
Hamiltonian Berge Cycles in Random Hypergraphs∗

Deepak Bal† Ross Berkowitz‡ Pat Devlin§ Mathias Schacht¶

Abstract

In this note, we study the emergence of Hamiltonian Berge cycles in random r-uniform
hypergraphs. For r ≥ 3, we prove an optimal stopping-time result that if edges are sequentially
added to an initially empty r-graph, then as soon as the minimum degree is at least 2, the
hypergraph with high probability has such a cycle. In particular, this determines the threshold
probability for Berge Hamiltonicity of the Erdős–Rényi random r-graph, and we also show that
the 2-out random r-graph with high probability has such a cycle. We obtain similar results for
weak Berge cycles as well, thus resolving a conjecture of Poole.

1 Introduction

An r-graph (or an r-uniform hypergraph) on V is a collection of r-element subsets (i.e., ‘edges’)
of V (the set of ‘vertices’). A Berge cycle in a hypergraph is an alternating sequence of distinct
vertices and edges (v1, e1, . . . , vn, en) where vi, vi+1 are in ei for each i (indices considered modulo
n), and a Hamiltonian Berge cycle is a Berge cycle in which every vertex appears. The Erdős–Rényi

random r-graph, denoted G(r)n,p, is the distribution over r-graphs on {1, 2, . . . , n} in which each edge
appears independently with probability p.

The case r = 2 (i.e., graphs) has received particular attention. In this setting, Hamiltonian
Berge cycles are unambiguously referred to simply as Hamiltonian cycles and the question of when
a random graph is likely to contain a Hamiltonian cycle is extremely well-understood [16, 5, 1, 6].
Historically, Berge cycles were the first among several natural generalizations of the notion of cycle
from graphs to hypergraphs [3]. Many of these differing notions of hypergraph cycles (e.g. loose,
tight, offset, etc) have been studied in the context of random r-graphs, with particular emphasis on

determining for which parameters G(r)n,p is likely to contain such a “Hamiltonian cycle” (see [18] for
a survey and [10, 11, 12, 13, 19] for examples). Of particular relevance for us, Poole [20] focused
on weak Hamiltonian Berge cycles—which are defined as Hamiltonian Berge cycles without the
restriction that the edges be distinct—and for these weaker structures he obtained the following
sharp result.

Theorem 1 (Poole [20]). Suppose r ≥ 3 is fixed, and p = (r − 1)!
log n+ cn
nr−1

. Then we have

lim
n→∞

P
(
G(r)n,p has a weak Hamiltonian Berge cycle

)
=


0, if cn → −∞
e−e

−c

, if cn → c ∈ R
1, if cn →∞.

Here, as in the case of graphs, the choice of p is driven by the need to avoid isolated vertices (i.e.,
vertices not contained in any edges), whereas for (non-weak) Hamiltonian Berge cycles, each vertex
must have degree at least 2.

In this note, we prove these minimum degree requirements are the primary obstructions to
Hamiltonicity by showing the following stopping-time result. We say that a sequence of events,
An, happens with high probability (or w.h.p.) if limn→∞ P[An] = 1. Consider the ordinary random
graph process, where at each step, a uniformly random non-edge is added to the graph. Ajtai,
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Komlós, and Szemerédi [1] and Bollobás [5] proved that w.h.p., the graph becomes Hamiltonian at
the very same step when the minimum degree becomes two. In other words, the graph becomes
Hamiltonian as soon as the “obvious obstruction” to Hamiltonicity disappears. Our main result
is a generalization of this result to random r-graphs for the notion of Berge (and weak Berge)
Hamiltonicity.

Theorem 2. Suppose r ≥ 3 is fixed and let {e1, e2, . . . , e(n
r)
} denote a random ordering of the

r-subsets of [n]. Let H(t) denote the r-graph on [n] with edge set {ei : 1 ≤ i ≤ t}, and let Tk
denote the minimum t such that every vertex of H(t) is contained in at least k edges. Then (i)
H(T1) w.h.p. has a weak Hamiltonian Berge cycle, and (ii) H(T2) w.h.p. has a Hamiltonian Berge
cycle.

