# HOMOMORPHISM THRESHOLDS FOR ODD CYCLES 

OLIVER EBSEN AND MATHIAS SCHACHT


#### Abstract

The interplay of minimum degree conditions and structural properties of large graphs with forbidden subgraphs is a central topic in extremal graph theory. For a given graph $F$ we define the homomorphism threshold as the infimum over all $\alpha \in[0,1]$ such that every $n$-vertex $F$-free graph $G$ with minimum degree at least $\alpha n$ has a homomorphic image $H$ of bounded order (i.e. independent of $n$ ), which is $F$-free as well. Without the restriction of $H$ being $F$-free we recover the definition of the chromatic threshold, which was determined for every graph $F$ by Allen et al. [Adv. Math. 235 (2013), 261-295]. The homomorphism threshold is less understood and we address the problem for odd cycles.


## §1. Introduction

Many questions in extremal graph theory concern the interplay of minimum degree conditions and structural properties of large graphs with forbidden subgraphs (see, e.g., [3, $4,20]$ ). For a family of graphs $\mathscr{F}$ and $\alpha \in[0,1]$ we consider the class $\mathscr{G}_{\mathscr{F}}(\alpha)$ of $\mathscr{F}$-free graphs $G$ with minimum degree at least $\alpha|V(G)|$, i.e.,

$$
\mathscr{G}_{\mathscr{F}}(\alpha)=\{G: \delta(G) \geqslant \alpha|V(G)| \text { and } F \ddagger G \text { for all } F \in \mathscr{F}\},
$$

and for $\mathscr{F}=\{F\}$ we simply write $\mathscr{G}_{F}(\alpha)$. Clearly, $\mathscr{G}_{\mathscr{F}}(0)$ contains all $\mathscr{F}$-free graphs and as $\alpha$ increases the membership in $\mathscr{G}_{\mathscr{F}}(\alpha)$ becomes more restrictive. When $\alpha$ is bigger than the Turán density $\pi(\mathscr{F})$, then $\mathscr{G}_{\mathscr{F}}(\alpha)$ contains only finitely many different isomorphism types. We are interested in structural properties of members of $G \in \mathscr{G}_{\mathscr{F}}(\alpha)$ as $\alpha$ moves from $\pi(\mathscr{F})$ to 0 , where structural properties are captured by the existence of (graph) homomorphims $G \xrightarrow{\text { hom }} H$ for some 'small' graph $H$.

We begin the discussion with the case of requiring bounded chromatic number, i.e., when $H$ is allowed to be a clique of bounded size (independent of $G$ ). In that direction, for $\mathcal{F}=\left\{K_{3}\right\}$, Erdős, Simonovits, and Hajnal [7, page 325] showed that for every $\varepsilon>0$ there exists a sequence of graphs $\left(G_{n}\right)_{n \in \mathbb{N}}$ with members from $\mathscr{G}_{K_{3}}\left(\frac{1}{3}-\varepsilon\right)$ with unbounded chromatic number, i.e., $\chi\left(G_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. In the other direction, Erdős and Simonovits conjectured that such a sequence does not exist with members from $\mathscr{G}_{K_{3}}\left(\frac{1}{3}+\varepsilon\right)$. Moving

2010 Mathematics Subject Classification. 05C35 (05C07, 05C15, 05D40).
Key words and phrases. extremal graph theory, odd cycles, homomorphism threshold.
The second author is supported by ERC Consolidator Grant 724903.
away from the triangle to arbitrary graphs $F$ (or more generally to families of graphs $\mathscr{F}$ ) this leads to the concept of the chromatic threshold defined by
$\delta_{\chi}(\mathscr{F})=\inf \left\{\alpha \in[0,1]:\right.$ there is $K=K(\mathscr{F}, \alpha)$ such that $\chi(G) \leqslant K$ for every $\left.G \in \mathscr{G}_{\mathscr{F}}(\alpha)\right\}$ and we simply write $\delta_{\chi}(F)$ for $\delta_{\chi}(\{F\})$. The work of Erdős, Simonovits, and Hajnal then asserts $\delta_{\chi}\left(K_{3}\right) \geqslant 1 / 3$ and Erdős and Simonovits asked for a matching upper bound. Such an upper bound was provided by Thomassen [18] and, therefore, we have

$$
\begin{equation*}
\delta_{\chi}\left(K_{3}\right)=\frac{1}{3} . \tag{1.1}
\end{equation*}
$$

Addressing another conjecture of Erdős and Simonovits from [7] concerning the chromatic threshold of $C_{5}$, it was also shown by Thomassen [19] that for all odd cycles of length at least 5 the chromatic threshold is zero, i.e., $\delta_{\chi}\left(C_{2 k-1}\right)=0$ for all $k \geqslant 3$. For larger cliques (1.1) generalises to $\delta_{\chi}\left(K_{k}\right)=\frac{2 k-5}{2 k-3}$ for all $k \geqslant 3$ (see [8, 16]). Extending earlier work of Łuczak and Thomassé [14] and of Lyle [15], eventually Allen, Böttcher, Griffiths, Kohayakawa, and Morris [1] resolved the general problem and determined the chromatic threshold $\delta_{\chi}(\mathscr{F})$ for every finite family of graphs $\mathscr{F}$.

In the definition of the chromatic threshold $\delta_{\chi}(\mathscr{F})$ we are concerned with the existence of a small homomorphic image $H$ for every $G \in \mathscr{G}_{\mathscr{F}}(\alpha)$ with $\alpha>\delta_{\chi}(\mathscr{F})$. However, since we allowed $H$ to be a clique, the homomorphic image is not required to be $\mathscr{F}$-free itself. Adding this additional restriction leads to the following definition, where $H$ is required to be $\mathscr{F}$-free as well.

Definition 1.1. For a family of graphs $\mathscr{F}$ we define its homomorphism threshold

$$
\begin{aligned}
\delta_{\text {hom }}(\mathscr{F})=\inf \{\alpha \in[0,1]: \text { there is an } \mathscr{F} \text {-free graph } H=H(\mathscr{F}, \alpha) \\
\text { such that } \left.G \xrightarrow{\text { hom }} H \text { for every } G \in \mathscr{G}_{\mathscr{F}}(\alpha)\right\} .
\end{aligned}
$$

If $\mathscr{F}=\{F\}$ consists of a single graph only, then we again simply write $\delta_{\text {hom }}(F)$.
It follows directly from the definition that

$$
\pi(\mathscr{F}) \geqslant \delta_{\text {hom }}(\mathscr{F}) \geqslant \delta_{\chi}(\mathscr{F})
$$

and that $\delta_{\text {hom }}(\mathscr{F})=0$ for all families $\mathscr{F}$ containing a bipartite graph. Łuczak [13] was the first to study the homomorphism threshold and strengthened (1.1) by showing that $\delta_{\text {hom }}\left(K_{3}\right)=\delta_{\chi}\left(K_{3}\right)=1 / 3$. This was extended to larger cliques by Goddard and Lyle [8] and Nikiforov [16] (see also [17]) and for every $k \geqslant 3$ we have

$$
\begin{equation*}
\delta_{\mathrm{hom}}\left(K_{k}\right)=\delta_{\chi}\left(K_{k}\right)=\frac{2 k-5}{2 k-3} . \tag{1.2}
\end{equation*}
$$

A first step of generalising Łuczak's result by viewing $K_{3}$ as the shortest odd cycle, was recently undertaken by Letzter and Snyder [12] by showing

$$
\delta_{\text {hom }}\left(C_{5}\right) \leqslant \frac{1}{5} \quad \text { and } \quad \delta_{\text {hom }}\left(\left\{C_{3}, C_{5}\right\}\right)=\frac{1}{5}
$$

We further generalise this result to (families of) cycles of arbitrary odd length and present the following result.

Theorem 1.2. For every integer $k \geqslant 3$ we have
(i) $\delta_{\text {hom }}\left(C_{2 k-1}\right) \leqslant \frac{1}{2 k-1}$ and
(ii) $\delta_{\text {hom }}\left(\mathscr{C}_{2 k-1}\right)=\frac{1}{2 k-1}$, where the family $\mathscr{C}_{2 k-1}=\left\{C_{3}, C_{5}, \ldots, C_{2 k-1}\right\}$ consists of all odd cycles of length at most $2 k-1$.

Note that for $k=2$ part ( $i i$ ) of Theorem 1.2 would include part ( $i$ ) and this is Łuczak's theorem [13]. For $k=3$ Theorem 1.2 was obtained by Letzter and Snyder [12]. We remark that our approach substantially differs from the work of Łuczak and of Letzter and Snyder. For example, Łuczak's proof relied on Szemerédi's regularity lemma, which is not required here. Moreover, the proof of Letzter and Snyder is based on a careful case analysis, which yields explicit graphs $H=H\left(C_{5}, \alpha\right)$ for every $\alpha>1 / 5$ (see Section 5 for more details).

The lower bound in part ( $i i$ ) of Theorem 1.2 is given by a sequence of generalised Andrásfai graphs, which we discuss in Section 2. For the proof of the upper bound of part ( $i$ ) we exclude relatively long odd cycles in $C_{2 k-1}$-free graphs with high minimum degree and we specify and prove such a result in Section 3. The proofs of both upper bounds in Theorem 1.2 then follow in Section 4.

## §2. Generalised Andrásfai graphs

In this section we establish the lower bound of part (ii) of Theorem 1.2, which will be given by a sequence of so-called generalised Andrásfai graphs. For $k=2$ those graphs already appeared in the work of Erdős [5] and were also considered by Andrásfai [2, 3].
Definition 2.1. For every integer $k \geqslant 2$ we define the class $\mathscr{A}_{k}$ of Andrásfai graphs consisting of all graphs $G=(V, E)$, where $V$ is a finite subset of the unit circle $\mathbb{R} / \mathbb{Z}$ and two vertices are adjacent if and only if their distance in $\mathbb{R} / \mathbb{Z}$ is bigger than $\frac{k-1}{2 k-1}$, i.e., the neighbourhood of any vertex $v \in V \subseteq \mathbb{R} / \mathbb{Z}$ is given by the set $V \cap\left(v+\left(\frac{k-1}{2 k-1}, \frac{k}{2 k-1}\right)\right)$, where

$$
v+\left(\frac{k-1}{2 k-1}, \frac{k}{2 k-1}\right)=\left\{v+x: x \in\left(\frac{k-1}{2 k-1}, \frac{k}{2 k-1}\right)\right\} \subseteq \mathbb{R} / \mathbb{Z} .
$$

Moreover, for integers $k \geqslant 2$ and $r \geqslant 1$ the Andrásfai graph $A_{k, r}$ is isomorphic to a graph from $\mathscr{A}_{k}$ having the corners of a regular $((2 k-1)(r-1)+2)$-gon as its vertices.

