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Abstract

We consider edge colourings of K
(r)
n – the complete r-uniform hypergraph on n

vertices. Our main question is: how ‘colourful’ can such a colouring be if we restrict
the number of colours locally?

The local restriction is formulated as follows: for a fixed hypergraph H and an
integer k we call a colouring (H, k)-local, if every copy of H in the complete hyper-
graph K

(r)
n picks up at most k different colours. We will investigate the threshold

of k which guarantees that every (H, k)-local colouring must have a bounded global
number of colours as n tends to infinity.
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1 Introduction and results

We consider edge colourings of hypergraphs. Our central question is: How
many different colours can we allow ‘locally’ while keeping the ‘global’ number
of colours bounded?

Let r ≥ 2 and denote by E(K
(r)
n ) the edge set of the r-uniform complete

hypergraph on n vertices. Fix an r-uniform hypergraph H and a positive
integer k. An (H, k)-local colouring is a mapping γ : E(K

(r)
n ) → Z that

guarantees that (the edges of) every copy of H in K
(r)
n are coloured with at

most k different colours. Let us denote the set of all such local colourings
by L(r)

n (H, k). Local colourings of this kind were introduced by Truszczyński
[6]. We are interested in the maximum total number of colours that a local

colouring of K
(r)
n can achieve, which we denote by

t(H, k, n) := max
{
| im(γ)| : γ ∈ L(r)

n (H, k)
}
.

For given H and k, how does t(H, k, n) behave as a function in n? To warm
up, consider the following example for graphs. Let r = 2 and H = K5. We
have that

t(K5, 1, n) = 1 and t(K5, 2, n) = 2.

Indeed, the first is trivial and the latter is immediately verified as follows.
Suppose for a contradiction that a colouring γ ∈ L(2)

n (K5, 2) uses colours 1, 2,
and 3 on the edges {x1, y1}, {x2, y2}, and {x3, y3}. If these six vertices were
not pairwise distinct, they would be contained in a copy of a K5 picking up 3
colours, which is forbidden. Also, the edge {x1, x2} cannot have colour 3, so
w.l.o.g. it has colour 1. But then the vertices x1, x2, y2, x3, y3 span a K5 with 3
colours. Continuing with our example, we claim next that

t(K5, 3, n) ≥
⌊n

2

⌋
+ 1.

This can be verified by considering a colouring γmatch, which assigns pairwise
different colours to the edges of a fixed matching of size bn

2
c, and colours all

the other edges with an extra colour 0. It is clear that γmatch ∈ L(2)
n (K5, 3),

because any copy of a K5 can contain at most 2 matching edges. In other
words, when we move from t(K5, 2, n) to t(K5, 3, n), the function suddenly
changes from bounded to unbounded.

For a given H, we would like to determine the maximal k, for which



t(H, k, n) is bounded. More precisely we are interested in

Fin(H) := max
k∈N

{
k : ∃t0 ∀n t(H, k, n) ≤ t0

}
.

The above example shows that Fin(K5) = 2. Clapsadle and Schelp [3] gave a
nice description of Fin(H) for an arbitrary graph H.

Theorem 1.1 (Clapsadle & Schelp [3]) Let H be a graph with at least two
edges and let ν(H) be the cardinality of a maximum matching in H and ∆(H)
the maximum degree of a vertex in H. Then Fin(H) = min{ν(H), ∆(H)}.
Clapsadle and Schelp consider in particular the case where t(H, k, n) = k and
observe that then H must contain every graph on k edges as a subgraph. They
conjecture that the converse is also true.

The central aim of our paper is to generalise Theorem 1.1 to r-uniform
hypergraphs. For this we introduce the following definitions. A sunflower
(often also called a ∆-system) with core L is an r-uniform hypergraph with
set of edges {e1, . . . , es} such that ei∩ej = L for all i 6= j. The sets pi := ei \L
are called the petals, the cardinality of the core |L| is denoted as the type, and
the number of edges (or petals) is called the size of the sunflower. If ` = |L|
denotes the type and s the size of the sunflower, we will speak of an (`, s)-
sunflower and denote it by S = (L, p1, . . . , ps).