The statement that H(T1) has a weak Hamiltonian Berge cycle resolves a conjecture by Poole [20].
Standard techniques also immediately imply both Theorem 1 and the following corollary.

Corollary 3. Suppose r ≥ 3 is fixed, and p = (r − 1)!
log n+ log log n+ cn

nr−1
. Then we have

lim
n→∞

P
(
G(r)n,p has a Hamiltonian Berge cycle

)
=


0, if cn → −∞
e−e

−c

, if cn → c ∈ R
1, if cn →∞.

Previously, Clemens, Ehrenmüller, and Person [7], proved a general resilience result implying

a version of Corollary 3 with p = logk(r)(n)/nr−1, where k(r) is a constant depending on r. Our
proof of Theorem 2 follows closely a presentation of Krivelevich for the stopping time result for
ordinary random graphs.

In addition to uniform random r-graphs, we also study Berge Hamiltonicity of another random
r-graph model. The k-out random r-graph on V = [n], denoted Grn(k-out), has the following
distribution: for each v ∈ V , independently choose k edges Ev = {e1, e2, . . . , ek}, where each
ei ⊆ V is chosen uniformly at random from among all r-element sets containing v. The hypergraph
then consists of all edges chosen in this way: namely,

⋃
v Ev.

In the graph case, Hamiltonicity of this model was first studied by Fenner and Frieze [14] who
showed G2n(23-out) is w.h.p. Hamiltonian. This was improved incrementally by a series of authors
until Bohman and Frieze [4] showed that G2n(3-out) is w.h.p. Hamiltonian (whereas G2n(2-out) w.h.p.
is not). The generalization of the k-out model to hypergraphs, though natural, is not yet well-
studied, and in fact the only publication we are aware of is [9], which addresses perfect fractional
matchings.

For the k-out model, we settle the issue of ordinary and weak Berge Hamiltonicity completely.

Theorem 4. For any fixed r ≥ 4, Grn(2-out) w.h.p. has a Hamiltonian Berge cycle. Grn(1-out)
w.h.p. does not have a Hamiltonian Berge cycle but does have a weak Hamiltonian Berge cycle.
G3n(2-out) w.h.p. has a Hamiltonian Berge cycle, whereas G3n(1-out) w.h.p. does not have a weak
Hamiltonian Berge cycle.

In Section 2 we prove that H(T2) w.h.p. has a Hamiltonian Berge cycle (Theorem 2 (ii)). In
Section 3 we sketch a proof that H(T1) w.h.p. contains a weak Hamiltonian Berge cycle (Theorem
2 (i)). In Section 4 we prove Theorem 4. Throughout, all logarithms are natural.

2 Stopping time result for Berge Hamiltonicity

Our proof is very close to the proof of the stopping time result for Hamiltonicity of ordinary random
graphs as presented by Krivelevich in [17]. We use the famous Pósa extension-rotation technique
and the concept of boosters. We start with a few definitions.

Definition 5. A hypergraph is a (k, α)-expander iff for all disjoint sets of vertices X and Y , if
|Y | < α|X| and |X| ≤ k, then there is an edge, e, such that |e ∩X| = 1 and e ∩ Y = ∅.
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Definition 6. For a hypergraph G, a booster is a non-edge of G such that either G∪e has a longer
(Berge) path than G or G ∪ e is (Berge) Hamiltonian.

2.1 Statements of Lemmas

The lemmas of this section can be summarized as follows.

(i) Non-Hamiltonian expansive hypergraphs have lots of boosters (Pósa rotations, Lemma 7)

(ii) H(T2) w.h.p. has a booster for each sparse expansive sub-hypergraph (Lemma 8)

(iii) H(T2) w.h.p. contains a sparse expansive sub-hypergraph (Lemmas 9, 10)

For the formal statements, we need a bit of notation. For any r-graph G, let

SMALL(G) := {v : d(v) ≤ ε log(n)}

for ε > 0 small, to be determined. We also define a random subgraph Γ0 ⊂ G as follows. Every
vertex v 6∈ SMALL(G) chooses a subset Ev of ε log n many edges uniformly at random from the
set of all edges incident to v. For every v ∈ SMALL(G), let Ev be the set of all edges incident to
v. Then the edge set of Γ0 is defined as E(Γ0) :=

⋃
v Ev.

