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Abstract. Szemerédi’s Regularity Lemma is a powerful tools in graph theory. It asserts that
all large graphs admit bounded partitions of their edge sets, most classes of which consist
of uniformly distributed edges. The original proof of this result was non-constructive and a
constructive proof was later given by Alon, Duke, Lefmann, Rödl and Yuster.

Szemerédi’s Regularity Lemma was extended to hypergraphs by various authors. Frankl and
Rödl gave one such extension in the case of 3-uniform hypergraphs, which was later extended
to k-uniform hypergraphs by Rödl and Skokan. W.T. Gowers gave another such extension,
using a different concept of regularity than that of Frankl, Rödl and Skokan. In this paper, we
give a constructive proof of the Regularity Lemma for hypergraphs.

1. Introduction

Szemerédi’s Regularity Lemma [21, 22] is an important tool in combinatorics, with appli-
cations ranging across combinatorial number theory, extremal graph theory, and theoretical
computer science (see [9, 10] for surveys of applications). The Regularity Lemma hinges on
the notion of ε-regularity: a bipartite graph H = (X ∪ Y,E) is ε-regular if for every X ′ ⊆ X,
|X ′| > ε|X|, and for every Y ′ ⊆ Y , |Y ′| > ε|Y |, we have |dH(X ′, Y ′) − dH(X,Y )| < ε, where
dH(X ′, Y ′) = |H[X ′, Y ′]|/(|X ′||Y ′|) is the density of the bipartite graph H[X ′, Y ′] induced on
the sets X ′ and Y ′. Szemerédi’s Regularity Lemma is then stated as follows.

Theorem 1.1 (Szemerédi’s Regularity Lemma [21, 22]). For all ε > 0 and integers t0 ≥ 1,
there exist integers T0 = T0(ε, t0) and N0 = N0(ε, t0) so that every graph G on N > n0 vertices
admits a partition of its vertex set V (G) = V1 ∪ · · · ∪ Vt, t0 ≤ t ≤ T0, satisfying

(1) V (G) = V1 ∪ · · · ∪ Vt is equitable: |V1| ≤ · · · ≤ |Vt| ≤ |V1|+ 1;
(2) V (G) = V1 ∪ · · · ∪ Vt is ε-regular: all but ε

(
t
2

)
pairs Vi, Vj, 1 ≤ i < j ≤ t, are ε-regular.

A constructive proof of Theorem 1.1 was later given by Alon, Duke, Lefmann, Rödl and
Yuster. Their result gives that the ε-regular partition V (G) = V1 ∪ · · · ∪ Vt in Theorem 1.1 can
be constructed in time O(M(n)), where M(n) = O(n2.3727) is the time needed to multiply two
n×n matrices with 0, 1-entries over the integers (see [23]). In [8], the running time of O(M(n))
was improved to O(n2).

Szemerédi’s Regularity Lemma has been extended to k-uniform hypergraphs, for k ≥ 2, by
various authors. Frankl and Rödl [3] gave one such extension to the case of 3-uniform hy-
pergraphs, using a concept they called (δ, r)-regularity (see upcoming Definition 2.12). This
regularity lemma was extended to k-uniform hypergraphs, for arbitrary k ≥ 3, by Rödl and
Skokan [17]. Gowers [4, 5] also established a regularity lemma for k-uniform hypergraphs, but
used a concept of regularity known as deviation (see upcoming Definition 2.6). While the con-
cepts of (δ, r)-regularity and deviation are different, the corresponding Regularity Lemmas have
a similar conclusion. Roughly speaking, both lemmas guarantee that every (large) k-uniform
hypergraph admits a bounded partition of its edge set (where the edge-partition is defined in
a fairly technical way), where most classes of the partition consist of ‘regularly distributed’
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edges. Moreover, both Regularity Lemmas admit a corresponding Counting Lemma (see up-
coming Theorems 5.1 and 5.2, and see also [12]). The Counting Lemma allows one to estimate
the number of fixed subhypergraphs of a given isomorphism type within the ‘regular parti-
tion’ a regularity lemma provides. The combined application of the Regularity and Counting
Lemmas is known as the Regularity Method for hypergraphs (see [13, 15, 16, 19] for surveys of
applications).

