RAMSEY-TYPE NUMBERS INVOLVING GRAPHS
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ABSTRACT. Erdos asked if for every pair of positive integers r and k, there exists a
graph H having girth(H) = k and the property that every r-colouring of the edges of H
yields a monochromatic cycle Cj. The existence of such graphs H was confirmed by the
third author and Rucinski.

We consider the related numerical problem of estimating the order of the smallest
graph H with this property for given integers r and k. We show that there exists a
graph H on R!9%° 15+ vertices (where R = R(Cy;7) is the r-colour Ramsey number for
the cycle Cy) having girth(H) = k and the Ramsey property that every r-colouring of
the edges of H yields a monochromatic C;. Two related numerical problems regarding

arithmetic progressions in subsets of the integers and cliques in graphs are also considered.

§1. INTRODUCTION

For an integer r > 2 and graphs H and F, we write H — (F), if every r-colouring
of the edges of H yields a monochromatic copy of F. If H — (F),, we say that H is
Ramsey for F' for r colours. It follows from Ramsey’s theorem that for every graph F' and
for every positive integer r, there exists a graph H such that H — (F'),.. We consider
three Ramsey-type problems that pertain to cycles in graphs and hypergraphs.

1.1. Cycles in Graphs. Our first result relates to a problem suggested by Erdds (see,
e.g., [8]), which asks if for every pair of positive integers r and k, there exists a graph H
having girth(H) exactly k& and the Ramsey property H — (C%),. The existence of such

graphs was first established in [24]. We address the associated numerical problem.

Theorem 1.1. Let R = R(Cy;r) be the Ramsey number that denotes the least integer m
such that K,, —> (C),. Then for all integers k = 4 and r = 2, there exists a graph H
on |V (H)| = k" R yertices satisfying girth(H) = k and H — (C),..
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The exponential dependency of |V(H)| on k in Theorem 1.1 is unavoidable as shown
in the following Theorem 1.2. Further, note that the r-colour Ramsey number R(Cy;r)
is polynomial in r for fixed even k, while for fixed odd k it satisfies the exponential
relation ¢ < R(Cy;7) < ¢3'°" for some positive constants ¢; and ¢, (see, e.g., [10]). This
leads to the following bounds, which show that the additional girth requirement on H still

admits Ramsey graphs of order comparable to R(Cy,r). We define
f(k,r) =min{|V(H)|: girth(H) = k and H — (Cy), }
and write log(z) for the binary logarithm and In(z) for the natural logarithm.

Theorem 1.2. There exist positive constants ¢y and co such that for all k = 2 and r = 2
exp (ciklogr) < f(2k,r) < exp (cak*(logr + klogk))

and
exp (cikr) < f(2k —1,r) < exp (c2k*(rlogr + klogk)).

In particular, for fived k = 2 we have f(2k,r) = r®W and ") < f(2k —1,7) < Olog7),

In Section 6 we present a simpler and more efficient argument for f(6,r) = O(r®),
f(8,7) = O(r'?), and f(12,r) = O(r*), which utilises known extremal constructions for
graphs without short even cycles. Furthermore, we remark that the factor of logr in the
upper bound on f(2k — 1,7) can be removed for large k using the same proof together

with the recent result from [17].

Proof. To show the upper bound for f(2k,r) we note that it was announced in [7] and
proven in [5] that, for every integer k > 2 every graph on n vertices with at least 100kn!*'/*
edges contains a copy of the cycle Coy,. For n = 20kr* =1 we have (})/r > 100kn'*"/¥ and
consequently every edge colouring of K, with r colours will have a monochromatic cycle Cy.
This shows that R(Cox; ) < 20kr**=1) and the bound f(2k, r) < exp (cok?(log r+klog k))
now follows from substituting into Theorem 1.1.

Similarly, we obtain the upper bound for f(2k — 1,r) from Theorem 1.1 together with
the bound R(Caor_1;7) < (r + 2)!- (2k — 1) for k > 2 which was established in [4].

We now turn our attention towards the lower bounds. For any k£ > 2 and r > 2 consider
any graph H with girth(H) = 2k and the property H — (Cy),. Let H < H be an edge
minimal subgraph such that H —> (Cok)p. Clearly the minimum degree of H must be at
least r and H must have girth 2k. Since any graph with girth 2k and minimum degree r
must have at least 22;:01 (r —1)* = erk=1 vertices the lower bound for f(2k,r) follows.

To establish that f(2k — 1,7) > exp (clk:r) for any £ > 2 and r > 2, as before we begin
by considering any graph H with girth(H) = 2k — 1 and the property H — (Ca,_1),.
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Note that x(H) > 2", since otherwise the edges of H could be decomposed into r bipartite
graphs, resulting in an r-colouring of E(H) with no monochromatic odd cycle. Moreover,
since x(H) > 2", there must be a subgraph H < H with minimum degree at least 2.
Since H has at least girth 2k — 1 and minimum degree 2", the number of vertices in H

must be at least 1 + 2" Z].Cff(QT — 1)t = 2% vertices for some ¢ > 0. O

1=

1.2. Arithmetic Progressions. For a subset S < IN and integers £k > 3 and r > 2,
we write S —> (APg), to signify that every r-colouring of the integers in S yields a
monochromatic arithmetic progression of length £. Van der Waerden’s theorem shows for
all integers k£ > 3 and r > 2 that there is some integer N such that [N] — (APy),, where
we denote by [IV] the set of the first NV positive integers {1,2,..., N}. Several refinements of
this well known theorem have been considered. One generalisation, suggested by Erdés [9],
asks if for all £ > 3 and r > 2, there exists an APy, -free set S < IN that has the
property S — (APy),, where a set is APy, -free if it does not contain an arithmetic
progression of length k& + 1. This was answered independently by Spencer [29] and by
Nesetfil and Rodl [20]. Moreover, Graham and NesSettil [15] showed that there exist
arbitrarily large APy -free sets S that have the property S — (APj), and are minimal
in the sense that, for every s € S, the subset S" = S\ {s} fails to have the van der Waerden
property, i.e., 8" —— (APy),.

