.
[4] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90.
[5] A. V. Kostochka, A bound of the cardinality of families not containing Δ systems, The mathematics of Paul Erdős, II, Algorithms Combin., vol. 14, Springer, Berlin, 1997, pp. 229-235.
[6] M. Truszczyński, Generalized local colorings of graphs, Journal of Comb. Theory, Series B, 54 (1992), 178-188.

[^0]: ${ }^{1}$ Author was partially supported by the Deutsche Forschungsgemeinschaft within the European graduate program 'Combinatorics, Geometry, and Computation' (No. GRK 588/2).
 ${ }^{2}$ Email: schacht@informatik.hu-berlin.de
 3 Author was partially supported by the DFG Research Center Matheon "Mathematics for key technologies" in Berlin.
 ${ }^{4}$ Email: taraz@ma.tum.de