The goal of this paper is to establish an algorithmic Hypergraph Regularity Lemma (see
upcoming Theorem 3.7). Roughly speaking, we will show that, for every (large) k-uniform

hypergraph H(k), a ‘regular partition’ of H(k) can, in fact, be constructed in time polynomial
in |V (H(k))|. Thus, combining the work here together with an appropriate Counting Lemma
provides an Algorithmic Regularity Method for hypergraphs1.

To prove the algorithmic regularity lemma for hypergraphs, we will proceed along the usual
lines. As in the proof of Szemerédi [21, 22] for graphs, we will consider sequences of partitions

Pi, i ≥ 1, of a hypergraph H(k). For each Pi, i ≥ 1, we consider the so-called index of
Pi, denoted indH(k)(Pi), which measures the mean-square density of H(k) on Pi. When the

partition Pi of H(k) is irregular, we refine Pi, in the usual way, to produce Pi+1. It is well-
known that indH(k)(Pi+1) will be non-negligibly larger than indH(k)(Pi), so that this refining
process must terminate after constantly many iterations. Now, as in the proof of Alon et al. [1]
for graphs, to make the the refinement Pi+1 of Pi constructive, one must be able to construct
‘witnesses’ of the irregularity of Pi. The novel element of our work does precisely this and in
Section 2, we state the ‘Witness-Construction Theorem’ (Theorem 2.16). In Section 3, we state
the Algorithmic Regularity Lemma (Theorem 3.7), and in Section 4, we show that Theorem 2.16
implies Theorem 3.7.

The remainder of the paper is devoted to proving Theorem 2.16. For this proof, we will
need several technical lemmas. Among these are Gowers’ Counting Lemma (see Theorems 5.1
and 5.2), which we present in Section 5. As well, we will need an ‘Extension Lemma’ (The-
orem 5.4), which is a derivative of the Counting Lemma, which we also present in Section 5.
Finally, we need an additional lemma, which we call the ‘Negative-Extension Lemma’ (Theo-
rem 6.2), which we state and prove in Section 6. Using these tools, we prove Theorem 2.16 in
Section 7. At the end of the paper, we include an Appendix for the proofs of a few facts we
need along the way.

2. Deviation and the Witness-Construction Theorem

In this section, we define the concept of deviation (DEV) (cf. Definition 2.6), and we present
some conditions which are sufficient for implying the property of deviation. We also consider
the concept of r-discrepancy (r-DISC) (cf. Definition 2.12), and present a so-called Witness-
Construction theorem (cf. Theorem 2.16). For these purposes, we need some supporting con-
cepts.

2.1. Background concepts: cylinders, complexes and density. We begin with some
basic concepts. For a set X and an integer j ≤ |X|, let

(
X
j

)
denote the set of all (unordered)

j-tuples from X. When X = [`] = {1, . . . , `}, we sometimes write [`]j =
(

[`]
j

)
. Given pairwise

disjoint sets V1, . . . , V`, denote by K(j)(V1, . . . , V`) the complete `-partite, j-uniform hypergraph

1An algorithmic regularity method for 3-uniform hypergraphs was established by Haxell, Nagle, and Rödl [6, 7]
(see also [11]).
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with `-partition V1 ∪ · · · ∪ V`, which consists of all j-tuples from V1 ∪ · · · ∪ V` meeting each Va,
1 ≤ a ≤ j, at most once. We now define the concept of a ‘cylinder’.

Definition 2.1 (cylinder). For integers ` ≥ j ≥ 1, an (`, j)-cylinder H(j) with vertex `-

partition V (H(j)) = V1 ∪ · · · ∪V` is any subset of K(j)(V1, . . . , V`). When |V1| = · · · = |V`| = m,

we say H(j) is an (m, `, j)-cylinder.

In the context of Definition 2.1, fix j ≤ i ≤ ` and Λi ∈ [`]i. We denote by H(j)[Λi] =

H(j)
[⋃

λ∈Λi
Vλ
]

the sub-hypergraph of the (`, j)-cylinder H(j) induced on
⋃
λ∈Λi

Vλ. In this

setting, H(j)[Λi] is an (i, j)-cylinder.

We now prepare to define the concept of a complex. For an integer i ≥ j, let Ki(H(j)) denote

the family of all i-element subsets of V (H(j)) which span complete sub-hypergraphs in H(j).

Given an (`, j − 1)-cylinder H(j−1) and an (`, j)-cylinder H(j), we say H(j−1) underlies H(j) if

H(j) ⊆ Kj(H(j−1)).