Denote by ∆`(H) the maximum size of a sunflower of type ` in a hy-
pergraph H. Obviously if H is a graph, then we have ∆1(H) = ∆(H) and
∆0(H) = ν(H). Motivated by Theorem 1.1, Bollobás, Kohayakawa, Taraz,
and Rödl conjectured that Fin(H) = min0≤`<r ∆`(H) for every nontrivial
r-uniform hypergraph H and they proved this conjecture for 3-uniform hy-
pergraphs and for r-uniform hypergraphs H that satisfy r ≥ min0≤`<r ∆`(H).
The main theorem of this note verifies the full conjecture.

Theorem 1.2 For any r-uniform hypergraph H with at least two edges we
have that Fin(H) = min0≤`<r ∆`(H).

In the following section, we first prove that min0≤`<r ∆`(H) is an upper
bound on Fin(H). The proof that it is also a lower bound is more involved,
and we will only sketch the most important ideas. The full proof of Theo-
rem 1.2 and related results discussed in Section 3 will appear in a joint paper
of Bollobás, Kohayakawa, Rödl, and the authors [2].



2 Proof of Theorem 1.2

Upper bound. To prove the upper bound in Theorem 1.2, we will show
that

Fin(H) < min
0≤`<r

∆`(H) + 1 =: k . (1)

In order to verify (1) we give an example of a sequence of (H, k)-local

colourings γn : E(K
(r)
n ) → Z such that | im(γn)| is unbounded.

By definition of k in (1), H contains no (`0, k)-sunflower for some `0 ∈
[0, r−1] := {0, . . . , r−1}. Fix in K

(r)
n an (`0, n̄)-sunflower S = (L, p1, . . . , pn̄),

with n̄ := b(n−`0)/(r−`0)c. Consider the colourings γn : E(K
(r)
n ) → Z, where

edges of S are coloured with 1, . . . , n̄, and all other edges are coloured 0. As H
contains no (`0, k)-sunflower, every copy of H in K

(r)
n cannot pick up more than

k − 1 colours from those appearing in S, and thus at most k in total. Hence
γn is (H, k)-local, but obviously | im(γn)| → ∞ as n →∞.

Lower bound (sketch). Now we outline the proof of the lower bound of
Theorem 1.2: we have to show that for every r-uniform hypergraph H with
at least two edges

Fin(H) ≥ min
0≤`<r

∆`(H) =: sH . (2)

That means we have to show that for every n, every (H, sH)-local colouring

γ : E(K
(r)
n ) → Z is t0-bounded, i.e., | im(γ)| ≤ t0 for some constant t0 = t0(H)

independent of n. The special case sH = 1 is rather uninteresting and from
now on we assume that sH ≥ 2.

For a given colouring γ, an (`, k)-sunflower in K
(r)
n will be called injective,

if all of its k edges receive different colours. A colouring γ that yields no
injective (`, k)-sunflower in K

(r)
n for all ` ∈ [0, r−1] will be called k-local. The

next proposition shows that it is sufficient to prove that every (H, sH)-local
colouring γ is k-local.

Proposition 2.1 For all integers k, r ≥ 2 there exists an integer t0 = t0(k, r)

such that for every n and every k-local colouring γ : E(K
(r)
n ) → Z we have

| im(γ)| ≤ t0.

We easily deduce Proposition 2.1 from the following Theorem of Erdős and
Rado.

Theorem 2.2 (Erdős & Rado [4]) If an r-uniform hypergraph contains more
than r!(k−1)r edges, then it contains an (`, k)-sunflower for some ` ∈ [0, r−1].

In fact for k = 3 Erdős offered $1000 for the proof that r! can be replaced



by cr for some constant c independent of r. Currently the best bound for that
case is given by Kostochka [5].

Proof of Proposition 2.1 Let integers k, r ≥ 2 be given. Set t0 = r!(k−1)r

and suppose that γ : E(K
(r)
n ) → Z is a k-local colouring, but fails to sat-

isfy | im(γ)| ≤ t0. Then Theorem 2.2 immediately implies that any collection

of | im(γ)| mutually different coloured hyperedges of K
(r)
n contains an injec-

tive (`, k)-sunflower for some ` ∈ [0, r − 1], which is a contradiction to the
assumption that γ is k-local.

The following lemma then forms the heart of the proof of Theorem 1.2.