Furthermore, one may want to restrict the structure of the arithmetic progressions
of length k£ in a set S < IN, but keep the van der Waerden property. That is, consider
the system of copies of arithmetic progression of length k in S, which is the k-uniform
hypergraph (S , ( Afpk)) on the vertex set S with edge set ( Aik) consisting of the & element
subsets of S that form arithmetic progressions of length k. For a simpler notation, it will
be convenient to identify this hypergraph just by its edge set. Moreover, we denote its
chromatic number simply by X( Afjk) instead of X(( Af)k)). Similarly, we suppress the outer
pair of parentheses for other numerical hypergraph parameters as well.

Observe that S —> (APy), if and only if the chromatic number satisfies y ( Af%) > 7.

Hence, van der Waerden’s theorem establishes that for fixed k, the chromatic num-
[N]
AP,

which establishes the existence of hypergraphs having both large chromatic number and

ber x(4p ) — o as N tends to infinity. In view of the result of Erdés and Hajnal [11],

large girth, it is naturally to ask the following. Does for all k, g = 3, and r > 2 there exist

S

a set S < NN so that the hypergraph (APk

) satisfies both the properties

(P1) X(A}q)k) > r and
(P2) girth(,5) = g7
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As usual we say a k-uniform hypergraph has girth at least ¢ if, for any integer h with
2 < h < g, any subset of h edges span at least (k — 1)h + 1 vertices. In particular,
girth( Af?k) > 3 implies that no two arithmetic progressions can intersect in more than
one point, which implies that S is AP, i-free. The existence of sets S € IN satisfying
properties (P1) and (P2) was established in [23] (see also [24]) and our next result gives an

upper bound for the size of the smallest such set S.

Theorem 1.3. Let W = vdW(k,r) denote the least integer N such that [N] — (APg),.
Then for all integers k, g = 3, and r = 2, there exists a set S < IN such that

S S
X(APk> =T girth <Apk) =9, and |S] < A0k (k-+9) 1712k (k+g)

To illustrate the result, consider the special case k£ = 3 for fixed ¢ > 3. A result
of Sanders [26] (see also [3]) implies that vdW(3;7) < exp (r'*°)), where the error
term o(1) — 0 as r — oo. Consequently, our result yields the existence of a set S of size
at most exp (r”"(l)) such that the properties S — (AP3), and (Aig) > ¢ both hold. In
other words, as in Theorem 1.1 the added girth condition does not essentially increase the

best known upper bound in this case.

1.3. Cliques in Graphs. Another well known problem of Erdds and Hajnal [12] asked
if, for every pair of positive integers k£ and r, there exists a Ky, -free graph H such
that H — (K}),. The case r = 2 was confirmed by Folkman [14], and the general
case r > 2 was resolved by NesSetfil and Rodl [19]. Subsequently, Erdds [8] asked for a
strengthened form of this result, namely the existence of a graph H with H — (K}), in
which no two copies of K} share more than one edge, which was established in [21] (see
also [22] for a generalisation from cliques K}, to arbitrary graphs).

As in the context of van der Waerden’s theorem in Section 1.2, we may consider the
structure of the cliques in H in more detail, i.e., we consider the system of copies of K in H,
which is the (g) -uniform hypergraph (E(H), ( I?k )) having vertex set E(H) and hyperedges
corresponding to the edge sets of copies of K in H. As above we identify this hypergraph
by its edge set ( IZ ) and denote by X( 1?; ) and girth ( Igv ) its chromatic number and its girth.
Again the statement H — (K}), is equivalent to X( Ii ) > r and the property that any
two copies of K} in H share at most one edge is equivalent to girth ( Il{i ) > 3. We give
a new proof of the result from [21] that leads to a new upper bound on the size of the

smallest such H.

Theorem 1.4. Let R = R(Ky;r) be the Ramsey number that denotes the least integer m
such that K,, — (Kx),. Then for all integers k, g = 3, and r = 2, there exists a graph H
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such that
H H 4 2
X >, girth =g, and \V(H)| < k09" R0k~
K, Ky,

By reversing the dependency between g and |V (H)|, we obtain the following corollary.

Corollary 1.5. For all integers k = 3 and r > 2, there exist ¢, > 0 and ng such that,
for every integer n = ng, there exists a graph H on n vertices satisfying both H — (Kj),

and girth (Iljk) > ¢y, logn.

It can be shown that any graph H on n vertices satisfying H — (K}), must also
satisfy girth ( Ii ) = O(logn), due to the degree condition required by X( IZ ) > r and, in

that sense, our result gives an optimal order of magnitude for the girth.

1.4. Overview. In the proof of Theorems 1.1, 1.3, and 1.4, we use the Container Method
from [1]. Although our three proofs are similar in nature, we demonstrate two slightly
different approaches. In the proof of Theorem 1.1 we will use the container method and the
FKG-inequality. We show that for suitable choice of parameters p and n, the probability
that the random graph G(n, p) fails to have the Ramsey-property for Cj, and r is strictly
smaller than the probability that it has girth at least k. This implies the existence of
graphs which has both, the Ramsey property and large girth.

In contrast, for Theorems 1.3 and 1.4, we will first find objects which are robust with
respect to the Ramsey property and which contain few short cycles. The desired objects
are then obtained by a deletion argument.