We remark that one can show that every graph $G \in \mathscr{A}_{k}$ is homomorphic to $A_{k, r}$ for sufficiently large $r$. The following properties of Andrásfai graphs are well-known and we include the proof for completeness.

Proposition 2.2. For all integers $k \geqslant 2$ and $r \geqslant 1$ the following properties hold
(a) $A_{k, r}$ is $r$-regular,
(b) $A_{k, r}$ is $\mathscr{C}_{2 k-1}-$ free,
(c) if $r \geqslant 2$ then any two vertices of $A_{k, r}$ are contained in a cycle of length $2 k+1$, and
(d) if $A_{k, r} \xrightarrow{\text { hom }} H$ for some graph $H$ with $|V(H)|<\left|V\left(A_{k, r}\right)\right|$, then $H$ contains an odd cycle of length at most $2 k-1$.
In particular, it follows from $(a),\left|V\left(A_{k, r}\right)\right|=(2 k-1)(r-1)+2$, (b), and (d) that $\delta_{\text {hom }}\left(\mathscr{C}_{2 k-1}\right) \geqslant \frac{1}{2 k-1}$. As $r$ can be chosen arbitrarily big.

Proof. For given integers $k \geqslant 2$ and $r \geqslant 1$ set

$$
n=\left|V\left(A_{k, r}\right)\right|=(2 k-1)(r-1)+2
$$

and let $v_{0}, \ldots, v_{n-1}$ be the vertices of $A_{k, r}$ in cyclic order, i.e., we assume $v_{i} \equiv i / n \in \mathbb{R} / \mathbb{Z}$ for every $i=0, \ldots, n-1$. By definition of $A_{k, r}$ the neighbourhood of $v_{0}$ is contained in the open interval $\left(\frac{k-1}{2 k-1}, \frac{k}{2 k-1}\right) \subseteq \mathbb{R} / \mathbb{Z}$. Consequently,

$$
\begin{equation*}
N\left(v_{0}\right)=\left\{v_{i}: i=(k-1)(r-1)+1, \ldots, k(r-1)+1\right\} \tag{2.1}
\end{equation*}
$$

and part ( $a$ ) follows by symmetry.
For part (b) we observe that for any closed walk $u_{1} \ldots u_{\ell} u_{1}$ of length $\ell$ in $A_{k, r}$ we have $\left(u_{\ell}-u_{1}\right)+\sum_{i=1}^{\ell-1}\left(u_{i}-u_{i+1}\right)=0$ and owing to the definition of $A_{k, r}$ each term of that sum lies in $\left(\frac{k-1}{2 k-1}, \frac{k}{2 k-1}\right) \subseteq \mathbb{R} / \mathbb{Z}$. However, for every integer $j=2, \ldots, k$ we have

$$
(j-1) \leqslant(2 j-1) \frac{k-1}{2 k-1}<(2 j-1) \frac{k}{2 k-1} \leqslant j
$$

Consequently, $\left(u_{\ell}-u_{1}\right)+\sum_{i=1}^{\ell-1}\left(u_{i}-u_{i+1}\right) \in(j-1, j)$. Since $0 \notin(j-1, j)$, no walk in $A_{k, r}$ of length $2 j-1$ for $j \leqslant k$ can be closed and part (b) follows.

For part ( $c$ ) we show below that starting in $u_{0}=v_{0}$ and always choosing the closest clockwise neighbour in $A_{k, r}$, i.e., setting

$$
\begin{equation*}
u_{j} \equiv u_{j-1}+\frac{(k-1)(r-1)+1}{n} \equiv j \frac{(k-1)(r-1)+1}{n} \in \mathbb{R} / \mathbb{Z} \tag{2.2}
\end{equation*}
$$

defines a Hamiltonian cycle $C=u_{0} \ldots u_{n-1} u_{0}$ with the property that

$$
u_{1}, \quad u_{(2 k-1)+1}, \quad u_{2(2 k-1)+1}, \quad \ldots, \quad u_{(r-1)(2 k-1)+1}=u_{n-1}
$$

are the $r$ neighbours of $u_{0}=v_{0}$ in $A_{k, r}$. In other words, every $(2 k-1)$-th vertex on the subpath $u_{1} \ldots u_{n-1}$ of the Hamiltonian cycle $C$ is a neighbour of $u_{0}$. Considering the $C_{2 k+1}$ 's
created by the chords between $u_{0}$ and its neighbours $u_{(2 k-1)+1}, \ldots, u_{(r-2)(2 k-1)+1}$ shows that $u_{0}=v_{0}$ lies on a cycle of length $2 k+1$ with every other vertex of $A_{k, \ell}$, which by symmetry verifies part ( $c$ ).

It is left to show that the $C$ defined above, has the desired properties, i.e. is Hamiltonian with the stated distribution of $N\left(v_{0}\right)$. It follows from the definition of $C$ that $u_{n-1} u_{0}$ and $u_{i} u_{i+1}$ are edges of $A_{k, r}$ for every $i=0, \ldots, n-2$ and, hence, $C$ is a closed walk of length $n$. However, since

$$
n=(2 k-1)(r-1)+2=2((k-1)(r-1)+1)+(r-1)
$$

and $(k-1)(r-1)+1$ are relatively prime, it follows that $C$ is indeed a Hamiltonian cycle. Moreover, we observe for $s=0, \ldots, r-1$ that

$$
\begin{aligned}
u_{s(2 k-1)+1} & \stackrel{(2.2)}{\equiv}(s(2 k-1)+1) \frac{(k-1)(r-1)+1}{n} \\
& \equiv(s(2 k-1)+1) \frac{(k-1)(r-1)+1}{(2 k-1)(r-1)+2} \\
& \equiv \frac{(k-1)(r-1)+1+s}{(2 k-1)(r-1)+2}+s(k-1) \\
& \equiv \frac{(k-1)(r-1)+1+s}{n} \equiv v_{(k-1)(r-1)+1+s} \stackrel{(2.1)}{\epsilon} N\left(v_{0}\right),
\end{aligned}
$$

which shows the stated distribution of $N\left(v_{0}\right)$ on $C$.
Finally, assertion (d) is a direct consequence of part (c). Suppose $\varphi: A_{k, r} \rightarrow H$ is a graph homomorphism with $|V(H)|<n$. Then there are two vertices $x, y \in V\left(A_{k, r}\right)$ such that $\varphi(x)=\varphi(y)$. In particular $x y \notin E\left(A_{k, r}\right)$ and in view of $(c)$ the vertex $\varphi(x)=\varphi(y)$ must be contained in a closed odd walk of length at most $2 k-1$ in $H$ and, consequently, $H$ contains an odd cycle of length at most $2 k-1$.

## §3. Dense graphs without odd cycles

In this section we collect a few observation on local properties of graphs with high minimum degree and without an odd cycle of given length.

The main result of this section is the proof of Proposition 3.5, which gives some structural information on such graphs by excluding long odd cycles and pairs of odd cycles connected by a path of length 4 .

We remark that in the following lemmas and in Proposition 3.5 the additional $\varepsilon n$ term in the minimum degree condition could be replaced by some polynomial in $k$. However, since we do not strive for the optimal condition in these auxiliary results, we chose to state them with the same assumption as in Theorem 1.2. We also remark that by the length of a path or more generally the length of a walk, we refer to the number of edges, where
each edge is counted with its multiplicity. In particular, we denote by $P_{r}$ the path on $r+1$ vertices.

Lemma 3.1. Let $k \geqslant 2, \varepsilon>0$, and let $G=(V, E)$ be a $C_{2 k-1}$-free graph satisfying $|V|=n \geqslant 4 k / \varepsilon$ and $\delta(G) \geqslant\left(\frac{1}{2 k-1}+\varepsilon\right) n$.
(i) For every vertex $v \in V$ we have $d(M):=2 e(M) /|M|<2 k$ for all $M \subseteq N(v)$.
(ii) For every two vertices $v, u \in V$, if there is an odd $v$-u-path of length at most $2 k-3$ in $G$, then $u$ and $v$ have less than $5 k^{2}$ common neighbours in $G$.

In the proof of Lemma 3.1 we will use the following consequence of the Erdős-Gallai theorem on paths [6], also stated in (ii), as well as Theorem 1 of (ii).

Theorem 3.2. (Erdős \& Gallai 1959)
(i) Let $G$ be an n-vertex graph. If $e(G) \geqslant \frac{1}{2} k n$, then $G$ contains a path with $k$ vertices.
(ii) Let $G=(A, B, E)$ be a bipartite graph with $|A| \geqslant|B| \geqslant k$. If e $(A, B)>(|A|+|B|) k$, then $G$ contains an even path of length $k$.

Proof. Assertion (i) is a direct consequence of Theorem 3.2 ( $i$ ). Indeed, it implies that $d(M) \geqslant 2 k$ yields a copy of $P_{2 k-3}$ in $M \subseteq N(v)$, which together with $v$ would form a cycle $C_{2 k-1}$ in $G$.

For the proof of (ii) assume for a contradiction that $|N(v) \cap N(u)| \geqslant 5 k^{2}$, and there is an odd $v$-u-path $P$ of length at most $2 k-3$. Let $A^{\prime}=(N(v) \cap N(u)) \backslash V(P)$, clearly, $\left|A^{\prime}\right| \geqslant 4 k^{2}$ so let $A \subseteq A^{\prime}$ be a subset of $A^{\prime}$ with exaktly $4 k^{2}$ vertices and $B=N(A) \backslash(A \cup V(P))$. Since every vertex in $A$ has at most $2 k-2<2 k$ neighbours in $P$ we have

$$
e(A, B) \geqslant|A| \cdot \delta(G)-2 e(A)-|A| \cdot 2 k \stackrel{(i)}{>}|A|\left(\frac{1}{2 k-1} n+\varepsilon n-4 k\right) \geqslant \frac{4 k^{2}}{2 k-1} n>2 k \cdot n .
$$

Consequently, $|B|>2 k$ and Theorem 3.2 (ii) yields a $P_{2 k-2}$ in $G[A, B]$ and, hence, for every $\ell \in[k-2]$ there exists a $P_{2 \ell}$ in $G[A, B]$ with end vertices in $A$. Together with the path $P$ this yields a cycle $C_{2 k-1}$ in $G$, which is a contradiction to the assumption that $G$ is $C_{2 k-1}$-free.