Lemma 2.3 Suppose sH ≥ 2. For all integers k̃ > 0 and i ∈ [0, r − 1] there

exists some integer k = k(k̃, i) such that if γ ∈ L(r)
n (H, sH) yields an injective

(i, k)-sunflower, then it yields an injective (j, k̃)-sunflower for some j > i.

Moreover, there exists some integer k̂ = k̂(H) > 0 so that every γ ∈
L(r)

n (H, sH) yields no injective (r − 1, k̂)-sunflower.

Let us first see how this lemma implies (2). In view of Proposition 2.1 it

suffices to show that every (H, sH)-local colouring γ ∈ L(r)
n (H, sH) is k-local

for some constant k = k(H). Suppose for a contradiction that it were not
k-local for some large k.. Then a repeated application of Lemma 2.3 shows
that γ must have an injective (r−1, k̃)-sunflower for some (arbitrarily large) k̃.
But as Lemma 2.3 also bounds the maximum size of an injective sunflower of
type r − 1 by some absolute constant k̂, this yields a contradiction.

Proof of Lemma 2.3 (sketch) The proof splits into two parts. First one

shows that if there is no injective (j, k̃)-sunflower in K
(r)
n for j > i, then H

must have a special structure. More precisely, H contains a subhypergraph
H ′ = S ′ + e′, where S ′ is an (i, sH)-sunflower and e′ intersects at least two
petals of S ′ and contains at least i vertices outside the petals. The fact that
H must contain an (i, sH)-sunflower S ′ follows from the definition of sH in (2).
Moreover, since sH ≥ 2 it follows by an averaging argument that there exists
an e′ ∈ E(H) \ E(S ′) with at least i vertices outside the petals of S ′. It then
follows by some case analysis that e′ must intersect at least two petals of S ′

or otherwise one could show that γ 6∈ L(r)
n (H, sH). In particular, this proves

the moreover part of the lemma, since an edge e′ with r − 1 vertices outside
the petals can intersect at most one petal.

In the second part of the proof we use the special structure of H ′ ⊆ H
(especially the properties of e′) combined with the right (sufficiently large)
choice of k = k(k̃, i) to ensure the existence of an injective (j, k̃)-sunflower in



K
(r)
n . The proof of this part relies on the fact that whenever we find an edge

e in K
(r)
n which intersects an appropriate (i, sH)-subsunflower S of the given

injective (i, k)-sunflower in the same way as e′ intersects S ′, then γ(e) ∈ γ(S).

(Otherwise we find a copy of H ′ in K
(r)
n which picks up sH + 1 colours.)

Iterating this observation over the ‘right’ choices of e then yields an injective
(j, k̃)-sunflower in K

(r)
n .

3 Related results

Let k = Fin(H) + 1 for some hypergraph H. Then by definition there are
(H, k)-local colourings which use an unbounded total number of colours, like
the colouring γmatch in our introductory example with r = 2, H = K5 and
k = 3. Note however, that γmatch exhibits this richness in colours only on a
vanishing proportion of the edges: the deletion of a suitable set of o(n2) edges
would lead to a bounded number of remaining colours (in fact, only one). This
gives rise to the question whether being (K5, 3)-local forces every colouring to
be limited to an ‘essentially bounded’ total number of colours?

The answer is yes. More generally for an arbitrary r-uniform hyper-
graph H, denote by EssFin(H) the maximal integer k, such that there ex-
ists an integer t0 so that for every (H, k)-local colouring γ we can find a set

E ′ ⊆ E(K
(r)
n ) with

|E ′| = (1− o(1))

(
n

r

)
and |γ(E ′)| ≤ t0.

In other words, EssFin(H) is the largest integer such that every (H, k)-local
colouring can only use an essentially bounded number of colours in total. The
forthcoming paper [2] (and building on the work from [1]) gives a character-
ization of EssFin(H) for any hypergraph H. Very roughly spoken, the proof
of this result is based on showing that any essentially unbounded colouring
must be at least as colourful as a non-monochromatic canonical colouring.

Let us return to our example for a last time. From the result in [2] it
follows that EssFin(K5) > Fin(K5) = 2. Moreover, it is easy to see that
EssFin(K5) < 4 by considering the colouring where each edge {x, y} with
x < y is coloured with colour x, thus EssFin(K5) = 3 as claimed earlier.
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