Lemma 7. There exists a constant cr > 0 such that if G is a connected (k, 2)-expander r-graph on
at least r + 1 vertices, then G is Hamiltonian, or it has at least k2nr−2cr boosters.

Lemma 8. Let G = H(T2). Then w.h.p. if Γ ⊆ G is any (n/4, 2)-expander with |E(Γ)| ≤
ε log(n)n+ n, then Γ is Hamiltonian or G has at least one booster edge of Γ.

Lemma 9. Let G = H(T2). Then w.h.p. G has the following properties:

(P1) ∆(G) ≤ 10 log(n)

(P2) |SMALL(G)| ≤ n.9

(P3) Let N = {v ∈ [n] : ∃e ∈ E(G), v ∈ e, SMALL(G) ∩ e 6= ∅}. No edge meets SMALL(G)
more than once, and no u /∈ SMALL(G) lies in more than one edge meeting N \ {u}.

(P4) If U ⊆ [n] has size at most |U | ≤ n

log(n)1/2
, then there are at most |U | log(n)3/4 edges of G

that meet U more than once

(P5) for every pair of disjoint vertex sets U,W of sizes |U | ≤ n

log(n)1/2
and |W | ≤ |U | log(n)1/4,

there are at most
ε log(n)|U |

2
edges of G meeting U exactly once and also meeting W

(P6) for every pair of disjoint vertex sets U,W of sizes |U | = n

log(n)1/2
and |W | = n/4, there are

at least n log(n)1/3 edges of G meeting U exactly once and W exactly r − 1 times.

With high probability (over the choices of Ev), Γ0 also has the property

(P7) for every pair of disjoint vertex sets U,W of sizes |U | =
n

log(n)1/2
and |W | = n/4, there is

at least one edge in Γ0 meeting U exactly once and W exactly r − 1 times.

Lemma 10. Deterministically, if Γ0 ⊂ G satisfies δ(Γ0) ≥ 2 and (P3), (P4), (P5), and (P7), then
Γ0 is a connected (n/4, 2)-expander.
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2.2 Why we’re done modulo proofs of the above

Proof of Theorem 2 (ii). Let G = H(T2) and let Γ0 ⊂ G be defined as above and consider the w.h.p.
event that G and Γ0 satisfy the conclusions of Lemmas 8 and 9. By definition, |E(Γ0)| ≤ εn log n
and by Lemma 10, Γ0 is a connected (n/4, 2)-expander. Now we start with Γ0 and iteratively add
boosters until we arrive at a Hamiltonian hypergraph. Clearly this cannot be repeated more than
n times as the length of the longest path increases at each step. Also since at each step we have
an (n/4, 2)-expander with at most εn log n + n many edges, Lemma 8 guarantees the existence of
a Hamiltonian cycle or a booster to add.

2.3 Proofs of Lemmas

Proof of Lemma 7. Suppose G is a connected (k, 2)-expander on at least r+ 1 vertices and suppose
G is not Hamiltonian. We will prove the lemma by first showing that every pair (u, v) of endpoints
of a longest path gives rise to many boosters. Then, using Pósa rotations, we will show that there
are many such pairs (u, v). Finally we will combine the above estimates to conclude that there are
many boosters in total.