In Section 2 we state the Container Lemma [1], which plays a central role in our proofs.
The details of the proofs of Theorems 1.1, 1.3, and 1.4 are given in Sections 3, 4, and 5

respectively. Section 6 contains some additional remarks related to Theorem 1.1.

Acknowledgements. We are thankful for the thoughtful comments we received through

the reviewing process.

§2. HYPERGRAPH CONTAINERS

The proofs of the theorems presented in Section 1 use many ideas from [18,25] and rely
on random constructions combined with the Container Method of Balogh, Morris, and
Samotij [1] and of Saxton and Thomason [27]. For the numerical aspects the container
result from [27] seemed to be better suited and we state it below (see Theorem 2.1).

Roughly speaking, this lemma states that, if a given hypergraph H satisfies some

numerical ‘degree conditions’, then there there exists a relatively ‘small’ family of sets of
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so-called ‘containers’ (sets C in Theorem 2.1 below) that are ‘almost’ independent sets of
vertices that cover all independent sets of H.

We now introduce the notation necessary for the formulation of this theorem. For
a h-uniform hypergraph #, let e(H) denote the number of (hyper)edges in H. For a
set J < V(H) we define the degree of J by

d(J) = |{ee E(H): e 2 J}]

and for j = 1,..., h we define the mazimum j-degree of a vertex v € V(H) by

dj(v) = max {d(J): J € (V(J.H)) and v € J}.

The average of d;(v) is denoted by

1
b= ) 240

veV

Note that d;(v) is just the degree of v in H and, consequently, d; denotes the average
vertex degree of . With this notation at hand we state the Container Lemma from [27,
Corollary 3.6].

Theorem 2.1 (Container Lemma). Let H = (V,E) be a h-uniform hypergraph and
suppose T, € € (0,1/2) satisfy

6-n-20) & g
- <e. 1
dy ;2 o("3") i1 (1)

Then for integers
K = 800h(h!)? and s = |Klog(1/e)|

the following holds.
For every independent set I <V in H, there exists an s-tuple 8 = (S1,...,Ss) of subsets
of V and a subset C = C(S) < V only depending on 8 such that

(Z) Uz’e[s] Siclc C’
(i1) e(H[C]) <e-e(H), and
(iit) for every i € [s] we have |S;| < TK|V].

The Container Lemma stated here is an abridged version of [27, Corollary 3.6], which
suffices for our purpose. For the explicit constant 800 appearing in the constant K see the

discussion following Corollary 3.6 in [27].
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§3. PROOF OF THEOREM 1.1

In this section we prove Theorem 1.1. For that we have to show that there exists a
graph H on at most k'’ R'%%* vertices (where R = R(Cj; ) is the r-colour Ramsey number

for C) with girth(H) = k and the Ramsey property H — (C),.

Proof. For integers k = 4 and r = 2 let R = R(Cy;r) be the r-colour Ramsey number
for C. We first define all constants involved in the proof. For the application of the

Container Lemma we set

1 22k
g = @ and DT = m (2)
and we fix integers
K = 800k(K!)® <30k  and s =|Klog(1/e)| < 30k™ log(rR"). (3)
We set
D, = 10R**s*K D, log(10R?r) < k™" R*° (4)
and define
n = DE < 1P RO (5)

Finally, we define the following parameters appearing in the proof
k=2 k—2
T=Dmn k1 and  p=Dyn 1. (6)
In the proof we consider the binomial random graph G(n,p) and the theorem is a
consequence of the following two claims, which we verify below.
Claim 3.1. P(girth(G(n,p)) = k) > exp(—knF~1pk1).
Claim 3.2. P(G(n,p) — (Ci)r) =1 —exp(—55(3)).

In order to compare the probabilities in the above two claims, we observe

kgt ARRDIT SRRDST' SRPRDYT SR
- < = = < 1.
p(;)/20> — p(n—1) pn Dynl/i=1" ~ Pty

With this in mind, it now follows from Claims 3.1 and 3.2 that with positive probability

the random graph G(n,p) has girth at least & and the Ramsey-property for Cy and r

colours. Consequently, Theorem 1.1 follows from our choice of n in (5). O

Proof of Claim 3.1. To bound of the probability that G(n,p) has girth at least k, we first
note that the number of cycles of length 7 in K, is @(?)v and that each cycle C}
will occur in G(n, p) with probability p’. To compute the probability that none of these

(dependent) events occur, we use the FKG-inequality (see, e.g., [16, Section 2.2]). For this
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purpose, let X 1 be the random variable which counts the number of cycles of length less
than k. Clearly, X;_; is the sum of monotone increasing indicator random variables and,

hence, the FKG-inequality asserts

k=1
_ FKG <a ! E| X

P(girth(G(n,p)) = k) = P(X4_y = 0) > ]H 1-p) "7 () = exp (—1[_’“]931]), (7)
where we used the estimate 1 —z > exp(—xz/(1 — x)) for the last inequality. Since pn > 1
we have

k=1 ¢ K21 (pn)d
(J_1>! n)’ k kl(G)k k=1,
E| Xy 1] = - —Dj
[ Xk—1] 4 5 Z 2 6 pn) 6

and the claim follows from 1 — p* > 1/6 and (7). O

Proof of Claim 3.2. The proof relies on an application of the Container Lemma (Theo-
rem 2.1) (for similar proofs see, e.g., [18,25]). We will apply the Container Lemma to the
k-uniform hypergraph ‘H = ( :) which is the system of all cycles C}, of length k in K,,, i.e.,
V(H) = E(K,) and k edges of K, correspond to a hyperedge in H, if they form a cycle of
length k. For the application of Theorem 2.1 we first verify (1). In that direction we note

R EGOL_HG) R
“TTeO T TR

2
for j =2,...,k—1, and d, = 1. Therefore, for j =2,...,k — 1 we have

dj < nk_]_l

dy-73=% "kl (tn)i=t T kl-rn k! Donpt/(-1) S B G
and, moreover,
dy, Kk k*

< = .
dy - TR=1 T klpko2. kel gl DRI

Combining both estimates yields

E.