Lemma 3.1 yields the following corollary, which asserts that the first and the second neighbourhoods of a short odd cycle cover the "right" proportion of vertices.

Lemma 3.3. Let $k \geqslant 2, \varepsilon>0$, and let $G=(V, E)$ be a $C_{2 k-1}$-free graph satisfying $|V|=n \geqslant 20 k^{3} / \varepsilon$ and $\delta(G) \geqslant\left(\frac{1}{2 k-1}+\varepsilon\right) n$. If $C=c_{1} \ldots c_{\ell} c_{1}$ is an odd cycle of length $\ell<2 k-1$ in $G$, then for every $i \in[\ell]$ there are subsets $M_{i} \subseteq N\left(c_{i}\right) \backslash V(C)$, vertices $m_{i} \in M_{i}$, and subsets $L_{i} \subseteq N\left(m_{i}\right) \backslash V(C)$ such that the sets $M_{1}, \ldots, M_{\ell}, L_{1}, \ldots, L_{\ell}$ are mutually disjoint and each of those sets contains at least $\frac{1}{2 k-1} n$ vertices.

Proof. Let $C=c_{1} \ldots c_{\ell} c_{1}$ be an odd cycle of length $l$ in $G=(V, E)$, where $l<2 k-1$. Since there is a path of odd length at most $\ell-2<2 k-3$ between any two vertices of $C$, Lemma 3.1 (ii) tells us, that $\left|N\left(c_{i}\right) \cap N\left(c_{j}\right)\right|<5 k^{2}$ for all distinct $i, j \in[\ell]$. Consequently, we may discard up to at most $(\ell-1) \cdot 5 k^{2}+\ell<10 k^{3}$ vertices from the neighbourhoods $N\left(c_{i}\right)$ and obtain mutually disjoint sets $M_{i} \subseteq N\left(c_{i}\right) \backslash V(C)$ of size at least

$$
\delta(G)-10 k^{3} \geqslant \frac{1}{2 k-1} n+\varepsilon n-10 k^{3}>\frac{1}{2 k-1} n .
$$

For every $i \in[\ell]$ fix an arbitrary vertex $m_{i} \in M_{i}$. Since there is a path of odd length at most $\ell-2<2 k-3$ between any two vertices of $C$, there is a path of odd length at most $(\ell-2)+2=\ell \leqslant 2 k-3$ between any two vertices $m_{i}$ and $m_{j}$. Again we infer from Lemma 3.1 (ii) that $\left|N\left(m_{i}\right) \cap N\left(m_{j}\right)\right|<5 k^{2}$ for all distinct $i, j \in[\ell]$ and in the same way as before, we obtain mutually disjoint sets $L_{i}^{\prime} \subseteq N\left(m_{i}\right) \backslash V(C)$ of size at least $\delta(G)-10 k^{3}$.

Furthermore, since there also is a path of even length at most $\ell-1<2 k-3$ between any two (not necessarily distinct) vertices of $C$, there is a path of odd length at most $(\ell-1)+1=\ell \leqslant 2 k-3$ between any pair of vertices $c_{i}$ and $m_{j}$. Again Lemma 3.1 (ii) implies that $\left|N\left(c_{i}\right) \cap N\left(m_{j}\right)\right|<5 k^{2}$ for all $i, j \in[\ell]$ and discarding at most $\ell \cdot 5 k^{2}<10 k^{3}$ vertices from each $L_{i}^{\prime}$ yields sets $L_{i} \subseteq N\left(m_{i}\right)$ such that $M_{1}, \ldots, M_{\ell}, L_{1}, \ldots, L_{\ell}$ are mutually disjoint and disjoint from $V(C)$. Moreover, the assumption $n \geqslant 20 k^{3} / \varepsilon$ implies

$$
\left|L_{i}\right| \geqslant\left|L_{i}^{\prime}\right|-10 k^{3} \geqslant \delta(G)-20 k^{3} \geqslant \frac{1}{2 k-1} n+\varepsilon n-20 k^{3} \geqslant \frac{1}{2 k-1} n
$$

which concludes the proof of the lemma.
In the proof of part $(i)$ of Theorem 1.2 it will be useful to exclude the graphs described in Definition 3.4 as subgraphs of a $C_{2 k-1}$-free graph of sufficiently high minimum degree.

Definition 3.4. We denote by $D_{\ell}$ the graph on $2 \ell+3$ vertices that consist of two disjoint cycles of length $\ell$ and a path of length 4 joining these two cycles, which is internally disjoint to both cycles.

The following proposition excludes the appearance of some short odd cycles and $D_{\ell}$ 's in the graphs $G$ considered in Theorem 1.2.

Proposition 3.5. Let $k \geqslant 2, \varepsilon>0$, and $G=(V, E)$ be a $C_{2 k-1}$-free graph satisfying $|V|=n \geqslant 20 k^{3} / \varepsilon$ and $\delta(G) \geqslant\left(\frac{1}{2 k-1}+\varepsilon\right) n$. Then
(i) $G$ is $C_{\ell}$-free for every odd $\ell$ with $k \leqslant \ell \leqslant 2 k-1$.
(ii) $G$ is $D_{\ell}$-free for every odd $\ell$ with $\max \{3,2 k-7\} \leqslant \ell \leqslant 2 k-1$.

Proof. Assertion ( $i$ ) is a direct consequence of Lemma 3.3, as the mutually disjoint sets $M_{1}, \ldots, M_{\ell}, L_{1}, \ldots, L_{\ell}$ would not fit into $V(G)$.

For the proof of assertion (ii) we assume for a contradiction that $G=(V, E)$ contains a subgraph $D_{\ell}$ for some odd $\ell$ with $\max \{3,2 k-7\} \leqslant \ell \leqslant 2 k-1$. Since the graph $D_{\ell}$ contain a cycle of length $\ell$, we immediately infer from part $(i)$, that we may assume $\ell<k$. Consequently, $k>\ell \geqslant 2 k-7$ implies $k \leqslant 6$ and owing to $k>\ell \geqslant \max \{3,2 k-7\}$ we see that the only remaining cases we have to consider are $(k, \ell) \in\{(4,3),(5,3),(6,5)\}$. We discuss each of the cases below.

Case $k=6$ and $\ell=5$. Let $C=c_{1} \ldots c_{5} c_{1}$ and $C^{\prime}=c_{1}^{\prime} \ldots c_{5}^{\prime} c_{1}^{\prime}$ be the two cycles of length 5 appearing in $D_{5} \subseteq G$ and suppose the path $P$ of length 4 connects $c_{1}$ and $c_{1}^{\prime}$. We observe that $c_{5}^{\prime}$ is connected to every vertex of $C$ by an odd path of length at most 9 , as seen in Figure 3.1. In fact, $Q=c_{5}^{\prime} P$ connects $c_{5}^{\prime}$ and $c_{1}$ by a path of length 5 and every other vertex of $C$ can be reached by an even path of length at most 4 from $c_{1}$.

Furthermore, $c_{5}^{\prime}$ is connected to every vertex in $N(C)$ by an odd path of length at most 9 . For the vertices in $N(C) \backslash N\left(c_{1}\right)$ we again follow the path $Q$ and since $c_{2}, c_{3}, c_{4}$, and $c_{5}$ can be reached by an odd path of length at most 3 from $c_{1}$, as seen in Figure 3.1, every vertex in $N(C) \backslash N\left(c_{1}\right)$ can be reached by an odd path of length at most $5+3+1=9$. For the vertices in $N\left(c_{1}\right)$ we utilise the path of length 4 from $c_{5}^{\prime}$ to $c_{1}^{\prime}$ in $C^{\prime}$. Continuing then along $P$ to $c_{1}$ shows that there are paths of length 9 connecting $c_{5}^{\prime}$ with every vertex in $N\left(c_{1}\right)$.

As $9=2 k-3$, we infer from Lemma 3.1 (ii) that $c_{5}^{\prime}$ has at most $10 \cdot\left(5 k^{2}+|Q|\right)<10 k^{3}$ neighbours in the sets $M_{1}, \ldots, M_{5}, L_{1}, \ldots, L_{5}$ given by Lemma 3.3 applied to $C$. However, since

$$
\left|M_{1} \cup \ldots \cup M_{5} \cup L_{1} \cup \ldots \cup L_{5}\right| \geqslant \frac{10}{11} n
$$

this implies $\operatorname{deg}\left(c_{5}^{\prime}\right) \leqslant \frac{n}{11}+10 k^{3}<\frac{n}{11}+\varepsilon n$ by the assumption that $n>20 k^{3} / \varepsilon$, which contradicts the minimum degree assumption on $G$ in this case.


Figure 3.1. An odd path of length 7 from $c_{5}^{\prime}$ to $c_{4}$ in red and an even path of length 8 from $c_{5}^{\prime}$ to $c_{4}$ in blue as used in the proof of case $k=6$ and $\ell=5$.