Let P = v1, v2, . . . , vm be a longest path in G and suppose its endpoints are u and v. If e is
an edge of the hypergraph not contained in P , then we cannot have {u, v} ⊆ e. Otherwise, if P
already contains all the vertices this would be a Hamiltonian cycle. If P does not contain all the
vertices, then let x be a vertex not on P . Since the graph is connected, there is a path from x to the
cycle P + e. The last step of this path must be of the form u ∼ vj for some vertex vj and some u
not in the path. But then we have a longer path by including this edge and u (and deleting at most
one edge of P + e to use when connecting u to this cycle). Thus, for each pair (u, v) of endpoints
of a longest path, there are at least

(
n−2
r−2
)
− (n − 1) booster edges containing u and v (where the

“−(n− 1)” is to avoid counting any edges already contained in the path).
Now let P = v1, v2, . . . , vm be any longest path in G. Suppose e is an edge containing vm.
Case I: suppose e is not involved in the path. Then e cannot contain any vertices outside of P

or else we could add that to get a longer path. Say vm 6= vj ∈ e. Then we can add e to our path
and delete the edge vj ∼ vj+1 to obtain a new path P ′ = v1, v2, . . . , vj , vm, vm−1, vm−2, . . . , vj+1.
Such a move is called a rotation.

Case II: suppose e is involved in the path, and say e is needed to connected vi to vi+1. Then
we can replace this path via another rotation P ′ = v1, v2, . . . , vi, vm, vm−1, . . . , vi+1. (If vi+1 = vm
then this rotation actually didn’t do anything.) Note that in this case, E(P ) = E(P ′).

v1 v2 vj vj+1 vm−1 vm

v1 v2 vj vj+1 vm−1 vm

P

P ′

e1 ej

e

e1 ej

e

Figure 1: A rotation as in Case I. Note that in this figure, edges are only shown to contain 2 vertices
for the sake of clarity. In reality, each edge contains r vertices, all of which lie on the path by the
maximality assumption. In Case II, the picture is almost the same but, ej and e are the same edge.

For fixed vertex v1 and initial path P , let R = R(v1) be the vertices that could possibly appear
as right endpoints starting with P and doing rotations. Let R± = {vi : {vi−1, vi+1} ∩R 6= ∅} (with
vertices numbered as in initial path).

If e is an edge containing some x ∈ R then e must meet R± in at least one vertex other
than x. Therefore, any edge satisfying |e ∩ R| = 1, must have e ∩ (R± \ R) 6= ∅. Furthermore,
|R± \ R| ≤ |R±| < 2|R| (with strict inequality since every element of R has at most 2 neighbors
except for the rightmost, which has only 1). If |R| ≤ k, this would contradict the (k, 2)-expansiveness
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of G (using X = R and Y = R \R±). Thus we have |R| > k. So for each vertex that can be chosen
as a left endpoint of a longest path, there are at least k right endpoints we can have. Then fixing
any of these right endpoints and applying the same argument, we have at least k left endpoints.
Thus there are at least k2 pairs (u, v) which appear as endpoints of longest paths.

Summing over all choices of (u, v) (at least k2) and using the fact that each non-edge is counted
at most r · (r − 1) many times in this way, we have

#(boosters) ≥ 1

r · (r − 1)
· k2

[(
n− 2

r − 2

)
− (n− 1)

]
.

In the case r = 3, the (n − 1) term can be replaced by 2 since there are at most two edges used
in the path that also contain {u, v}. In either event, we obtain #(boosters) ≥ k2nr−2cr for some
constant cr > 0.

The proofs of Lemmas 8 and 9 are very similar to those which appear in Krivelevich [17],
Alon-Krivelevich [2] and Devlin-Kahn [9]. Thus we have deferred their proofs to the Appendix.

Proof of Lemma 10. Let S be a subset of [n], and say S1 = S ∩ SMALL(G) and S2 = S \ S1.
Case I: Suppose n/4 ≥ |S| ≥ n/ log(n)1/2. Let Y be a set disjoint from S such that Y covers S

(i.e., every edge meeting S exactly once also meets Y ) and |Y | < 2|S|. Then let W = [n] \ (S ∪ Y ),
then (because |S| ≤ n/4), we have |W | ≥ n/4. But (P7) implies [after fist making S and W smaller
as needed] that there’s an edge meeting S exactly once and W in r − 1 spots, a contradiction.

Case II: Suppose |S| ≤ n/ log(n)1/2. Suppose Y is a set disjoint from S such that Y covers S
and |Y | < 2|S|. Say Y1 = Y ∩N(SMALL) (i.e., each vertex of Y1 is adjacent to something in S1),
and let Y2 = Y \ Y1.