6- k' (3) & 6-k+1.2G) @0
SIFE e
24507 i1~ min{nd/0 | DET)

Having verified (1) of Theorem 2.1, we infer properties (7)—(7i) for every independent set
I <€ V(H). We consider the family B of all graphs B < K, that fail to have the Ramsey
property, i.e., B — (C%),. Below we establish Claim 3.2 by showing

P(G(n,p) € B) < exp( 222 (Z)) .

By the definition of B, for every B € B there exists a partition E(B) = IP v ... v I? with
the property that none of the sets I? contains a cycle C,. In particular, each I” is an

independent set in ‘H and, therefore, properties (7)—(7i7) of the Container Lemma assert
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that for every i € [r] there exists an s-tuple 87 = (85,...,85) of subsets of I” and a

» “i,s
container set C(SP) 2 IP such that

|Sfi,’ <TK (Z)

for every o € [s] and

2 k
We also set .75 = (SF,...,87) and €% = (C(S?),...,C(SP)).
More generally, for any such possible r-tuple . = (81, ...,8,) of s-tuples of sets of size
at most 7K (}), we consider the corresponding container vector ¢ (%) = (C(81),...,C(S,))
given by the Container Lemma. We denote by D(%) its complement in E(K,,) given by

‘e(C(Sf))‘ <ec-e(H)=¢- (k—l)!(n) ) (8)

D(.#) = E(K,) ~ (C(81) u---uC(8,)).

We observe that for any B € B the following two properties hold:

(@) Uicpr) Uoeps) S < E(B) and
(b) E(B) n D(.¥P) = &, since

EB)=1Pv...wIPcC(SP)u---uC(8P) = E(K,) ~ D(.s?).
From (a) and (b) we infer that

P(G(n,p) € B) < Z ]P(y < G(n,p) A E(G(n,p)) n D(&) = @)

Uscr) Uoers Sivo -P(E(G(n,p)) NnD(S) = ®>

Userr] Users) Sivo ’ (9)
where the sum and the maximum are taken over all r-tuples . = (81, ...,8,) of s-tuples
Si=(Si1,...,Sis) of sets S;, of size at most 7K (}) for i € [r] and o € [s]. We will use
property (i) of the Container Lemma to bound the maximum probability, while our choice
of constants allow us to derive a sufficient bound for the sum.

For the maximum probability below we first observe that for every . = (84,...,8,)

we have . }%2 (Z) | »

For the proof we use the fact that for any (r + 1)-colouring of F(K,,) either there are

0 0)

more than
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monochromatic copies of Cj, in the first r colours or there are more than % (g) edges having
the last colour (see, e.g., [25, Proposition 8] for the same assertion for cliques K}, instead of
cycles and Fact 4.3 for the analogous statement for arithmetic progressions and its proof).

In view of this fact, we consider C(8;) U --- U C(S,) U D(.¥) as an (r + 1)-colouring

of E(K,). Owing to property (i) of the Container Lemma (see (8)), every C(S;) contains

(k—1)!
2

(”) copies of ('} and, hence, there are at most

()0

monochromatic copies in the first r colours. (We remark that we chose ¢ to satisfy the

at most €

above inequality; in fact we took e slightly smaller to make the calculations simpler.)

Therefore, the mentioned fact above yields (10) and, consequently, we arrive at

IP(E(G(n,p)) A D(S) = @) _ (1= p)PN L exp ( - % (;‘)) (11)

for every . considered here. In particular, (11) bounds the maximum probability considered
in the R-H-S of (9) and below we turn to the sum in (9).

Owing to |S;,| < 7K (}) for every i € [r] and o € [s] we have

T'-S-TK(;L) T-S-TK(;L)

S=(81,...,8r) m=0 m=1

Since the function m — (e(})2"*p/m)™ is unimodal and attains its maximum value for
moy = (g) 2"p = rstK (Z), we can bound the summands in R-H-S above by the last one

and obtain

|Ui€[r] Uae[s] S'L,o’ < ( K (n> ) . ( € (TQL) TS )
P < | rst +1 —=2""p
Z S0 2 7’57’K(2)

) 21"5er TSTK(;)
rsKD,

rsq-K(Z)

N
S

—~
N
[\

= n?- (2% 10Rrs 10g(10R27"))mTK(g)

. exp <TSTK (Z) (75 + 1+ 1n (10R%rs 1og(10R2r)))>
o (57())
(575 (5)) "

N
3l\')

INE
3l\D

N
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Finally, combining (11) and (12) with (9) leads to

< on( 1)) o (e ) oo ()

which concludes the proof of the claim. 0

§4. PROOF OF THEOREM 1.3

We prove Theorem 1.3 by establishing that, for given integers k > 3, r > 2, and g > 2,
there exists a set S = N of size at most k0¥ k+a)/12k(k+9) (where W = vdW (k; r) is the
van der Waerden number guaranteeing monochromatic arithmetic progressions of length &
for any r-colouring of [W]) such that the hypergraph ( Aik) has chromatic number greater
than r, and girth at least g.