Case $k=5$ and $\ell=3$. Let $C=c_{1} c_{2} c_{3} c_{1}$ and $C^{\prime}=c_{1}^{\prime} c_{2}^{\prime} c_{3}^{\prime} c_{1}^{\prime}$ be the two triangles of $D_{3} \subseteq G$ and suppose the path of length 4 connects $c_{1}$ and $c_{1}^{\prime}$. Moreover, Lemma 3.3 applied with $C$ yields vertices $m_{1}, m_{2}, m_{3}$ and vertex sets $M_{1}, M_{2}, M_{3}$ and $L_{1}, L_{2}, L_{3}$. It is easy to check that $c_{2}^{\prime}$ and $c_{3}^{\prime}$ can reach each $c_{i}$ and $m_{i}$ for every $i \in[3]$ by an odd path of length at most $7=2 k-3$, as seen in Figure 3.2 on the left. In view of Lemma 3.1 (ii), and since $\left|N\left(c_{2}^{\prime}\right)\right|,\left|N\left(c_{3}^{\prime}\right)\right| \geqslant \delta(G) \geqslant n / 9$ it follows that

$$
\left|M_{1} \cup M_{2} \cup M_{3} \cup L_{1} \cup L_{2} \cup L_{3} \cup N\left(c_{2}^{\prime}\right) \cup N\left(c_{3}^{\prime}\right)\right| \geqslant \frac{8}{9} n .
$$

Consequently, we infer from $\left|N\left(c_{1}^{\prime}\right)\right| \geqslant \delta(G) \geqslant n / 9+\varepsilon n>n / 9+40 k^{2}$ that the vertex $c_{1}^{\prime}$ must have at least $5 k^{2}$ common neighbours with one of the eight vertices $c_{1}, c_{2}, c_{3}, m_{1}, m_{2}$, $m_{3}, c_{2}^{\prime}, c_{3}^{\prime}$. Since $c_{1}^{\prime}$ can be connected by an odd path of length at most 7 to all of these eight vertices but $c_{1}$, we infer that $c_{1}$ and $c_{1}^{\prime}$ have $5 k^{2}$ common neighbours and we can fix such a neighbour disjoint from $m_{1}, m_{2}, m_{3}, C$ and $C^{\prime}$. In other words, we found a graph $D_{3}^{\prime}$ consisting of $C, C^{\prime}$, and a path of length 2 between $c_{1}$ and $c_{1}^{\prime}$. Consequently, $c_{2}^{\prime}$ and $c_{3}^{\prime}$ are connected to each $c_{i}$ and each $m_{i}$ for every $i \in[3]$ by an odd path of length at most 5 . Hence, we can fix a neighbour $m_{2}^{\prime}$ of $c_{2}^{\prime}$, which can be connected to each $c_{i}$ and each $m_{i}$ for $i \in[3]$ and to $c_{2}^{\prime}$ and $c_{3}^{\prime}$ by an odd path of length at most 7 , as seen in Figure 3.2 on the right. In other words, any two of the 9 vertices from $c_{1}, c_{2}, c_{3}, m_{1}, m_{2}, m_{3}, c_{2}^{\prime}, c_{3}^{\prime}$ and $m_{2}^{\prime}$ are connected by an odd path of length at most 7 and thus have fewer than $5 k^{2}$ common neighbours by Lemma 3.1 (ii). However, since $\varepsilon n>40 k^{2}$ the minimum degree assumption implies that at least one of the former 8 vertices must have at least $5 k^{2}$ common neighbours with $m_{2}^{\prime}$.


Figure 3.2. On the left the graph $D_{3}$ of the case $k=5$ and $\ell=3$ where the vertex $c_{1}^{\prime}$ does not have enough neighbours, and on the right the graph $D_{3}^{\prime}$ where the vertex $m_{2}^{\prime}$ does not have enough neighbours.

Case $k=4$ and $\ell=3$. Again we consider the two triangles $C=c_{1} c_{2} c_{3} c_{1}$ and $C^{\prime}=c_{1}^{\prime} c_{2}^{\prime} c_{3}^{\prime} c_{1}^{\prime}$ of $D_{3} \subseteq G$ and assume $c_{1}$ and $c_{1}^{\prime}$ are connected by a path $c_{1} p_{1} p_{2} p_{3} c_{1}^{\prime}$ of length 4 . We consider the vertices $m_{1}, m_{2}, m_{3}$ and sets $M_{1}, M_{2}, M_{3}, L_{1}, L_{2}, L_{3}$ and $M_{1}^{\prime}, M_{2}^{\prime}, M_{3}^{\prime}$ given by Lemma 3.3 applied with $C$ and with $C^{\prime}$.

Note that there can only be one edge between a vertex of $C$ and a vertex of $C^{\prime}$, namely $c_{1} c_{1}^{\prime}$, otherwise there is a $C_{7}$ in $D_{3}$. Therefore, if there are vertices $c_{i}$ and $c_{j}^{\prime}$
with $i, j \in[3]$ such that they have at least two common neighbours, $G$ contains a graph $D_{3}^{\prime}$ consisting of $C, C^{\prime}$ and a path of length 2 between $c_{i}$ and $c_{j}^{\prime}$. By symmetry, we may assume $i=j=1$. However, in this case we see that $c_{2}^{\prime}$ is connected to $c_{1}, c_{2}, c_{3}$ and $m_{1}, m_{2}, m_{3}$ by an odd path of length at most 5, as seen in Figure 3.3 on the right. Since

$$
\left|M_{1} \cup M_{2} \cup M_{3} \cup L_{1} \cup L_{2} \cup L_{3}\right| \geqslant \frac{6}{7} n,
$$

the minimum degree assumption yields at least $(\varepsilon n-4) / 6 \geqslant 5 k^{2}$ common neighbours of $c_{2}^{\prime}$ and one of the vertices of $\left\{c_{1}, c_{2}, c_{3}, m_{1}, m_{2}, m_{3}\right\}$, which is a contradiction to Lemma 3.1 (ii).

Assuming that no two vertices of $C$ and $C^{\prime}$ have more than one common neighbour, we notice that $p_{1}$ can be connected to all three vertices of $C$ and to all three vertices of $C^{\prime}$ by an odd path of length at most $5=2 k-3$, as seen in Figure 3.3 on the left. Which implies that

$$
\left|M_{1} \cup M_{2} \cup M_{3} \cup M_{1}^{\prime} \cup M_{2}^{\prime} \cup M_{3}^{\prime}\right| \geqslant \frac{6}{7} n-9 .
$$

Consequently, the minimum degree assumption yields at least $(\varepsilon n-9-9) / 6 \geqslant 5 k^{2}$ common neighbours of $p_{1}$ and one of the vertices of $C_{1}$ or $C_{1}^{\prime}$, which is a contradiction to Lemma 3.1 (ii).


Figure 3.3. On the left the graph $D_{3}$ of the case $k=4$ and $\ell=3$ where the vertex $p_{1}$ does not have enough neighbours, and on the right the graph $D_{3}^{\prime}$ where the vertex $c_{2}^{\prime}$ does not have enough neighbours.

## §4. Upper bounds for Theorem 1.2

Proof of Theorem 1.2. We first prove assertion (i) of Theorem 1.2. Given a sufficiently large $C_{2 k-1}$-free $n$-vertex graph $G=(V, E)$ with $\delta(G) \geqslant\left(\frac{1}{2 k-1}+\varepsilon\right) n$ for $k \geqslant 3$ and $\varepsilon>0$, it suffices to show that there exists a $C_{2 k-1}$-free graph $H$ with $|V(H)| \leqslant K=K(k, \varepsilon)$ and $G \xrightarrow{\text { hom }} H$. The required graph $H\left(C_{2 k-1}, \alpha\right)$ for Definition 1.1 can then be taken to be the disjoint union of all non-isomorphic $C_{2 k-1}$-free graphs on $K$ vertices.

In particular, the constant $K$ must be independent of $n$. Without loss of generality we may assume that $2 / \varepsilon$ is an integer. In order to define $K$, consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$
with $x \mapsto x 2^{x}$ and set

$$
\begin{equation*}
m=\max \left\{\left\lceil\frac{2 \ln (3 / \varepsilon)}{\varepsilon^{2}}\right\rceil, 8 k^{2}\right\} \quad \text { and } \quad K=\underbrace{f \circ f \circ \cdots \circ f}_{2 k \text {-times }}\left((2 / \varepsilon+1)^{\binom{m}{4 k}}\right), \tag{4.1}
\end{equation*}
$$

i.e., $K$ is given by a $2(k+1)$-times iterated exponential function in $\operatorname{poly}(1 / \varepsilon, k)$.

Considering a random $m$-element subsets $X \subseteq V$, it follows from the concentration of the hypergeometric distribution (see e.g. [11, inequality (2.6) and Theorem 2.10]) for any fixed vertex $v \in V$

$$
\mathbb{P}\left(|N(v) \cap X| \leqslant\left(\frac{1}{2 k-1}+\varepsilon\right) m-t\right) \leqslant \exp \left(-\frac{t^{2}}{2 m}\right)
$$

for every $t>0$. Since our choice of $m$ in (4.1) yields $m / 2 k>4 k$ it follows with $t=\varepsilon m$, that there exists a set $X$ of size $m$, such that all but at most $\varepsilon n / 3$ vertices of $G$ have at least $4 k$ neighbours in $X$. We fix such a set $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and set

$$
Y=\{v \in V:|N(v) \cap X| \geqslant 4 k\} .
$$

For every $y \in Y$ fix a set $X(y)$ of exactly $4 k$ neighbours of $y$ in $X$ in an arbitrary way. We partition $Y$ into $\binom{m}{4 k}$ sets, where two vertices $y, y^{\prime} \in Y$ belong to the same partition class if $X(y)=X\left(y^{\prime}\right)$. Removing all the classes with fewer than $8 k / \varepsilon$ vertices from this partition yields a partition $\mathcal{Q}$ of a subset of $Y$ of size

$$
\begin{equation*}
|\bigcup \mathcal{Q}| \geqslant|Y|-\binom{m}{4 k} \frac{8 k}{\varepsilon} \geqslant\left(n-\frac{\varepsilon}{3} n\right)-\binom{m}{4 k} \frac{8 k}{\varepsilon}>n-\frac{\varepsilon}{2} n, \tag{4.2}
\end{equation*}
$$

where the last inequality holds for sufficiently large $n$. For convenience we may index the partition classes of $\mathcal{Q}$ by a suitable set $I=[M]$ with $M \leqslant\binom{ m}{4 k}$, i.e., $\mathcal{Q}=\left(Q_{i}\right)_{i \in I}$.

Next we define a partition $\mathcal{R}$ of the whole vertex set $V$, based on the neighbourhoods with respect to the partition classes of $\mathcal{Q}$. More precisely we assign to each vertex $v \in V$ a vector $\mu(v)=\left(\mu_{i}(v)\right)_{i \in I}$, where $\mu_{i}(v)$ equals the proportion of vertices in $Q_{i}$ that are neighbours of $v$ "rounded down" to the next integer multiple of $\varepsilon / 2$, i.e.

$$
\begin{equation*}
\mu_{i}(v)=\left\lfloor\frac{\left|N(v) \cap Q_{i}\right|}{\left|Q_{i}\right|} \cdot \frac{2}{\varepsilon}\right\rfloor \cdot \frac{\varepsilon}{2} . \tag{4.3}
\end{equation*}
$$

In particular, since every class from $\mathcal{Q}$ has at least $8 k / \varepsilon$ vertices, we have

$$
\begin{equation*}
\left|N(v) \cap Q_{i}\right| \geqslant 4 k \tag{4.4}
\end{equation*}
$$

for every $v \in V$ with $\mu_{i}(v)>0$.
We now define the partition $\mathcal{R}$. The classes of $\mathcal{R}$ are given by the equivalence classes of the relation $\mu_{i}(v)=\mu_{i}\left(v^{\prime}\right)$ for every $i \in I$. Owing to the discretisation of $\mu_{i}(v)$ the partition $\mathcal{R}$ has at most

$$
(2 / \varepsilon+1)^{|I|} \leqslant(2 / \varepsilon+1)^{\binom{m}{4 k}}
$$

parts. Furthermore, we note

$$
\begin{align*}
& \sum_{i \in I} \mu_{i}(v)\left|Q_{i}\right| \geqslant d(v)-|V \backslash \bigcup \mathcal{Q}|-\sum_{i \in I} \frac{\varepsilon}{2}\left|Q_{i}\right| \\
& \stackrel{(4.2)}{>}\left(\frac{1}{2 k-1}+\varepsilon\right) n-\frac{\varepsilon}{2} n-\frac{\varepsilon}{2} n \\
& \geqslant\left(\frac{1}{2 k-1}\right) n \tag{4.5}
\end{align*}
$$

for every $v \in V$. For later reference we make the following observation.
Claim 4.1. For every $i \in I$ no two distinct vertices $v, v^{\prime} \in V$ with $\mu_{i}(v), \mu_{i}\left(v^{\prime}\right)>0$ are joined by an odd $v-v^{\prime}$-path of length at most $2 k-5$ in $G$.