Definition 2.2 (complex). For integers 1 ≤ k ≤ `, an (`, k)-complex H = {H(j)}kj=1 is a

collection of (`, j)-cylinders, 1 ≤ j ≤ k, so that

(1) H(1) = V1 ∪ · · · ∪ V` is an (`, 1)-cylinder, i.e., is an `-partition;

(2) for each 2 ≤ j ≤ k, we have that H(j−1) underlies H(j), i.e., H(j) ⊆ Kj(H(j−1)).

In some cases, we use the notation H(k) to denote an (`, k)-complex {H(j)}kj=1.

We now define concept of density.

Definition 2.3 (density). For integers 2 ≤ j ≤ `, let H(j) be an (`, j)-cylinder and let H(j−1)

be an (`, j − 1)-cylinder. If Kj(H(j−1)) 6= ∅, we define the density of H(j) w.r.t. H(j−1) as

d(H(j)|H(j−1)) =

∣∣H(j) ∩ Kj(H(j−1))
∣∣∣∣Kj(H(j−1))

∣∣ .

If Kj(H(j−1)) = ∅, we define d(H(j)|H(j−1)) = 0.

2.2. Deviation, and sufficient conditions thereof. In this subsection, we define the concept
of deviation (DEV), and present some conditions which are sufficient for implying the property
of deviation. To that end, we need some supporting concepts.

Definition 2.4 ((`, j)-octohedron). Let integers 1 ≤ j ≤ ` be given. The (`, j)-octohedron

O(j) = O(j)
` is the complete `-partite j-uniform hypergraph K(j)(U1, . . . , U`), where |U1| =

· · · = |U`| = 2, i.e., it is the complete (2, `, j)-cylinder.

For an (`, j)-cylinder H(j), we are interested in ‘labeled partite-embedded’ copies of O(j) in

H(j).

Definition 2.5 (labeled partite-embedding). LetH(j) be an (`, j)-cylinder, with `-partition

V (H(j)) = V1 ∪ · · · ∪ V`, and let O(j) = K(j)(U1, . . . , U`) be the (`, j)-octohedron. A labeled,

partite-embedding of O(j) in H(j) is an edge-preserving injection ψ : U1∪ · · ·∪U` → V1∪ · · ·∪V`
so that ψ(Ui) ⊆ Vi for each 1 ≤ i ≤ `. We write EMB(O(j),H(j)) to denote the family of all

labeled partite-embeddings ψ of O(j) in H(j).

We now define the concept of deviation.
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Definition 2.6 (deviation (DEV)). Let H(j) be a (j, j)-cylinder with underlying (j, j − 1)-

cylinder H(j−1). Let H(j) and H(j−1) have common vertex j-partition V (H(j)) = V (H(j−1)) =

V1 ∪ · · · ∪ Vj , and let d = d(H(j)|H(j−1)). For δ > 0, we say that (H(j),H(j−1)) has (d, δ)-
deviation, written DEV(d, δ), if∑

v1,v′1∈V1

· · ·
∑

vj ,v′j∈Vj

∏{
ω(J) : J ∈ K(j)

(
{v1, v

′
1}, . . . , {vj , v′j}

)}
≤ δ
∣∣EMB(O(j−1),H(j−1))

∣∣,
where for every v1, v

′
1 ∈ V1, . . . , vj , v

′
j ∈ Vj , and for each J ∈ K(j)

(
{v1, v

′
1}, . . . , {vj , v′j}

)
,

ω(J) =


1− d if J ∈ H(j),

−d if J ∈ Kj(H(j−1)) \ H(j),

0 if J 6∈ Kj(H(j−1)).

It is easy to extend Definition 2.6 from (j, j)-cylinders to (`, k)-complexes.

Definition 2.7. Let δ = (δ2, . . . , δk) and d = (dΛj : Λj ∈ [`]j , 2 ≤ j ≤ k) be sequences of

positive reals, and let (`, k)-complex H = {H(j)}kj=1 be given. We say the complex H has

DEV(d, δ) if, for each 2 ≤ j ≤ h and Λj ∈ [`]j , (H(j)[Λj ],H(j−1)[Λj ]) has DEV(dΛj , δj).

For future reference, we present some easy sufficient conditions for the property of deviation
(cf. Definition 2.6). For that, we need the following generalization of Definition 2.5.