Proof. Let k = 3, r = 2, and g > 2 be given and let W = vdW(k;r) be the van der
Waerden number. We first define all constants involved in the proof. For the application

of the Container Lemma we set

] o) e\
€ and D, = (6 : ) (13)

BRAE €
and we fix integers
K = 800k(k!)’ <30k  and s =|Klog(1/e)] < 30k*log(rW?®).  (14)
We set
D, = 128Wr?s?K D, log(128Wr) < 240k1%-31y/3 (15)
and define
n = k4gD2k(k+g) < k40k2(k+g)W12k(k+g) ) (16)
p

Finally, we define the following parameters appearing in the proof

_1 _1 pn
T=Dmn *1, = D,n *1, and t=—.
b= W

Let [n], denote the random set obtained by choosing each element of [n] = {1,2,...,n}

(17)

independently with probability p. The theorem is an immediate consequence of the following

two claims.

Claim 4.1. With probability larger than 1/2 for the random subset [n], there exists a
set T' < [n], of size at most t such that such that girth ([HA’;;T) >g.

Claim 4.2. With probability larger than 1/2 the random subset [n], satisfies X(["A%:T) >

for every subset T < [n], of size at most t.
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Together, these claims establish that, with positive probability, the random set [n], will
have the property that there exists a set 7' < [n], of size ¢ so that the hypergraph ([”A%;T)
has girth at least g and chromatic number bigger than r. Thus, these claims together with
our choice of n in (16) establish the existence of a set S € IN as claimed in Theorem 1.3.
We remark that, such a set will likely have only O(pn) elements (not n elements). However,

this improvement is negligible. 0

Proof of Claim 4.1. The proof follows by a standard first moment argument. Recall that
a 2-cycle in a hypergraph consists of two hyperedges sharing at least two vertices and
for j > 2 a j-cycle consists of a cyclically ordered sequence of hyperedges e, es,. .., ¢;
where the intersection of two consecutive edges is exactly 1, the intersection of any two
nonconsecutive edges is empty, and the intersection points for each pair of consecutive edges
is unique (which for j > 4 is already implied by the other two conditions). Let the random
variable X; denote the number of j-cycles appearing in the random hypergraph (511]32 )
We first estimate E[X;]. Since the hyperedges of ( A[’;]k) are arithmetic progressions of

length k, every pair of vertices is contained in at most (g) such hyperedges. Consequently,

n\ (k\? k+1 4 k+1, 2 k4DII§ t
E[X,] < (2) <2) P < kTpTTn =P ey < -

Next we bound E[X;] for 3 < j < g. For that we note that for any j-cycle we may first

we have

select and order the j vertices of degree 2 and then fixing the remaining vertices of each
edge. However, since every edge of the cycle contains two (already fixed) vertices of degree

two, again there are at most (g) possible completion for such an edge and, hence, we have

g—1 g—1 g—1

o ) 4 4 t
DIE[X;] < Y ndkPpt = N R DI < k9 DR < i
j=3 j=3 j=3

By Markov’s inequality this implies that with probability less than 1/2 the randomly
generated hypergraph (1[4”1])2) has at most ¢ cycles of length less than g, which establishes
Claim 4.1. O

Proof of Claim /.2. We consider the k-uniform hypergraph H = ( Eg]k) and check that it
satisfies the assumptions of the Container Lemma (Theorem 2.1) for the parameters
and 7 chosen in (13) and (17). Note that € < 1/2 by definition and 7 < 1/2 follows from
the choice of n in (16). For the remaining assumption (1) we recall the definition of the
average degrees d; for 7 = 1,..., k of H and again, using the fact that every pair of vertices
is contained in at most (g) AP}’s, we note that for j = 2,...,k we have

k k?
dj<d2<<2)<2.
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Moreover, we have

k |/ [n] k&S n—i k"S | n—i k' (n—i n
= 2. = 2. = . > - -1 Z 1
“ = (APk) n & |lk-1| n ; k=17 n Z —1 =519
Consequently,
gt oo() & . k gt o2() g2 g 2(G) ks (s,
6-k!l-2 Z ]._fij < Z 6]]61 k < 6-k!l-2 ]{;‘ (13)<(16) .
dy =2 2("2") i1 i—=n- o(2) . pi-ly i min{DF-1 nrT1}

This shows that condition (1) of Theorem 2.1 holds. Consequently, for every independent
set I < V(H) we can apply conclusions (7)—(éii) of the Container Lemma with the constants
defined in (14).

We consider the family B of all sets B < [n] with the property that there exists a
set T' < E(B) of size at most ¢ such that (B~ T) — (APy),, i.e. X(B\T) r. Claim 4.2
is equivalent to

P([nl, < B) < - .
By definition of B, for every B € B there exists a set T? < B of size |T?| < t and a
partition B = [P w...wIP wTP with the property that none of the sets I contains an AP;.
In particular, each I? is an independent set in H and, therefore, properties (i)—(éi) of the
Container Lemma assert that for every i € [r] there exists an s-tuple S = (85,....8E)

? 1,8
of subsets of I and a container set C(S”) 2 IP such that

ISE|<7Kn (19)

()

We set 8 = (8P,...,8%) and €7 = (C(S8P),...,C(S?)).
Moreover, for any possible r-tuple . = (84,...,8,) of s-tuples of sets of size at

for every o € [s] and

|en(C(S7))| <e-e(H) =«

most 7Kn, we consider the corresponding container vector () = (C(S4),...,C(S;))
given by the Container Lemma. We denote by D(.¥) its complement in [n] given by

D(F) = [n] \ (C(81) v --- v C(S))) .