Proof. Suppose for a contradiction, that for some $i \in I$ and $v \neq v^{\prime}$ we have $\mu_{i}(v), \mu_{i}\left(v^{\prime}\right)>0$ and there is an odd $v-v^{\prime}$-path $P$ of length at most $2 k-5$ in $G$. Let $q_{i}$ be a neighbour of $v$ in $Q_{i}$ and let $q_{i}^{\prime}$ be a neighbour of $v^{\prime}$ in $Q_{i}$, such that $q_{i} \neq q_{i}^{\prime}$ and both not contained in $P$ (see (4.4)). Consequently, there is a $q_{i}-q_{i}^{\prime}$-path $P^{\prime} \subseteq G$ of odd length $2 k-1-2 \ell$ for some $\ell \in[k-2]$.

Since all vertices of $Q_{i}$ have $4 k$ common neighbours in $X$, there is a set $X^{\prime}$ consisting of $\ell$ of these neighbours from $X \backslash V\left(P^{\prime}\right)$. Similarly, there is a set $Q_{i}^{\prime} \subseteq Q_{i}$ of $\ell-1$ vertices in $Q_{i} \backslash\left(V\left(P^{\prime}\right) \cup X^{\prime}\right)$. Clearly, $X^{\prime} \cup Q_{i}^{\prime} \cup\left\{q_{i}, q_{i}^{\prime}\right\}$ spans a $q_{i}-q_{i}^{\prime}$-path $P^{\prime \prime}$ of length $2 \ell$, which together with $P^{\prime}$ yields a copy of $C_{2 k-1}$ in $G$. This, however, contradicts the assumption that $G$ is $C_{2 k-1}$-free.

Starting with the partition $\mathcal{R}^{0}=\mathcal{R}$ we inductively refine this partition $2 k$ times and obtain partitions $\mathcal{R}^{0} \geqslant \mathcal{R}^{1} \geqslant \cdots \geqslant \mathcal{R}^{2 k}$. Given $\mathcal{R}^{i}$ we define $\mathcal{R}^{i+1}$ by subdividing every partition class such that vertices remain in the same class if and only if they have neighbours in the same classes of $R^{i}$. More precisely, two vertices $v, v^{\prime}$ from some partition class of $\mathcal{R}^{i}$ stay in the same class in $\mathcal{R}^{i+1}$ if and only if for every class $R_{j}^{i}$ from $\mathcal{R}^{i}$ we have

$$
N(v) \cap R_{j}^{i} \neq \varnothing \quad \Longleftrightarrow \quad N\left(v^{\prime}\right) \cap R_{j}^{i} \neq \varnothing .
$$

Owing to this inductive process and our choice of $K$ in (4.1) the partition $\mathcal{R}^{2 k}$ consists of at most $K$ classes. Since $k \geqslant 3$, claim 4.1 implies that the classes of $\mathcal{R}^{0}$ are independent sets in $G$ and, therefore, also the classes of $\mathcal{R}^{2 k}$ are independent. Hence, we may define the reduced graph $H$ of $\mathcal{R}^{2 k}$, where each class $\mathcal{R}^{2 k}$ is a vertex of $H$ and two vertices are adjecent, if the corresponding partition classes induce at least one crossing edge in $G$. Obviously, we have

$$
\begin{equation*}
G \xrightarrow{\text { hom }} H \quad \text { and } \quad|V(H)| \leqslant K \tag{4.6}
\end{equation*}
$$

and it is left to show that $H$ is also $C_{2 k-1}$-free (see Claim 4.4). For the proof of this property we first collect a few observations concerning the interplay of odd paths in $H$ and walks in $G$ (see Claims 4.2 and 4.3).

Denote by $\mathcal{R}^{i}(v)$ the unique class of the partition $\mathcal{R}^{i}$ which contains the vertex $v \in V$. Similarly, for $j \geqslant i$ let $\mathcal{R}^{i}(R)$ be the unique class of the partition $\mathcal{R}^{i}$ which is a superset of $R \in \mathcal{R}^{j}$.

Claim 4.2. If there is a walk $W_{H}=h_{1} h_{2} \ldots h_{s}$ in $H$ for some integer $s \leqslant 2 k$, then there are vertices $w_{i} \in \mathcal{R}^{2 k-i+1}\left(h_{i}\right) \subseteq \mathcal{R}^{0}\left(h_{i}\right)$ for every $i \in[s]$ such that $W=w_{1} w_{2} \ldots w_{s}$ is a walk in $G$. Moreover, $w_{1}$ can be chosen arbitrarily in $h_{1}=\mathcal{R}^{2 k}\left(h_{1}\right)$.

Proof. We shall locate the walk $W$ in an inductive manner and note that for $s=1$ it is trivial.

For $s \geqslant 2$ let a walk $W^{\prime}=w_{1} w_{2} \ldots w_{s-1}$ satisfying $w_{i} \in \mathcal{R}^{2 k-i+1}\left(h_{i}\right)$ for every $i \in[s-1]$ be given. The walk $W_{H}$ in $H$ guarantees an edge between $\mathcal{R}^{2 k}\left(h_{s-1}\right)$ and $\mathcal{R}^{2 k}\left(h_{s}\right)$ and, hence, there is an edge between $\mathcal{R}^{2 k-(s-1)+1}\left(h_{s-1}\right)$ and $\mathcal{R}^{2 k-(s-1)+1}\left(h_{s}\right)$. Consequently, the construction of the refinements shows that $w_{s-1} \in \mathcal{R}^{2 k-(s-1)+1}\left(h_{s-1}\right)$ must have a neighbour $w_{s} \in \mathcal{R}^{2 k-s+1}\left(h_{s}\right)$ and the walk $W=W^{\prime} w_{s}=w_{1} \ldots w_{s-1} w_{s}$ has the desired properties.

Even if we assume in Claim 4.2 that $W_{H}$ is a path in $H$ and, in particular, $h_{i} \neq h_{j}$ for all distinct $i, j \in[s]$, it may happen that $\mathcal{R}^{0}\left(h_{i}\right)=\mathcal{R}^{0}\left(h_{j}\right)$ and, hence, we cannot guarantee $w_{i} \neq w_{j}$. In other words, even if we apply Claim 4.2 to a path in $H$, the promised walk $W$ might not be a path. However, combined with Proposition 3.5 we can get the following improvement.

Claim 4.3. If there is an odd path $P_{H}=h_{1} \ldots h_{s+1}$ of length $s \leqslant 2 k-1$ in $H$, then there are vertices $v_{1} \in \mathcal{R}^{0}\left(h_{1}\right)$ and $v_{s+1} \in \mathcal{R}^{0}\left(h_{s+1}\right)$ such that there is an odd path of length at most $s$ between them.

Proof. Consider a walk $W=w_{1} w_{2} \ldots w_{s+1}$ in $G$ with $w_{i} \in \mathcal{R}^{0}\left(h_{i}\right)$ given by Claim 4.2. If this walk does not contain an odd $w_{1}-w_{s+1}$-path already, then $W$ must contain an odd cycle. Below we shall show that this leads to a contradiction and, hence, $W$ contains an odd $w_{1}-w_{s+1}-$ path.

Considering an odd cycle $C=c_{1} \ldots c_{\ell} c_{1}$ contained in $W \subseteq G$, such that

$$
c_{1}=w_{i_{1}}, c_{2}=w_{i_{2}}, \ldots, c_{\ell}=w_{i_{\ell}}, \quad \text { and } \quad c_{1}=w_{i_{\ell+1}}=w_{i_{1}}
$$

for some set of indices satisfying $1 \leqslant i_{1}<i_{2}<\cdots<i_{\ell}<i_{\ell+1} \leqslant s+1$. To find such a path, consider the walk $W$, delete an even $w_{1-} w_{s+1}$-path. Now the remaining edges of $W$ are a family of closed walks, take an odd closed walk $W^{\prime}=w_{1}^{\prime} w_{2}^{\prime} \ldots w_{s^{\prime}+1}^{\prime}=w_{j_{1}} w_{j_{2}} \ldots w_{j_{s^{\prime}+1}}$,
where $w_{1}^{\prime}=w_{s^{\prime}+1}^{\prime}$. If $W^{\prime}$ is not a cycle, there is a smaller closed walk $W^{\prime \prime} \subset W^{\prime}$, such that the edges of $W^{\prime}$ without the edges of $W^{\prime \prime}$ are also a closed walk, both retaining the order of the vertices from $W^{\prime}$ and therefore from $W$. One of $\left\{W^{\prime}, W^{\prime \prime}\right\}$ needs to be odd. Iterating this process eventually gives rise to the odd cycle $C$.

In view of Proposition 3.5 ( $i$ ) we must have $3 \leqslant \ell<k$. Consequently, $\ell \leqslant 2 k-5$ and since $\ell$ is odd, it follows from Claim 4.1 that there is no path of length $\ell$ between any two vertices from $\mathcal{R}^{0}\left(c_{1}\right)=\mathcal{R}^{0}\left(h_{i_{1}}\right)=\mathcal{R}^{0}\left(h_{i_{\ell+1}}\right)$. Moreover, Claim 4.1 tells us that the $\ell$ classes $\mathcal{R}^{0}\left(c_{1}\right)=\mathcal{R}^{0}\left(h_{i_{1}}\right)=\mathcal{R}^{0}\left(h_{i_{\ell+1}}\right), \ldots, \mathcal{R}^{0}\left(c_{\ell}\right)=\mathcal{R}^{0}\left(h_{i_{\ell}}\right)$ from $\mathcal{R}^{0}$ are distinct, since otherwise the cycle $C$ would contain an odd path of length at most $2 k-7$ between two vertices of some class in $\mathcal{R}^{0}$.