Then Y1 ∪ S2 covers S1 and Y ∪ S1 covers S2 Because Y1 ∪ S2 covers S1, we have

|Y1 ∪ S2| ≥ 2|S1|

because the edges of S1 are sufficiently spread out by (P3), and each vertex is on at least 2 edges.
Now by (P4) there are at least |S2|(ε log(n) − log(n)3/4) edges that intersect S2 exactly once.

And for each u ∈ S2, there is at most one edge through u meeting S1∪Y1 by (P3). Therefore, there
are at least |S2|(ε log(n) − log(n)3/4 − 1) edges meeting S2 exactly once and not meeting S1 ∪ Y1
at all. So there are at least |S2|(ε log(n)− log(n)3/4 − 1) > |S2|ε log(n)/2 edges that hit S2 exactly
once and then also hit Y2. Therefore, by (P5) we have |Y2| ≥ |S2| log(n)1/4. So in total, we have

|Y | = |Y1|+ |Y2| ≥ |Y1 ∪ S2| − |S2|+ |Y2| ≥ 2|S1| − |S2|+ |S2| log(n)1/4 ≥ 2|S1|+ 2|S2|

again, a contradiction thereby completing Case II.
Finally, to see that Γ0 is connected, note that (n/4, 2)-expansive implies that Γ0 has no connected

component of size less than n/4. But then (P7) implies that any disjoint sets of size at least n/4
have an edge between them.

3 Weak Berge Hamiltonicity

In this section we prove Theorem 2 (i), i.e., that H(T1) w.h.p. contains a weak Hamiltonian Berge
cycle. This resolves a conjecture of Poole from [20]. The proof is almost the same as in the previous
section (and in fact, we can reuse most of the previous results). In this section we sketch the proof,
pointing out what changes when dealing with weak Hamiltonicity.

Proof sketch of Theorem 2 (i).
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Definition 11. A hypergraph is a weak (k, α)-expander iff the following happens. If X,Y are
disjoint subsets of vertices, |Y | < α|X|, and every edge meeting X is contained in X ∪ Y , then
|X| ≥ k.

Remark 12. We use the word “weak” here only to refer to weak Hamiltonicity. The notions of
weak expansive and expansive are incomparable. weak-(k, α)-expansive means for all |X| ≤ k, we
have α|X| ≤ |N(X) \X|.

In this section, the notion of “booster” now refers to an edge whose addition increases the length
of the longest weak Berge path or introduces a weak Hamiltonian Berge cycle. The corresponding
Lemmas in Section 2.1 and their proofs are virtually the same except for the following slight changes.

• Lemma 7: Use the weak notions of (k, 2)-expander and Hamiltonicity. For the proof, notice
that Case II of the proof of Lemma 7 doesn’t matter (we can reuse edges even if they’re
already in the path). So we see that every edge meeting R at some point v must be contained
in {v} ∪ R±. Thus, each edge meeting R is contained in R ∪ (R± \ R). We also know that
|R± \ R| ≤ |R±| < 2|R|, so by weak-expansion, we know |R| ≥ k. The rest of the proof
proceeds as before.

• Lemmas 8 and 9: In the statements, use G = H(T1) and the weak notions of expansion
and Hamiltonicity. The proofs remain unchanged.

• Lemma 10: For the statement, suppose δ(Γ0) ≥ 1 and the 4 conditions and conclude weak
expansion. The proof is exactly the same except for the statement “|Y1∪S2| ≥ 2|S1|.” In this
case, we know that every edge meeting S1 is contained in Y1∪S2∪S1. By (P3), we also know
that every edge meeting S1 intersects it exactly once and also that any two edges meeting S1

do not intersect outside of S1. And since δ(Γ0) ≥ 1, there are at least |S1| edges meeting S1,
and (by (P3)) the union of these edges is at least at least (r − 1)|S1| vertices outside of S1.
This gives us |Y1 ∪ S2| ≥ (r − 1)|S1| ≥ 2|S1| (since r ≥ 3), which is stronger than what is
needed anyway. The rest of the proof is identical.