Observe that for any B € B the following two properties hold:

(a) Uze[r]U S’LBO' = ( (B) N D(yB)) and
) |Bn D( yB)} < |TB| < t, since

BNTP=1Pu.. . wIPcC(SP)u---uC(8P) =[n]~ DIP).
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From (@) and (b) we infer that

P(n,eB)< > plUetilUocaSicl . p(|[u], n D(7)| < t)

S =(81,.,8r)
< n}gxl?(\[n]p N D(S)| <t) -;p Uictry Users Sive || (21)
where the sum and the maximum are taken over all r-tuples . = (S,...,S8,) of s-tuples

Si=(Si1,...,Si;s) of sets S of size at most 7Kn for i € [r] and o € [s]. We will use
property (ii) of the Container Lemma to bound the maximum probability in (21), while
our choice of constants allow us to derive a sufficient bound for the sum in (21). We shall

use the following fact (the proof of which we defer to the end of this section).

Fact 4.3. For every (r+1)-colouring of [n] either there are more than !(E;]k) |/W? monochro-

matic APy ’s in the first v colours or more than g elements are in the last colour.

In view of this fact, we consider C(S;) u --- U C(S,) u D(¥) as an (r 4+ 1)-colouring
of [n]. Owing to property (ii) of the Container Lemma (see (20)), every C(S;) contains at

most 5‘ ( fg’;]k)‘ monochromatic APy’s and, hence, there are at most

()| e (i)

monochromatic AP.’s in the first r colours. Therefore, Fact 4.3 yields that for every
S =(84,...,8,) we have

1 1

he T

n

D) >

(22)

In particular, the choice of ¢t combined with (22) yields ¢t < p|D(.#)|/2 and, consequently,
Chernoff’s inequality (see, e.g., [16, Theorem 2.1] asserts

]P(‘[n]me(Y)‘ <t> <exp(—3;;zv> (23)

for every . considered here. In particular, (23) bounds the maximum probability considered
in the R-H-S of (21) and below we turn to the sum in (21).

Owing to |S;,| < 7Kn for every i € [r] and o € [s] we have

rs1TKn r-s-tKn m
o plUenUeeaSiel < N (">2T5mpm< (Z2mp)” )
S (81,1 m=0 N\ m=o
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Since the function m — (en2"p/m)™ is unimodal and attains its maximum value for

mo = 2"pn = rsTKn, from (24) we obtain

dop

rstKn
Uierr) Uoers) Sivo | < (rstKn+1)- ( 2’”5p>

rstKn

2rser rstKn
n .
rsK D,

(274 Te - Wrrslog(128Wr

(15) ))TSTKn

< n-exp (rSTKn (TS +6+1In (Wrs 10g(128Wr)))>

(5) ( pn >
S TSP oW

< exp (%) . (25)

Finally, combining (23) and (25) with (21) leads to

P(inlB) < o - 37) - (i) = (~ ) <5

Up to the proof of Fact 4.3 this concludes the proof of Claim 4.2. O

Proof of Fact 4.3. Recall that W = vdW (k;r) asserts that A — (APy), for every arith-
metic progression A < NN of length W. Consider an arbitrary (r + 1)-colouring of [n].

Suppose at most i elements of [n] receive colour r 4+ 1. From the observation that for

every w < W /2 and every i € [n] ’s in [n] having i
at position w or W —w + 1, one can deduce that every i € [n] is contained in at most n

different APy’s. Consequently, there are at least
LI B
APy )| AW T AW
APy ’s containing no element of the last colour, where we used ‘( )| = o ° for the last
inequality (cf. (18)).
Owing to the choice of W every such r-coloured APy contains a monochromatic APy in

one of the first r colours. On the other hand, every AP, can be contained in at most (V;)
different APy/’s in [n]. Therefore, there exist at least

W2 1| ()

AW w2 2w T ws |\ AP,
distinct monochromatic APy’s in [n] coloured in one of the first r colours and the fact
follows. O
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§5. PROOF OF THEOREM 1.4

In this section we establish that for all integers r > 2, g > 3, and k > 3, there exists
a graph H on at most J;409k* R109K* Gertices such that ( K,

than r and girth at least g, where R = R(Kj;r) is the r-colour Ramsey number for K.

) has chromatic number greater

Proof. We first define all constants involved in the proof. Given the uniformity k& > 3,
the number of colours r > 2, and the minimum girth g > 3, we denote by R = R(Kj;r)
the r-colour Ramsey number for K. In the estimates below we sometimes use the trivial
observation 2" < R. For a later application of the Container Lemma (Theorem 2.1), we

define the involved auxiliary constants (and observe some immediate bounds)

(<1§>) 10/k?

k k\ 1.k

; and D, = 6- (2)! 24 (Q)k < 93k?/21.20 p20/k (26)
€

and integers
K =800(%) ((]2“)')3 < k¥ and s = |Klog(1/e)| < k** log(rR*). (27)
We introduce another auxiliary constant
D, = 50R*r*s* K D, 1og(50R?r) < k!0k*+30 o+20/k (28)
and set
n = DEGH) < D3 < A0k pioak® (29)

Finally, we define the following three parameters in terms of some of the constants above
D, D, p [n

T:m, p:m, and t:2R2(2> (30)

Having defined all involved constants we shall show the following two claims, which yield

the theorem.

Claim 5.1. With probability larger than 1/2, the random graph G(n,p) has the property
that there is a set T'< E(G(n,p)) of size at most t such that girth (G("p ) >g.

Claim 5.2. With probability larger than 1/2, the random graph G(n,p) has the property
that X( "p) T) > 1 for every subset T' < E(G(n,p)) of size at most t.