Since $P_{H}$ is a path in $H$, we have $h_{i_{1}} \neq h_{i_{\ell+1}}$ and the cycle $C$ avoids at least one of the sets $h_{i_{1}}$ or $h_{i_{\ell+1}}$. Without loss of generality we may assume $C$ avoids $h_{i_{1}}$ and we fix an arbitrary vertex $c_{1}^{\prime} \in h_{i_{1}}$.

We are going to locate a second cycle of length $\ell$ in $G$ that starts and ends in $c_{1}^{\prime}$. By construction this cycle is going to visit the same partition classes of $\mathcal{R}^{0}$ as $C$. For that we shall repeat the argument from Claim 4.2 starting with $h_{i_{1}} \ldots h_{i_{\ell}} h_{i_{\ell+1}}$ even though this is not necessarily a subpath of $P_{H}$. However, since $h_{i_{1}} \ldots h_{i_{\ell}} h_{i_{\ell+1}}$ appear in that order in $P_{H}$, we can repeat the reasoning of Claim 4.2 starting with the vertex $c_{1}^{\prime} \in h_{i_{1}}$. Continuing in an inductive manner, for $j \in[\ell]$ we have to consider the two cases $i_{j+1}=i_{j}+1$ and $i_{j+1}>i_{j}+1$.

In the first case, we can indeed proceed as in the proof of Claim 4.2, since this means that $h_{i_{j}} h_{i_{j+1}}$ is an edge of $P_{H}$. The second case, by construction of $C$, only occurs, when $w_{i_{j}}=w_{i_{j+1}-1}$ and

$$
\mathcal{R}^{2 k-i_{j}+1}\left(h_{i_{j}}\right) \subseteq \mathcal{R}^{2 k-\left(i_{j+1}-1\right)+1}\left(h_{i_{j+1}-1}\right) .
$$

Owing to the fact that $w_{i_{j+1}-1} w_{i_{j+1}}$ is an edge of $W$ and that $w_{i_{j+1}-1} \in \mathcal{R}^{2 k-i_{j}+1}\left(h_{i_{j}}\right)$ and $w_{i_{j+1}-1} \in \mathcal{R}^{2 k-\left(i_{j+1}-1\right)+1}\left(h_{i_{j+1}-1}\right)$, we infer from the construction of the refinements that $w_{i_{j}}=w_{i_{j+1}-1}$ also has a neighbour in $\mathcal{R}^{2 k-i_{j+1}+1}\left(h_{i_{j+1}}\right)$, which concludes the induction step.

Therefore, we obtain another walk $C^{\prime}=c_{1}^{\prime} \ldots c_{\ell}^{\prime} c_{\ell+1}^{\prime}$ where $c_{j}^{\prime} \in \mathcal{R}^{0}\left(h_{i_{j}}\right)=R^{0}\left(c_{j}\right)$. Recalling that the $\ell$ classes $\mathcal{R}^{0}\left(h_{i_{1}}\right), \ldots, \mathcal{R}^{0}\left(h_{i_{\ell}}\right)$ are pairwise distinct, this implies that $C^{\prime}$ is either a path or a cycle of odd length $\ell \leqslant 2 k-5$. Moreover, since $\mathcal{R}^{0}\left(h_{i_{1}}\right)=\mathcal{R}^{0}\left(h_{i_{\ell+1}}\right)$ we infer from Claim 4.1 that $C^{\prime}$ cannot be a path and, hence, it must be an odd cycle of length $\ell \leqslant 2 k-5$. By construction $c_{1}^{\prime}$ avoids $C$, and hence $C^{\prime}$ and $C$ are disjoint, as otherwise we would have an odd path of length $\ell$ connecting $c_{1}$ and $c_{1}^{\prime}$ in $\mathcal{R}^{0}\left(c_{1}\right)$, which would contradict Claim 4.1 again.

Consequently, $C$ and $C^{\prime}$ form a copy of $D_{\ell}$ since $c_{1}$ and $c_{1}^{\prime}$ are connected by a path of length 4 whose three internal vertices avoid $C$ and $C^{\prime}$ (and the middle vertex is from $X$ ). Owing to Proposition 3.5 (ii) we have $\ell \leqslant 2 k-9$, but in $D_{\ell}$ there exists an odd path of length $\ell+4 \leqslant 2 k-5$ between $c_{i}$ and $c_{i}^{\prime}$ for every $i=2, \ldots, \ell$, which again contradicts Claim 4.1.

After these preparations we are now ready to conclude the proof of part $(i)$ of Theorem 1.2.
Claim 4.4. The graph $H$ is $C_{2 k-1}$-free.
Proof. Assume for a contradiction that there is a cycle $C_{H}=h_{1} \ldots h_{2 k-1} h_{1}$ of length $2 k-1$ in $H$. We recall that the vertices of $H$ are partition classes of $\mathcal{R}^{2 k}$ and for a simpler notation we set for any vertex $h_{x}$ of $C_{H}$

$$
\mu_{i}\left(h_{x}\right):=\mu_{i}(v),
$$

where $v$ is an arbitrary vertex from $\mathcal{R}^{0}\left(h_{x}\right)$ and the definition of $\mathcal{R}=\mathcal{R}^{0}$ shows that the definition of $\mu_{i}\left(h_{x}\right)$ is indeed independent of the choice of $v \in \mathcal{R}^{0}\left(h_{x}\right)$.

By (4.5) we have

$$
\sum_{x=1}^{2 k-1} \sum_{i \in I} \mu_{i}\left(h_{x}\right)\left|Q_{i}\right|>n \geqslant \sum_{i \in I}\left|Q_{i}\right|
$$

and, hence, there is some $i \in I$ such that

$$
\begin{equation*}
\sum_{x=1}^{2 k-1} \mu_{i}\left(h_{x}\right)>1 \tag{4.7}
\end{equation*}
$$

In particular, there are at least two distinct vertices $h_{x}$ and $h_{y}$ of $C_{H}$ such that $\mu_{i}\left(h_{x}\right)>0$ and $\mu_{i}\left(h_{y}\right)>0$. On the other hand, among three vertices of $C_{H}$ two are connected by an odd path of length at most $2 k-5$ in $C_{H}$, since the negation is only true for vertices with distance 2 on $C_{H}$. Therefore it follows from Claim 4.3 and Claim 4.1, that no other vertex $h_{z}$ with $z \in[2 k-1] \backslash\{x, y\}$ satisfies $\mu_{i}\left(h_{z}\right)>0$. Consequently, we have $\mu_{i}\left(h_{x}\right)+\mu_{i}\left(h_{y}\right)>1$, which means that any two vertices $v \in \mathcal{R}^{0}\left(h_{x}\right)$ and $u \in \mathcal{R}^{0}\left(h_{y}\right)$ have a common neighbour in $Q_{i}$. In fact, since $2 / \varepsilon$ is assumed to be an integer, $v$ and $u$ have at least $2\left|Q_{i}\right| / \varepsilon>4 k$ joint neighbours. Moreover, again Claim 4.3 and Claim 4.1 imply that $h_{x}$ and $h_{y}$ are connected by a path of length $2 k-3$ in $C_{H}$ and that there is a path $P$ of length $2 k-3$ in $G$ connecting some $v \in \mathcal{R}^{0}\left(h_{x}\right)$ and $u \in \mathcal{R}^{0}\left(h_{y}\right)$. Using one of the joint neighbours in $Q_{i}$ outside $P$ yields a copy of $C_{2 k-1}$ in $G$. This contradicts the $C_{2 k-1}$-freeness of $G$ and concludes the proof of Claim 4.4.

Claim 4.4 together with (4.6) establishes the proof of part ( $i$ ) of Theorem 1.2 and it remains to consider part (ii), when $G$ is assumed to be $\mathscr{C}_{2 k-1}$-free.

In view of Proposition 2.2 it suffices to verify the upper bound of assertion (ii) of Theorem 1.2. Compared to the proof of part $(i)$ of Theorem 1.2, we have the additional assumption that $G$ is not only $C_{2 k-1}$-free, but also contains no cycle $C_{\ell}$ for any odd $\ell<2 k-1$. Consequently, the graph $H$ defined in the paragraph before (4.6) in the proof of part (i) satisfies (4.6) in this case as well and owing to Claim 4.4 it is $C_{2 k-1}$-free. Hence, we only have to show that the $C_{\ell}$-freeness of $G$ for every odd $\ell \leqslant 2 k-3$ can be carried over to $H$ in this situation, which is rendered by the following claim.

Claim 4.5. If $G$ is $\mathscr{C}_{2 k-1}$-free, then $H$ is also $\mathscr{C}_{2 k-1}$-free.
Proof. Recall, that we assume $k \geqslant 3$. Suppose for a contradiction that $H$ contains a cycle $C_{H}=h_{1} \ldots h_{\ell} h_{1}$ for some odd integer $\ell$ with $3 \leqslant \ell \leqslant 2 k-1$. In fact, it follows from Claim 4.4 that $\ell \leqslant 2 k-3$. Moreover, applying Claim 4.2 to $C_{H}$ yields a walk $W$ of length $\ell$ in $G$ which starts and ends in $\mathcal{R}^{0}\left(h_{1}\right)$. Since $G$ contains no odd cycle of length at most $\ell$, the walk $W$ contains an odd path of length at most $\ell$ connecting two vertices in $\mathcal{R}^{0}\left(h_{1}\right)$. Therefore, Claim 4.1 implies that $\ell=2 k-3$ and by symmetry we infer that for every $x \in[2 k-3]$ there exists an odd path of length $2 k-3$ between two vertices $v_{x}, u_{x} \in \mathcal{R}^{0}\left(h_{x}\right)$.