In fact, this proof shows Γ0 satisfying the assumptions is a weak -(n/4, r− 1)-expander. (The
idea being that there’s a perfect matching covering SMALL(Γ0), and the rest of the graph is
extremely expansive.)

With these adapted Lemmas, we can finish the proof of Theorem 2 (i) in exactly the same fashion
as the proof of Theorem 2 (ii) in Section 2.2.

4 k-out model

Before proving Theorem 4, we prove the following, which shows that w.h.p. all the edges of Grn(k-out)
are distinct.

Lemma 13. For any fixed k and r ≥ 3, Grn(k-out) w.h.p. has exactly nk edges.

Proof. Suppose the edges chosen to form Grn(k-out) are labeled as e
(j)
v where v ∈ V and j ∈

{1, 2, . . . , k} so that Ev = {e(j)v : j}. If v 6= u and i, j are fixed, then P
(
e
(i)
v = e

(j)
u

)
is at most(

n−2
r−2
)
/
(
n−1
r−1
)2

. Therefore, the probability that there exist edges e
(i)
v = e

(j)
u with v 6= u is at most

(nk)2
(
n−2
r−2
)
/
(
n−1
r−1
)2

= O(n−r+2), which tends to 0 as n → ∞ since r > 2. The other possible type

of duplicate edge is e
(i)
v = e

(j)
v where i 6= j. The probability that there are two such edges that are

equal is at most nk2
(
n−1
r−1
)
/
(
n−1
r−1
)2

= O(n−r+1), which again tends to 0 as n → ∞. Thus w.h.p.
when r ≥ 3, all selected edges are distinct and the r-graph has exactly nk edges.

First we handle the case of (ordinary) Berge Hamiltonicity.

Theorem 14. For any fixed r ≥ 3, Grn(2-out) w.h.p. has a Hamiltonian Berge cycle, whereas
Grn(1-out) w.h.p. does not.
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Proof of Theorem 14. First we will show that for r ≥ 3, the graph Grn(2-out) w.h.p. has a Hamilto-
nian Berge cycle. Supposing H is selected from Grn(2-out), we construct a random directed graph
from H as follows. For each v, we randomly pick one edge of Ev and label it e−v , and we label
the other edge e+v . We then draw a directed arc from u to v for each u ∈ e−v \ {v} and we draw a
directed arc from v to w for each w ∈ e+v \ {v}. Let D be the directed graph obtained in this way.

The construction of D has the same distribution as the process where for each v we select r− 1
‘out’ neighbors of v and r − 1 ‘in’ neighbors of v. This process results in the (r − 1)-in, (r − 1)-
out random directed graph.For this model, Cooper and Frieze [8] proved that for each k ≥ 2 the
k-in, k-out directed graph is w.h.p. Hamiltonian. Thus, there is w.h.p. an ordering of the vertices
v1, . . . , vn such that (vi, vi+1) is an arc of D for all i (with indices viewed modulo n).

Each arc (u, v) of D corresponds to either e+u or e−v in H, so if we chose such an edge of H for
each arc (v1, v2), (v2, v3), . . . , (vn, v1), we cannot possibly choose the same edge twice unless there
are two distinct indices such that e±v = e±u . But by Lemma 13, w.h.p. all of these edges are distinct.
Thus, this directed Hamiltonian cycle in D w.h.p. corresponds to a Hamiltonian Berge cycle in H,
as desired.

On the other hand, Grn(1-out) w.h.p. has vertices contained in only one edge. This follows from
the fact that the expected number of such vertices tends to infinity and a standard second moment
argument (see, for example, Theorem 17.2 in [15]). Thus Grn(1-out) is not Hamiltonian.

Finally, we handle the case of weak Berge Hamiltonicity in k-out r-graphs.

Theorem 15. For any fixed r ≥ 4, Grn(1-out) w.h.p. has a weak Hamiltonian Berge cycle, whereas
G3n(1-out) w.h.p. does not.