Both claims together show that with positive probability there exists a graph G which
contains a set T' < F(QG) of size at most ¢ such that H = G — T satisfies girth (]?k) =g
and X( Ii ) > r. Consequently, Theorem 1.4 follows from the choice of n in (29). O
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Proof of Claim 5.1. Recall that a 2-cycle is a pair of edges e, e; such that |e; N ey > 1
and for j > 2 a j-cycle is a cyclical sequence of j edges ey, e, ..., e; where the intersection
of two consecutive edges is exactly one i.e. |e; ne; 1| = 1 (addition mod j), the intersection
of any two nonconsecutive edges is empty, and the intersection points for each pair of
consecutive edges is unique.

Define X; to be the number of j-cycles in the system of copies of K}, in G(n,p). We first
work to bound X,. If £ = 3, we trivially have E[X5] = 0. Otherwise for k > 4, a 2-cycle
corresponds to two copies of K} that intersect in more than two edges, and thus in more
than two vertices. Furthermore, we see that two copies of K}, that intersect in ¢ vertices
together span exactly 2k — ¢ vertices and 2(’2“) — (;) edges. With this in mind, the following
bounds E[X;] < t/4 in (G%};p)):

/

E[X,] 8R? B2R? S g a(h)—(:
i :p(;)'E[X2]< SN p2(5)-(2)

k—1 ;
_ 32R2n2k—2p2(§)—1 Z n(i2_2i—ki)/(k+l)D;(2)
i=3

1=3

< 32R2n2k72p2(§)—1 k- max {n(@'272ifki)/(k+1)}

3<i<k—1

< 32R2n2k_2p2(‘;)—1 k. 33R)/(k+1)

32kR?DF k=1 DK ()
= TG S s < b

We now bound Z?;?l) X;. For j > 2, a j-cycle in (f(z) consists of a cyclically ordered set

of j copies of K}, such that each two consecutive copies intersect in exactly one edge of K,,.
Thus, a j-cycle corresponds to a set of K}’s in K, that span at most kj — 25 vertices in K,

and exactly (l;)j — j edges in K,,. From this, we see that, for 2 < j < g, we have
. . j kY _ 1y
E[X;] < nkj*ij(g)j—J _ (nk72p(’2‘)—1>] _ D](J(z) i

Using this, we establish Zg;; E[X;] < t/4:

-1
D PIX) SRR () 822 p()-ne _ DY

Thus, we have shown Z?;; E[X;] <t/4+t/4 =t/2. By Markov’s inequality, this gives
that, with probability bigger 1/2, the hypergraph (G%p)) contains less than t cycles of
length less than g. For each such cycle, removing one vertex (which is an edge in G(n, p))

concludes the proof of Claim 5.1. 0
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Proof of Claim 5.2. The proof relies on an application of the Container Lemma (Theo-
rem 2.1) to the (g)—uniform hypergraph H = (II?;)) In view of that we will first verify
condition (1) for our choices of € and 7 in (26) and (30). Recalling the definition of the

average degrees d; for j =1,..., (g) of H, we note that

g - n—2 >nk_2
Po\k-2) T

For j > 2, letting k; be the smallest integer such that j < (

n—k;
d_ < ] < k}—k‘j.
’ (kf—’fj) "

Consequently, for every j = 2,..., (];) this gives

K

5 ), we have

. AR o L
d; Ko on2 ki p T gk 2k n% ke R
4 1S DI h Dt - DIt (31
For k; =k, i.e., for j = (k;) +1,..., (g) we, therefore, get
d; Kk EF Kk

J
< < <
1S 1 S T e S o0
dy -1 Di D( 2 ) T /

T

(32)

where we used D; > 1 and k > 3 for the last inequalities. For integers 3 < k; <k —1 we
note that k > 4 and (k; — 2)(k; — k) is maximized for k; = 3 (and k; = k — 1). Hence, in
this case we can bound the R-H-S in (31) to give

d; Kk

— < .
dy -1 S il

Summarizing, since k; > 3 for j > 2 we arrive for h = (’S) at

6-hl.9205) Zh: d; 6-n-20) . p. gk (26),(29)

: <
dy o 2(351)7—3'—1 min{le/10 ,ni/5}

and this shows that condition (1) of Theorem 2.1 holds. Consequently, for every independent
set I € V(H) we can apply conclusions (7)—(7i7) of the Container Lemma with the constants
defined above.

We consider the family B of all graphs B < K,, such that there exists a set T' < E(B)
of size at most t and (B — 1) —> (K}%),, i.e., there exists and r-colouring of the edges of
the graph B — T" without a monochromatic copy of Kj. In other words, X(Blng) < r and
we may view B as the set of all (‘bad’) graphs on n vertices that do not have the desired

property of Claim 5.2. Below we establish Claim 5.2 by showing

P(G(n.p) < B) < 1
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Consider any graph B € B. By the definition of B, there exists a set T? < E(B) of
size |TP| < t and a partition E(B) \T? = I? v ... v I? with the property that none of
the sets I contains a Kj. In particular, each I” is an independent set in H and, therefore,
properties (i)—(7ii) of the Container Lemma assert that for every i € [r] there exists an
s-tuple 87 = (S5,...,8E) of subsets of I” and a container set C(S7) 2 I such that

| 82| < 7K (Z) (33)
for every o € [s] and
etes)| <<(}). en

We also set .77 = (8P,...,88) and €7 = (C(SP),...,C(8%)).