Definition 2.8 (labeled partite-embedding). Let H(j) and H(j−1) be given as in Defini-

tion 2.6, and let S(j) ⊆ O(j) = K(j)(U1, . . . , Uj) be an arbitrary (2, j, j)-cylinder. We call an

injection ψ : U1 ∪ · · · ∪Uj → V1 ∪ · · · ∪ Vj a labeled partite-embedding of S(j) in (H(j),H(j−1)) if
it satisfies the following conditions:

(1) ψ is a labeled partite-embedding of O(j−1) = K(j−1)(U1, . . . , Uj) in H(j−1);

(2) for each J ∈ O(j) = K(j)(U1, . . . , Uj), we have

J ∈ S(j) =⇒ ψ(J) ∈ H(j).

We call ψ labeled, partite-induced embedding of S(j) in (H(j),H(j−1)) if it satisfies (1) and (2)
above, together with

(2′) for each J ∈ O(j) = K(j)(U1, . . . , U`), we have

J ∈ S(j) ⇐⇒ ψ(J) ∈ H(j).

We write EMB(S(j), (H(j),H(j−1))) to denote the family of all labeled partite-embeddings ψ of

S(j) in (H(j),H(j−1)). We write EMBind(S(j), (H(j),H(j−1))) to denote the family of all labeled,

partite-induced embeddings ψ of S(j) in (H(j),H(j−1)).

We now consider the following two properties.

Definition 2.9 (COUNTemb,COUNTind). Let H(j) and H(j−1) be given as in Definition 2.8,

where d = d(H(j)|H(j−1)). For δ > 0, we say that (H(j),H(j−1)) has COUNTemb(d, δ) if the

following condition holds: for every (2, j, j)-cylinder ∅ ⊆ S(j) ⊆ O(j) = K(j)(U1, . . . , Uj), we
have ∣∣EMB(S(j), (H(j),H(j−1)))

∣∣ = (1± δ)d|S(j)|∣∣EMB(O(j−1),H(j−1))
∣∣. (1)

(Note that when S(j) = ∅, it always holds that∣∣EMB(∅, (H(j),H(j−1)))
∣∣ = (1± δ)d0

∣∣EMB(O(j−1),H(j−1))
∣∣, (2)
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since every labeled partite-embedding ψ of ∅ inH(j) is, equivalently, a labeled partite-embedding
of O(j−1) in H(j−1).) We say that (H(j),H(j−1)) has COUNTind(d, δ) if the following condition

holds: for every (2, j, j)-cylinder ∅ ⊆ S(j) ⊆ O(j) = K(j)(U1, . . . , Uj),∣∣EMBind(S(j), (H(j),H(j−1)))
∣∣ = (1± δ)d|S(j)|(1− d)2j−|S(j)|∣∣EMB(O(j−1),H(j−1))

∣∣.
The following fact will be useful later in this paper. The proof is easy, and we give it in the

Appendix.

Fact 2.10. Suppose H(j) and H(j−1) are given as in Definition 2.9, where d = d(H(j)|H(j−1)) >

0, and let δ > 0 be given. Suppose, moreover, that |EMB(O(j−1),H(j−1))| = Ω(n2j ), where
|Vi| = Θ(n) for all i ∈ [j].

(1) (H(j),H(j−1)) has COUNTemb(d, δ) if, and only if, (H(j),H(j−1)) has COUNTind(d, δ);

(2) If (H(j),H(j−1)) has COUNTemb(d, δ), then (H(j),H(j−1)) has DEV(d, δ).

2.3. r-discrepancy, and the Witness-Construction Theorem. In this subsection, we de-
fine the concept of r-discrepancy (r-DISC), and present the Witness Construction Theorem
(cf. Theorem 2.16). We begin with the following extension of the concept of density (cf. Defi-
nition 2.3).

Definition 2.11 (r-density). Let H(j) and H(j−1) be given as in Definition 2.3, and let integer

r ≥ 1 be given. Let Q(j−1)
1 , . . . ,Q(j−1)

r ⊆ H(j−1) satisfy
⋃
i∈[r]Kj(Q

(j−1)
i ) 6= ∅. We define the

r-density of H(j) w.r.t. Q(j−1)
1 , . . . ,Q(j−1)

r as

d(H(j)|Q(j−1)
1 , . . . ,Q(j−1)

r ) =

∣∣H(j) ∩
⋃
i∈[r]Kj(Q

(j−1)
i )

∣∣∣∣⋃
i∈[r]Kj(Q

(j−1)
i )

∣∣ .