Proof of Theorem 15. G3n(1-out) w.h.p. contains three distinct vertices of degree 1 which all share a
common neighbor. Again, this follows from the fact that the expected number of such configurations
tends to infinity and a standard second moment argument (see, for example, Exercise 8.4 in [6]).
So this graph w.h.p. is not Hamiltonian.

On the other hand, we can embed an (r − 1)-out graph in the 1-out r-graph. Namely, each
vertex x picks a hyper edge Sx, and we then include in our graph every edge of the form xy for y
in Sx . This gives us an (r − 1)-out graph, which has a Hamiltonian cycle when r ≥ 4 (see [4]). A
Hamiltonian cycle in this graph is a weak Hamiltonian Berge cycle in our hypergraph.
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A Proof of Lemma 8

Proof of Lemma 8. Let G(m) be the random hypergraph with m edges, and let M be the stopping
time for when G(m) has minimum degree at least 2. With high probability M ∈ [m1,m2] where
m1 = (n/r) log(n)/2 and m2 = 2(n/r) log(n).

Let N =
(
n
r

)
and γ = εn log n + n. Then by Lemma 7, any (n/4, 2)-expander has at least Nc′r

boosters (for some constant c′r). A union bound over M and over the choice of Γ (and |E(Γ)|) gives
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the probability that G contains some Γ but none of its boosters is at most

P(bad)− o(1) ≤
m2∑

m=m1

∑
i≤γ

(
N
i

)(
N−i−c′rN
m−i

)(
N
m

) ≤
m2∑

m=m1

∑
i≤γ

exp

[
−c′rN(m− i)

N − i

] (N
i

)(
N−i
m−i

)(
N
m

)
≤

m2∑
m=m1

∑
i≤γ

exp [−c′rm/100]

(
N

i

)(m
N

)i
≤

m2∑
m=m1

∑
i≤γ

exp [−c′rm/100]
(em
i

)i
≤

m2∑
m=m1

γ exp [−c′rm/100]

(
em

γ

)γ
= o(1)

(with the initial o(1) corresponding to M /∈ [m1,m2]).

B Proof of Lemma 9

Proof of Lemma 9. Each piece is straightforward and only involves tail bounds for binomial coeffi-
cients. In fact (P2) and (P3) are already proven in [9] (Lemma 5.1(c)). We will need the Chernoff
bound.

Chernoff: Say X ∼ Bin(N, p) and φ(x) = (1 + x) log(1 + x)− x. Say µ = Np and t ≥ 0. Then
we have

P(X ≥ µ+ t) ≤ exp [−µφ(t/µ)] . (1)

(P1) Let (u, S) be a vertex u ∈ [n] and a set of edges S of size |S| = t such that each contains
u. Then the expected number, X, of pairs (u, S) of this form where S ⊆ E(G) is

E[X] = n

((n−1
r−1
)

t

)
pt ≤ n

[(
n−1
r−1
)
e

t

]t
pt = n

[(
n−1
r−1
)
e

t

]t(
cr

log(n)(
n−1
r−1
) )t = n

[
ecr log(n)

t

]t
,

where cr ∈ (1/2, 2) (since w.h.p. T2 ∈ (m1,m2) as in Lemma 8). By choosing t = 10 log(n), we see
that this expectation tends to 0 and so w.h.p. there are no vertices of degree more than 10 log n.

(P2) and (P3) are both proven in [9].
(P4) Let U be fixed and |U | = u. Let X be the number of edges which meet U more than once.

Then X is stochastically dominated by a binomial random variable with p = cr log(n)/nr−1 and
N = c′r|U |2nr−2. So µ = Np = Cr log(n)u2/n, and set t = u log(n)3/4/2. Then (using µ = o(t))

P(X ≥ 2t) ≤ P(X ≥ µ+ t) ≤ exp

[
−Cr log(n)u2

n

(
n

2.1Cru log(n)1/4
log(n/(2Cru log(n)1/4))

)]
.