As in the proof of Claim 4.4 we infer from (4.5) that

$$
\sum_{x=1}^{2 k-3} \sum_{i \in I} \mu_{i}\left(h_{x}\right)\left|Q_{i}\right|>\frac{2 k-3}{2 k-1} n>\frac{1}{2} \sum_{i \in I}\left|Q_{i}\right|,
$$

where we used $k \geqslant 3$ for the last inequality. Consequently, there is some index $i \in I$ such that $\sum_{x=1}^{2 k-3} \mu_{i}\left(h_{x}\right)>1 / 2$. Since for every distinct $x, y \in[2 k-3]$ there exists an odd path of length at most $2 k-5$ connecting a vertex from $\mathcal{R}^{0}\left(h_{x}\right)$ with a vertex from $\mathcal{R}^{0}\left(h_{y}\right)$ there is only one vertex of $C_{H}$ such that $\mu_{i}\left(h_{x}\right)>0$ and, hence, for that $x \in[2 k-3]$ we have $\mu_{i}\left(h_{x}\right)>1 / 2$. In particular, every two distinct vertices $v, u \in \mathcal{R}^{0}\left(h_{x}\right)$ have a common neighbour in $Q_{i}$ and, since $2 / \varepsilon$ is assumed to be an integer, $v$ and $u$ have at least $2\left|Q_{i}\right| / \varepsilon>4 k$ joint neighbours. Applying this observation to $v_{x}$ and $u_{x}$ leads to an odd cycle of length $2 k-1$ in $G$, which is a contradiction and concludes the proof of Claim 4.5.

This concludes the proof of Theorem 1.2.

## §5. Odd Tetrahedra

Letzter and Snyder [12] obtained a stronger version of Theorem 1.2 (ii) for $k=3$, by showing that the homomorphic images can be chosen from the family of generalised Andrásfai graphs (see Definition 2.1). More precisely, it was shown, that $G \xrightarrow{\text { hom }} A_{3, r}$ for every $G \in \mathscr{G}_{\mathscr{C}_{5}}(\alpha)$ as long as $\alpha>\frac{r+1}{5 r+2}$. However, it turns out that such an explicit form of the theorem does not extend to other values of $k \geqslant 2$. For $k=2$ this was observed
by Häggkvist [10], who showed that there exist appropriate (unbalanced) blow-ups of the Grötzsch graph in $\mathscr{G}_{C_{3}}(10 / 29)$ which are 4 -chromatic, while $\chi\left(A_{2, r}\right) \leqslant 3$ for every $r \geqslant 1$.

In Proposition 5.5 below we provide a counterexample for a stronger version of Theorem $1.2(i i)$ (like the one obtained in [12]) for every $k>3$ by exhibiting graphs in $\mathscr{G}_{\mathscr{C}_{2 k-1}}\left(\frac{1}{2 k-1}+\varepsilon\right)$ for some $\varepsilon>0$ that are not homomorphic to any generalised Andrásfai graph from $\mathscr{A}_{k}$ (see Definition 2.1).

Definition $5.1\left((2 k+1)\right.$-tetrahedra). Given $k \geqslant 2$ we denote by $\mathscr{T}_{k}$ the set of graphs $T$ consisting of
(i) one cycle $C_{T}$ with three branch vertices $a_{T}, b_{T}$, and $c_{T} \in V\left(C_{T}\right)$,
(ii) a center vertex $z_{T}$, and
(iii) internally vertex disjoint paths (called spokes) $P_{a z}, P_{b z}, P_{c z}$ connecting the branch vertices with the center vertex.
Furthermore, we require that each cycle in $T$ containing $z_{T}$ and exactly two of the branch vertices must have length $2 k+1$, and the spokes have length at least 2 .

Lemma 5.2. For all integers $k \geqslant 2$ and $r \geqslant 1$ there is no $(2 k+1)$-tetrahedra $T \in \mathscr{T}_{k}$ that is homomorphic to the Andrásfai graph $A_{k, r}$.

Proof. Let $T \in \mathscr{T}_{k}$ be given and let the three spokes consist of $\ell_{a}, \ell_{b}, \ell_{c} \geqslant 2$ edges, respectively. Suppose for a contradiction that $T \xrightarrow{\text { hom }} A_{k, r}$ and let $\varphi$ be such a homomorphism. Since $T$ contains an odd cycle we have $r \geqslant 2$ and let $C_{A}=u_{0} \ldots u_{(2 k-1)(r-1)+1} u_{0}$ be the Hamiltonian cycle of $A_{k, r}$ such that $N\left(u_{0}\right)=\left\{u_{i(2 k-1)+1}: i=0, \ldots, r-1\right\}$ (c.f. proof of Proposition $2.2(c))$.

Claim 5.3. Let $v, v^{\prime}$ be two vertices of a $2 k+1$ cycle $C$ in $T$ with distance $d \geqslant 2$ in $C$. If $\varphi(v)=u_{0}$, than $\varphi\left(v^{\prime}\right) \in\left\{u_{i(2 k-1)+d}, u_{i(2 k-1)+(2 k+1-d)}\right\}$ for some integer $0 \leqslant i \leqslant r-2$.

Proof. In $C$ there are two paths between $v$ and $v^{\prime}$ and let $d$ and $d^{\prime}$ be their lengths. There cannot be a path of length $d-2 s$ or $d^{\prime}-2 s$ with $s \geqslant 1$ between $\varphi(v)$ and $\varphi\left(v^{\prime}\right)$, since this path together with the embedding of the $v-v^{\prime}$-path of other parity from $C$ would form a closed odd walk of length less than $2 k+1$, contradicting Proposition $2.2(b)$. Similarly, $\varphi\left(v^{\prime}\right)$ is not in the neighbourhood of $\varphi(v)=u_{0}$ in $A_{k, r}$, since $2 \leqslant d \leqslant k<d^{\prime} \leqslant 2 k-1$.

Consequently, $\varphi\left(v^{\prime}\right)$ will lie on a segment $S$ between $u_{i(2 k-1)+1}$ and $u_{(i+1)(2 k-1)+1}$ on the Hamiltonian cycle $C_{A}$ for some integer $0 \leqslant i \leqslant r-2$. The segment $S$, together with $u_{0}=\varphi(v)$ forms a $C_{2 k+1}$, and since there are only two vertices with distance $d$ from $u_{0}=\varphi(v)$ on this $C_{2 k+1}$, an embedding of $v^{\prime}$ onto any other vertex gives rise to a $v-v^{\prime}-$ path of length $d-2 s$ or $d^{\prime}-2 s$ with $s \geqslant 1$. Therefore, $\varphi\left(v^{\prime}\right) \in\left\{u_{i(2 k-1)+d}, u_{i(2 k-1)+(2 k+1-d)}\right\}$ as claimed.

Claim 5.4. Let $v, v^{\prime}, v^{\prime \prime}$ be distinct vertices of a $2 k+1$ cycle $C$ in $T$. Let $P^{\prime}$ be the path from $v$ to $v^{\prime}$ avoiding $v^{\prime \prime}$ on $C$ and let $P^{\prime \prime}$ be the path from $v$ to $v^{\prime \prime}$ avoiding $v^{\prime}$ on $C$. Suppose $d^{\prime}, d^{\prime \prime} \geqslant 2$ are the lengths of $P^{\prime}$ and $P^{\prime \prime}$. If $\varphi(v)=u_{0}$, then $\varphi\left(v^{\prime}\right)=u_{i(2 k-1)+d^{\prime}}$ and $\varphi\left(v^{\prime \prime}\right)=u_{j(2 k-1)+\left(2 k+1-d^{\prime \prime}\right)}$, or $\varphi\left(v^{\prime}\right)=u_{i(2 k-1)+\left(2 k+1-d^{\prime}\right)}$ and $\varphi\left(v^{\prime \prime}\right)=u_{j(2 k-1)+d^{\prime \prime}}$, for some integers $0 \leqslant i, j \leqslant r-1$.

Proof. By Claim 5.3 it suffices to show, that $\varphi\left(v^{\prime}\right)=u_{i(2 k-1)+d^{\prime}}$ implies $\varphi\left(v^{\prime \prime}\right) \neq u_{j(2 k-1)+d^{\prime \prime}}$ and $\varphi\left(v^{\prime}\right)=u_{i(2 k-1)+\left(2 k+1-d^{\prime}\right)}$ implies $\varphi\left(v^{\prime \prime}\right) \neq u_{j(2 k-1)+\left(2 k+1-d^{\prime \prime}\right)}$, for all $0 \leqslant i, j \leqslant r-1$.

In the first case, we may assume that $i \leqslant j$. Since $u_{j(2 k-1)+2}$ is a neighbour of $u_{i(2 k-1)+1}$, we may consider the path $P$ starting with the path in $C_{A}$ from $u_{i(2 k-1)+d^{\prime}}$ to $u_{i(2 k-1)+1}$ together with the edge from $u_{i(2 k-1)+1} u_{j(2 k-1)+2}$ and then following $C_{A}$ to $u_{j(2 k-1)+d^{\prime \prime}}$. The path $P$ consists of $\left(d^{\prime}-1\right)+1+\left(d^{\prime \prime}-2\right)=d^{\prime}+d^{\prime \prime}-2$ edges. Together with the embedding of the path between $v^{\prime}$ and $v^{\prime \prime}$ from $C$ avoiding $v$, this yields a closed odd walk of length at most $2 k-1$ in $A_{k, r}$, contradicting Proposition 2.2 (b). A similar argument for the second case concludes the proof of the claim.

Note that $i(2 k-1)+d \neq i(2 k-1)+(2 k+1-d)$ for all integers $d, i \geqslant 0$. Since $z_{T}$ lies in three $C_{2 k+1}$, each also containing two of the vertices $a_{T}, b_{T}, c_{T}$, if $\varphi\left(z_{T}\right)=u_{0}$, then it follows from Claim 5.4, that not all three branch vertices can be embedded onto $A_{k, r}$. Consequently, there is no homomorphism from $T$ to $A_{k, r}$ and Lemma 5.2 is proved.

Suitable blow-ups of $(2 k+1)$-tetrahedrons show that for every $k \geqslant 4$ there are graphs in $\mathscr{G}_{\mathscr{C}_{2 k-1}}\left(\frac{1}{2 k-1}+\varepsilon\right)$ for $\varepsilon>0$ that are not homomorphic to $A_{k, r}$ for any $r \geqslant 1$.

Proposition 5.5. For every integer $k \geqslant 4$ there is some $\varepsilon>0$ and there are infinitely many graphs in $\mathscr{G}_{\mathscr{C}_{2 k-1}}\left(\frac{1}{2 k-1}+\varepsilon\right)$ that are not homomorphic to $A_{k, r}$ for any $r \geqslant 1$.

Proof. Let $k \geqslant 4$ be fixed and consider the graph $T^{*}$ witch is obtained from $K_{4}$, by replacing two independent edges by a path of length $2(k-3)+1$ and the other four edges are replaced by a path of length 3 . In particular, $\left|V\left(T^{*}\right)\right|=4 k$ and $T^{*} \in \mathscr{T}_{k}$, as all the original triangles of $K_{4}$ are replaced a $C_{2 k+1}$. Owing to Lemma 5.2, we know that $T^{*}$ is not homomorphic to $A_{k, r}$ and the construction also ensures that $T^{*}$ is $\mathscr{C}_{2 k-1}$-free.