We now define the concept of r-discrepancy.

Definition 2.12 (r-discrepancy (r-DISC)). LetH(j) andH(j−1) be given as in Definition 2.3,

where d = d(H(j)|H(j−1)). For δ > 0 and an integer r ≥ 1, we say that (H(j),H(j−1)) has

(d, δ, r)-discrepancy, written DISC(d, δ, r), if for any collection Q(j−1)
1 , . . . ,Q(j−1)

r ⊆ H(j−1),∣∣ ⋃
i∈[r]

Kj(Q(j−1)
i )

∣∣ > δ|Kj(H(j−1))| =⇒
∣∣d(H(j)|Q(j−1)

1 , . . . ,Q(j−1)
r )− d

∣∣ < δ. (3)

For brevity, we sometimes refer to (d, δ, r)-discrepancy as r-discrepancy, and sometimes write
DISC(d, δ, r) as r-DISC.

We proceed with the following remark.

Remark 2.13. Note that 1-discrepancy is usually referred to as discrepancy, and 1-DISC is
usually denoted by DISC (cf. [11]). 2

We will also need the following concept, related to Definition 2.12.

Definition 2.14 (r-witness). Let H(j) and H(j−1) be given as in Definition 2.12, where d =

d(H(j)|H(j−1)). Suppose that (H(j),H(j−1)) does not have DISC(d, δ, r), for some δ > 0 and

integer r ≥ 1. We call any collection Q(j−1)
1 , . . . ,Q(j−1)

r ⊆ H(j−1) for which∣∣ ⋃
i∈[r]

Kj(Q(j−1)
i )

∣∣ > δ|Kj(H(j−1))| but
∣∣d(H(j)|Q(j−1)

1 , . . . ,Q(j−1)
r )− d

∣∣ ≥ δ.
an r-witness of ¬DISC(d, δ, r).
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We finally present the Witness-Construction Theorem, which concerns a (k, k)-complex H
satisfying the following setup.

Setup 2.15. Let H = H(k) = {H(j)}kj=1 be a (k, k)-complex, where H(1) = V1 ∪ · · · ∪ Vk has

n ≤ |Vi| ≤ n+ 1 for all i ∈ [k]. Let

dk =
(
dΛj : Λj ∈ [k]j , 2 ≤ j ≤ k

)
satisfy that, for each 2 ≤ j ≤ k and for each Λj ∈ [k]j ,

dΛj = d(H(j)[Λj ]|H(j−1)[Λj ]).

Note, in particular, that d[k] = d(H(k)|H(k−1)). We call dk the density sequence for H(k). Write

H(k−1) = {H(j)}k−1
j=1 and dk−1 =

(
dΛj : Λj ∈ [k]j , 2 ≤ j ≤ k − 1

)
,

so that dk−1 is the density sequence for H(k−1).

The Witness-Construction Theorem is now given as follows.

Theorem 2.16 (Witness-Construction Theorem). Let integer k ≥ 2 be fixed. For all
dk, δk > 0, there exists δ′k > 0 so that for all dk−1 > 0, there exists δk−1 > 0 so that, . . . , for
all d2 > 0, there exist δ2 > 0, positive integer r0, and positive integer n0 so that the following
holds.

Set δk−1 = (δ2, . . . , δk−1). Let H = H(k) be a (k, k)-complex with density sequence dk, as
given as in Setup 2.15, where n ≥ n0. Suppose dk satisfies that, for each 2 ≤ j ≤ k and for
each Λj ∈ [k]j, dΛj ≥ dj. Assume that

(1) H(k−1) has DEV(dk−1, δk−1), but that

(2) (H(k),H(k−1)) does not have DEV(d[k], δk).

Then, there exists an algorithm which constructs, in time O(n3k), an r-witness Q(k−1)
1 , . . . ,

Q(k−1)
r ⊆ H(k−1) of ¬DISC(d[k], δ

′
k, r), for some r ≤ r0.

3. Algorithmic Hypergraph Regularity Lemma

In this section, we state an Algorithmic Hypergraph Regularity Lemma (see Theorem 3.7,
below) for the property of deviation. To state this lemma, we still need some more concepts.