Taking a union bound over U with |U | = u and summing over u gives

P(not (P4)) ≤
∑
u

(
n

u

)
exp

[
−Cr log(n)u2

n

(
n

2.1Cru log(n)1/4
log(n/(2Cru log(n)1/4))

)]
≤

∑
u

(en/u)u exp

[
− log(n)3/4u

2.1
log(n/(2Cru log(n)1/4))

]
≤

∑
u

exp

[
u log(en/u)− log(n)3/4u

2.1
log(n/(2Cru log(n)1/4))

]
≤

∑
u

exp

[
−u log(n)3/4

20
log log(n)

]
= O

(
exp

[
− log(n)3/4

20
log log(n)

])
= o(1).

where the last line holds by summing the geometric series. From the second to last line to the last,
we lose some constant (absorbed in the ‘1/20’) to take care of the log(en/u) term (and others).
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(P5) For every pair of disjoint vertex sets U,W of sizes |U | ≤ n

log(n)1/2
and |W | ≤ |U | log(n)1/4,

there are at most
ε log(n)|U |

2
edges of G meeting U exactly once and also meeting W . Say U and W

are fixed and |U | = u and (wlog) |W | = u log(n)1/4. LetX be the number of edges meeting U exactly
once and also W . Then X is bounded above by a binomial with parameters p = cr log(n)/nr−1 and
N = |U ||W |nr−2. So µ = Np = cru

2 log(n)5/4/n, and set t = εu log(n)/4. Again using µ = o(t),
and taking a union bound over choices of U and W , we have

P(not (P5)) ≤
n/
√

log(n)∑
u=1

(
n

u

)(
n

u log(n)1/4

)
P(X ≥ 2t) ≤

n/
√

log(n)∑
u=1

(
n

u log(n)1/4

)2

P(X ≥ µ+ t)

≤
n/
√

log(n)∑
u=1

exp

[
2u log(n)1/4 log

(
n

u log(n)1/4

)
− εu log(n)

4.1
log

(
n

u log(n)1/4

)]

≤
n/
√

log(n)∑
u=1

exp

[
−εu log(n)

4.2
log

(
n

u log(n)1/4

)]
≤
n/
√

log(n)∑
u=1

exp

[
−εu log(n)

20
log log(n)

]

≤
∞∑
u=1

exp

[
−εu log(n)

20
log log(n)

]
= O

(
exp

[
−ε log(n)

20
log log(n)

])
= o(1).

(P6) Let U have size n/ log(n)1/2 and W have size n/4. Let X be the number of edges
meeting U exactly once and W exactly r − 1 times. Then X is a binomial random variable with
p = cr log(n)/nr−1 and N = |U ||W |r−1c′r = c′′rn

r/ log(n)1/2. So we have µ = Np = Crn
√

log(n)
and set t = n log(n)1/3. Now we need to use another part of Chernoff’s bound that P (X < µ− t) ≤
exp(−t2/(2µ)).

Then taking a union over U and W , we have

P(not (P6)) ≤
(

n

n/
√

log(n)

)(
n

n/4

)
P(X < t) ≤ 4nP(X ≤ µ− t) ≤ 4n exp

[
−t2

2µ

]
= exp

[
n log(4)− n2 log(n)2/3

2Crn log(n)1/2

]
= exp

[
n log(4)− n log(n)1/6

2Cr

]
= o(1).

(P7) We now consider Γ0, and analyze the probabilty that there exists a pair (U,W ) violating
(P7). Since G has (P3) and (P6) with high probability, the only way for (P7) to be violated is if
every edge of

⋃
u∈U eG(u,W ) is missing from Γ0. The probability of this event is bounded above

by

P(not (P7)) ≤ 4n
∏
u∈U

((dG(u)−eG(u,W )
ε log(n)

)(
dG(u)
ε log(n)

) )
≤ 4n

∏
u∈U

exp

[
−ε log(n)eG(u,W )

dG(u)

]

≤ exp

[
n log(4)− ε log(n)eG(U,W )

∆(G)

]
≤ exp

[
n log(4)− ε log(n)n log(n)1/3

∆(G)

]
= o(1),

where we used (P1) to conclude ∆(G) = o(log(n)4/3).
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