If $k \geqslant 4$ is even we consider the following blow-ups of $T^{*}$. For every integer $f \geqslant 1$ we consider $T_{f}^{\mathrm{e}}$ obtained from $T^{*}$ where the four vertices of degree three and the inner vertices on the two long paths with distance $0(\bmod 4)$ to one of the two end vertices of the path are replaced by independent sets of size $2 f$, while all the other vertices are replaced by independent sets of size $f$. The graph $T_{f}^{e}$ is $3 f$ regular and has

$$
2 f \cdot 2(k-2)+f \cdot 2(k+2)=(6 k-4) \cdot f
$$

vertices. Consequently,

$$
\frac{\delta\left(T_{f}^{\mathrm{e}}\right)}{\left|V\left(T_{f}^{\mathrm{e}}\right)\right|}=\frac{3}{6 k-4} \geqslant \frac{3}{6 k-3}+\varepsilon=\frac{1}{2 k-1}+\varepsilon
$$

for sufficiently small $\varepsilon>0$. Moreover, since $T_{f}^{e}$ is a blow-up of $T^{*}$ it is also $\mathscr{C}_{2 k-1}$-free and not embeddable into $A_{k, r}$, which shows proves Proposition 5.5 of even integers $k \geqslant 4$.

For odd integers $k \geqslant 5$ we also consider blow-ups of $T^{*}$. For some integer $f \geqslant 1$ let $T_{f}^{o}$ be obtained from $T^{*}$ by replacing the vertices of degree three and the inner vertices on the two long paths with distance $1(\bmod 4)$ to one of the end vertices of the path by independent sets of size $f$ and all the remaining vertices are kept unchanged. This blow-up has

$$
f \cdot 2(k-1)+2(k+1)=(f+1)(2 k-2)+4
$$

vertices and minimum degree $f+1$. Consequently,

$$
\frac{\delta\left(T_{f}^{o}\right)}{\left|V\left(T_{f}^{o}\right)\right|}=\frac{f+1}{(2 k-2)(f+1)+4} \geqslant \frac{1}{2 k-1}+\varepsilon
$$

for sufficiently small $\varepsilon>0$ and sufficiently large $f$. Again the blow-up $T_{f}^{o}$ is $\mathscr{C}_{2 k-1}$-free and not embeddable into $A_{k, r}$, which concludes the proof of Proposition 5.5 for odd integers $k \geqslant 5$.

## §6. Concluding remarks

Theorem 1.2 provides only an upper bound for $\delta_{\text {hom }}\left(C_{2 k-1}\right)$ and at this point it is not clear if it is best possible. Proving a matching lower or just showing $\delta_{\text {hom }}\left(C_{2 k-1}\right)>0$, would require to establish the existence of a sequence of graphs $\left(G_{n}\right)_{n \in \mathbb{N}}$ with members from $\mathscr{G}_{C_{2 k-1}}(\alpha)$ for some $\alpha>0$ having no homomorphic $C_{2 k-1}$-free image $H$ of bounded size. However, without imposing $H$ to be $C_{2 k-1}$-free itself, no such sequence exists for $k \geqslant 3$, as was shown by Thomassen [19], as the chromatic threshold of odd cycles other than the triangle is 0 , which makes the problem somewhat delicate and for the first open case we raise the following question.

Question 6.1. Is it true that $\delta_{\text {hom }}\left(C_{5}\right)>0$ ?

The affirmative answer to Question 6.1 would, in particular, show that there is a graph $F$ with $\delta_{\text {hom }}(F)>\delta_{\chi}(F)$. To our knowledge such a strict inequality is only known for families of graphs $\mathscr{F}$, like for $\mathscr{F}=\mathscr{C}_{2 k-1}$ for $k \geqslant 3$.

The lack of lower bounds for families consisting of a single graph, may suggest the following natural variation of the homomorphic threshold

$$
\begin{aligned}
\delta_{\text {hom }}^{\prime}(F)=\inf \{\alpha \in[0,1]: \text { there is an } \mathscr{F} \text {-free graph } H=H(\mathscr{F}, \alpha) \\
\text { such that } \left.G \xrightarrow{\text { hom }} H \text { for every } G \in \mathscr{G}_{F}(\alpha)\right\},
\end{aligned}
$$

where $\mathscr{F}$ consists of all surjective homomorphic images of $F$. For odd cycles we have $\delta_{\text {hom }}^{\prime}\left(C_{2 k-1}\right)=\delta_{\text {hom }}\left(\mathscr{C}_{2 k-1}\right)$ and in view of Theorem 1.2 it seems possible that $\delta_{\text {hom }}^{\prime}(F)$ is easier to determine.

In the proof of Theorem 1.2 we showed that every $G \in \mathscr{G}_{C_{2 k-1}}\left(\frac{1}{2 k-1}+\varepsilon\right)$ is homomorphic to a $C_{2 k-1}$-free graph $H$ on at most $K=K(k, \varepsilon)$ vertices, where $K$ is given by a $2(k+1)$-times iterated exponential function in $\operatorname{poly}(1 / \varepsilon, k)$. We believe that this dependency is far from being optimal and maybe already $K=O(\operatorname{poly}(1 / \varepsilon, k))$ is sufficient.

In Proposition $3.5(i)$ we observed that $C_{2 k-1}$-free graphs $G$ of high minimum degree are in addition also $C_{2 j-1}$-free for some sufficiently large $j<k$ depending on the imposed minimum degree. A more careful analysis of the argument may yield the correct dependency between $j$ and the minimum degree of $G$ and, moreover, yield a stability version of such a result. However, for a shorter presentation we used the same minimum degree assumption as given by Theorem 1.2, which sufficed for our purposes. It would also be interesting to see, if the excluded cycles of shorter odd length can be also excluded for the homomorphic image $H$ in the proof of Theorem 1.2.

Finally, we remark that the blow-ups of tetrahedra considered in Section 5 are not from $\mathscr{G}_{\mathscr{C}_{2 k-1}}\left(\frac{1}{2 k-2}\right)$. This suggests the question whether for every $k \geqslant 4$ and every $G \in \mathscr{G}_{\mathscr{C}_{2 k-1}}\left(\frac{1}{2 k-2}\right)$ there is some $r \geqslant 1$ such that $G \xrightarrow{\text { hom }} A_{k, r}$.

Acknowledgments. We we thank both referees for their detailed and helpful remarks.

## References

[1] P. Allen, J. Böttcher, S. Griffiths, Y. Kohayakawa, and R. Morris, The chromatic thresholds of graphs, Adv. Math. 235 (2013), 261-295. MR3010059 $\uparrow 1$
[2] B. Andrásfai, Über ein Extremalproblem der Graphentheorie, Acta Math. Acad. Sci. Hungar. 13 (1962), 443-455 (German). MR0145503 $\uparrow 2$
[3] , Graphentheoretische Extremalprobleme, Acta Math. Acad. Sci. Hungar 15 (1964), 413-438 (German). MR0169227 $\uparrow 1,2$
[4] B. Andrásfai, P. Erdős, and V. T. Sós, On the connection between chromatic number, maximal clique and minimal degree of a graph, Discrete Math. 8 (1974), 205-218. MR0340075 $\uparrow 1$
[5] P. Erdős, Remarks on a theorem of Ramsay, Bull. Res. Council Israel. Sect. F 7F (1957/1958), 21-24. MR0104594 $\uparrow 2$
[6] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar 10 (1959), 337-356 (English, with Russian summary). MR0114772 $\uparrow 3$
[7] P. Erdős and M. Simonovits, On a valence problem in extremal graph theory, Discrete Math. 5 (1973), 323-334. MR0342429 $\uparrow 1,1$
[8] W. Goddard and J. Lyle, Dense graphs with small clique number, J. Graph Theory 66 (2011), no. 4, 319-331. MR2791450 $\uparrow 1,1$
[9] A. Gyárfás, C. C. Rousseau, and R. H. Schelp, An extremal problem for paths in bipartite graphs, J. Graph Theory 8 (1984), no. 1, 83-95. MR732020 $\uparrow$
[10] R. Häggkvist, Odd cycles of specified length in nonbipartite graphs, Graph theory (Cambridge, 1981), North-Holland Math. Stud., vol. 62, North-Holland, Amsterdam-New York, 1982, pp. 89-99. MR671908 $\uparrow 5$
[11] S. Janson, T. Łuczak, and A. Ruciński, Random graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000. MR1782847 $\uparrow 4$
[12] S. Letzter and R. Snyder, The homomorphism threshold of $\left\{C_{3}, C_{5}\right\}$-free graphs, J. Graph Theory 90 (2019), no. 1, 83-106. $\uparrow 1,1,5$
[13] T. Łuczak, On the structure of triangle-free graphs of large minimum degree, Combinatorica 26 (2006), no. 4, 489-493. MR2260851 $\uparrow 1,1$
[14] T. Łuczak and St. Thomassé, Coloring dense graphs via VC-dimension, available at arXiv:1007.1670. Submitted. $\uparrow 1$
[15] J. Lyle, On the chromatic number of $H$-free graphs of large minimum degree, Graphs Combin. 27 (2011), no. 5, 741-754. MR2824992 $\uparrow 1$
[16] V. Nikiforov, Chromatic number and minimum degree of $K_{r}$-free graphs, available at arXiv:1001.2070. $\uparrow 1,1$
[17] H. Oberkampf and M. Schacht, On the structure of dense graphs with fixed clique number, Combin. Probab. Comput., available at arXiv:1602.02302. To appear. $\uparrow 1$
[18] C. Thomassen, On the chromatic number of triangle-free graphs of large minimum degree, Combinatorica 22 (2002), no. 4, 591-596. MR1956996 $\uparrow 1$
[19] _, On the chromatic number of pentagon-free graphs of large minimum degree, Combinatorica 27 (2007), no. 2, 241-243. MR2321926 $\uparrow 1,6$
[20] K. Zarankiewicz, Sur les relations synétriques dans l'ensemble fini, Colloquium Math. 1 (1947), 10-14 (French). MR0023047 $\uparrow 1$

Fachbereich Mathematik, Universität Hamburg, Hamburg, Germany
Email address: Oliver.Ebsen@uni-hamburg.de
Email address: schacht@math.uni-hamburg.de