3.1. Families of partitions. Theorem 3.7 provides a well-structured family of partitions P =
{P(1), . . . ,P(k−1)} of vertices, pairs, . . . , and (k−1)-tuples of a given vertex set. We will define
the properties of P in upcoming Definitions 3.1 and 3.2, but we first need to establish some
notation and concepts.

We first discuss the structure of these partitions inductively, following the approach of [12].

Let k be a fixed integer and V be a set of vertices. Let P(1) = {V1, . . . , V|P(1)|} be a partition

of V . For every 1 ≤ j ≤ |P(1)|, let Crossj(P(1)) = K(j)(V1, . . . , V|P(1)|) be the family of all

crossing j-tuples J , i.e., the set of j-tuples which satisfy |J ∩ Vi| ≤ 1 for every 1 ≤ i ≤ |P(1)|.
Suppose that partitions P(i) of Crossi(P(1)) have been defined for all 1 ≤ i ≤ j − 1. Then

for every I ∈ Crossj−1(P(1)), there exists a unique class P(j−1) = P(j−1)(I) ∈ P(j−1) so

that I ∈ P(j−1). For every J ∈ Crossj(P(1)), we define the polyad of J by P̂(j−1)(J) =⋃{
P(j−1)(I) : I ∈ [J ]j−1

}
. Define the family of all polyads P̂(j−1) =

{
P̂(j−1)(J) : J ∈

Crossj(P(1))
}

, which we view as a set (as opposed to a multiset, since P̂(j−1)(J) = P̂(j−1)(J ′)
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may hold for J 6= J ′). To simplify notation, we often write the elements of P̂(j−1) as

P̂(j−1) ∈ P̂(j−1) (dropping the argument J).

Observe that {Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)} is a partition of Crossj(P(1)). The structural

requirement on the partition P(j) of Crossj(P(1)) is

P(j) ≺ {Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)} , (4)

where ‘≺’ denotes the refinement relation of set partitions. Note that (4) inductively implies
that

P(J) =
{
P̂(i)(J)

}j−1

i=1
, where P̂(i)(J) =

⋃{
P(i)(I) : I ∈ [J ]i

}
, (5)

is a (j, j − 1)-complex (since each P̂(i)(J) is a (j, i)-cylinder). We may now give Definitions 3.1
and 3.2.

Definition 3.1 (a-family of partitions). Let V be a set of vertices, and let k ≥ 2 be a fixed
integer. Let a = (a1, . . . , ak−1) be a sequence of positive integers. We say P = P(k − 1,a) =

{P(1), . . . ,P(k−1)} is an a-family of partitions on V , if it satisfies the following:

(a ) P(1) is a partition of V into a1 classes,

(b ) P(j) is a partition of Crossj(P(1)) refining {Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)} where, for

every P̂(j−1) ∈ P̂(j−1), |{P(j) ∈P(j) : P(j) ⊆ Kj(P̂(j−1))}| = aj .

Moreover, we say P = P(k − 1,a) is t-bounded, if max{a1, . . . , ak−1} ≤ t.

3.2. Properties of families of partitions. In this subsection, we describe some properties
we would like an a-family of partitions P = P(k − 1,a) to have.

Definition 3.2 ((η, δ,≥D,a)-family). Let V be a set vertices, let η > 0 be fixed, and let k ≥ 2
be a fixed integer. Let δ = (δ2, . . . , δk−1) and D = (D2, . . . , Dk−1) be sequences of positives,
and let a = (a1, . . . , ak−1) be a sequence of positive integers.

We say an a-family of partitions P = P(k − 1,a) on V is an (η, δ,≥D,a)-family if it
satisfies the following conditions:

(a ) P(1) = {Vi : i ∈ [a1]} is an equitable vertex partition, i.e., b|V |/a1c ≤ |Vi| ≤ d|V |/a1e
for i ∈ [a1];

(b )
∣∣[V ]k \ Crossk(P

(1))
∣∣ ≤ η|V |k;

(c ) all but η|V |k many k-tuples K ∈ Crossk(P
(1)) satisfy that for each 2 ≤ j ≤ k − 1,

and for each J ∈
(
K
j

)
, the pair (P(j)(J), P̂(j−1)(J)) has DEV(dJ , δj), where dJ =

d(P(j)(J)|P̂(j−1)(J)) ≥ Dj .