Moreover, for any possible r-tuple . = (81,...,8,) of s-tuples of sets of size at
most 7K (%) we consider the corresponding container vector € () = (C(81),...,C(S,))
given by the Container Lemma. We denote by D(.¥) its complement in F(K,,) given by

D(Z) = E(K,) ~ (C(81) u---uC(S,)) .
We observe that for any B € B the following two properties hold:
(@) Uiepr) Uses S5, < (E(B) \ D(#*)) and
(b) |E(B) n D(B)| < |TP| < t, since
EB)NTP =I1Pv...wIP cC(SY)u - uC(SP) = E(K,) ~ D(IP).
From (@) and (b) we infer that

P(G(n,p)es)g >oop

Uietr) Uoets] Sie| . IP(‘E(G(n,p)) n D(S)| < t)

< m}gﬂmx]P(‘E(G(n,p)) N D(S)| < t> Zp|uie[r] Users) Sive |
' 2

(35)

where the sum and the maximum are taken over all r-tuples . = (8, ..., 8,) of s-tuples
S:=(Si1,...,8i5) of sets S;, of size at most TK(;L) for i € [r] and o € [s]. We will use
property (i) of the Container Lemma to bound the maximum probability in (35), while
our choice of constants allow us to derive a sufficient bound for the sum in (35).

For the maximum probability we first observe that for every . = (8y,...,8,) we have

D= 5 (5) (50

For the proof we use the fact that for any (r + 1)-colouring of E(K,) either there are more

than L/
()
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monochromatic copies of Kj in the first r colours or there are more than %(;‘) edges
having the last colour (see, e.g., [25, Proposition 8]).

In view of this fact, we consider C(8;) u --- U C(S,) u D() as an (r + 1)-colouring
of E(K,). Owing to property (i) of the Container Lemma (see (34)), every C(8;) contains

at most 5(2) copies of K}, and, hence, there are at most

(1) 5 ()

monochromatic copies in the first 7 colours. Therefore, the mentioned fact above yields (36).
In particular, the choice of ¢t combined with (36) yields t < p|D(.¥)|/2 and, consequently,
Chernoff’s inequality (see, e.g., [16, Theorem 2.1]) asserts

P(]E(G(n,p)) ~ D(7)| < t) < exp (— % <Z)) (37)

for every . considered here. In particular, (37) bounds the maximum probability considered
in the R-H-S of (35) and below we turn to the sum in (35).

Owing to |S;,| < 7K (}) for every i € [r] and o € [s] we have

S=(81,..50) m=0 \ m=0 m

Since the function m — (e(})2"*p/m)™ is unimodal and attains its maximum value for
mo = (3)2"p = rsTK(}) (see (28)), we can bound the summands in R-H-S above by the

last one and obtain

Userr) Uoes) Sivo

< (TSTK <T2l) + 1) . (6(2)
S=(81,...,8r) rsTK

27 5)
o (e )

rsKD,

TSTK(g)
2rsp)

2 2. (2% - 50R’rs log(5OR27’))TSTK(Z>

< n?-exp (TSTK (Z) (rs +1+1In (5OR27’510g(50R2r))>>

(28) o p (n
S Texp (16R2 (2))
p (n
< .
exp <12R2 <2)> (38)

Finally, combining (37) and (38) with (35) leads to

rurm<en(- o) () oo sl0)
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and Claim 5.2 follows. O

§6. RAMSEY GRAPHS USING EXTREMAL CONSTRUCTIONS
Recall that in Theorem 1.2 we showed for all integers k and r > 2 that
f(2k,7) = min {|V(H)|: girth(H) = 2k and H —> (Co),} < exp (c2k*(logr + klogk)) .
For three small cases of k, we are able to deduce better bounds for f(2k,r) using well
known extremal constructions of graphs with girth 6, 8, and 12, respectively.

Theorem 6.1. We have f(6,7) = O(r®), f(8,7) = O(r'?), and f(12,r) = O(r*°).

Before proving Theorem 6.1, we first introduce some notation and state an observation
upon which the proof if based. Let ex(n;C}) denote the maximum number of edges in an n
vertex graph that does not contain a cycle of length k. Similarly, let ex(n; C3, Cy, ..., Cr_1)

denote the maximum number of edges in a graph with girth k.
Fact 6.2. Ifex(n;C3,Cy,...,Cop_q1) > 1r-ex(n;C3,Cy,...,Coy), then f(2k,r) < n.

Indeed, by definition of the extremal function there exists a graph G on n vertices with
girth 2k that has ex(n; C3,Cy, ..., Coy_1) edges. Clearly, every r-colouring of G yields a
monochromatic subgraph with at least ex(n;C3,Cy, ..., Co_1)/r > ex(n; Cs,Cy, ..., Co)
edges, which must contain a monochromatic Cy since the monochromatic subgraph still
has girth at least 2k.

Proof of Theorem 6.1. To make use of this fact to prove Theorem 6.1, we use the result of

Erdés and Simonovits from [13] that for every positive integer k, we have
ex(n; Cs, Cy, ..., Copyr) = O(n'+F).
Since any graph contains a bipartite subgraph with half of its edges we have
ex(n; Cs,Cy, C5,Cs, . .., Cy) < ex(n; Cy, Cs, . .., Coy)
< 2-ex(n; Cs,Cy, Cs,Cs, . .., Coprr) = O(n'TVE) . (39)
Erdés and Simonovits conjectured in [13] that for every positive integer k > 2,
ex(n; Cs, Cy, . .., Cop_y) = Qn*HED), (40)

This has been observed for & = 3 by Klein (see [6]) and follows for k = 4 by the work of
Singleton [28], and for k£ = 6 by the work of Benson [2]. For k € {3, 4, 6}, inequalities (39)
and (40) give that

ex(n; Cs, Cy, ..., Cop_q) = Q(n1+1/(k_1)) > O(n1+1/k) =r-ex(n;C3,Cy,...,Co),
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holds, provided that

n = ¢kt ,

for some sufficiently large constant ¢. Consequently, Fact 6.2 yields

f(2k,r) < n = Q(rkkE-D)

for k € {3,4,6} and the theorem follows. O

We remark that establishing (40) for all k, implies f(2k,7) = O(r**=1) for all k by the

same argument.
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