Note that in an (η, δ,≥D,a)-family of partitions P on V , properties (b) and (c) above imply

that all but 2η|V |k many k-tuples K ∈ [V ]k belong to Crossk(P
(1)) and satisfy that, for each

2 ≤ j ≤ k − 1, and for each J ∈
(
K
j

)
, the pair (P(j)(J), P̂(j−1)(J)) has DEV(dJ , δj), where

dJ = d(P(j)(J)|P̂(j−1)(J)) ≥ Dj .
For future reference, we also define the following concept, related to property (c) in Defini-

tion 3.2.

Definition 3.3 ((δ,≥D)-typical polyad). Suppose P = P(k − 1,a) is an (η, δ,≥D,a)-
family of partitions on a vertex set V , where δ = (δ2, . . . , δk−1) and D = (D2, . . . , Dk−1). We

say a polyad P̂(k−1) ∈ P̂(k−1) is (δ,≥D)-typical if

(a) Kk(P̂(k−1)) 6= ∅, and fixing any K ∈ Kk(P̂(k−1)), if
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(b) the corresponding (k, k − 1)-complex P(K) (cf. (5)) satisfies that, for each 2 ≤ j ≤
k − 1, and for each J ∈

(
K
j

)
, the pair (P(j)(J), P̂(j−1)(J)) has DEV(dJ , δj), where

dJ = d(P(j)(J)|P̂(j−1)(J)) ≥ Dj .

Remark 3.4. Note that property (c) of Definition 3.2 can be re-written as∑{∣∣∣Kk(P̂(k−1))
∣∣∣ : P̂(k−1) ∈ P̂(k−1) is not (δ,≥D)-typical

}
≤ η|V |k.

2

Note that in an (η, δ,≥D,a)-family P = {P(1), . . . ,P(k−1)} (cf. Definition 3.2), the ver-
tices, pairs, . . . , and (k − 1)-tuples of V are under regular control. The following definition

describes how the family P will control the edges of a hypergraph H(k), where V = V (H(k)).

Definition 3.5 ((H(k),P) has DEV(δk)). Let δk > 0 be given. For a k-graph H(k) and an

a-family of partitions P = P(k − 1,a) on V = V (H(k)), we say (H(k),P) has DEV(δk) if∣∣⋃{
Kk(P̂(k−1)) : P̂(k−1) ∈ P̂(k−1) satisfies that

(H(k), P̂(k−1)) does not have DEV
(
d(H(k)

∣∣P̂(k−1)), δk
)}∣∣ ≤ δk|V |k.

Before we state the algorithmic hypergraph regularity lemma, we say a word about some
notation we use in it.

Remark 3.6. Let D = (D2, . . . , Dk−1) ∈ (0, 1]k−1 be a sequence, and for each 2 ≤ i ≤ k − 1,
let δi : (0, 1]k−i → (0, 1) be a function (of k − i many (0, 1] variables), where we write δ =
(δ2, . . . , δk−1). We shall use the notation

δ(D) = (δi(Di, . . . , Dk−1) : 2 ≤ i ≤ k − 1)

to denote the sequence of function values whose ith coordinate, 2 ≤ i ≤ k−1, is δi(Di, . . . , Dk−1).
We consider this concept since, in most applications of Theorem 3.7, one needs the value δi to
be sufficiently small not only w.r.t. Di, but also Di+1, . . . , Dk−1. 2

We now state the algorithmic hypergraph regularity lemma.

Theorem 3.7 (Algorithmic Hypergraph Regularity Lemma). Let k ≥ 2 be a fixed
integer, and let η, δk > 0 be fixed positives. For each 2 ≤ i ≤ k − 1, let δi : (0, 1]k−i → (0, 1) be
a function, and set δ = (δ2, . . . , δk−1). Then, there exist t, n0 ∈ N so that the following holds.

For every k-uniform hypergraph H(k) with |V (H(k))| = n ≥ n0, one may construct, in time

O(n3k), a family of partitions P = P(k − 1,aP) of V (H(k)) with the following properties:

(i ) P is a t-bounded (η, δ(D),≥D,aP)-family on V (H(k)) (cf. Remark 3.6);

(ii ) (H(k),P) has DEV(δk).

We proceed with the following remark.

Remark 3.8. Similarly as in Szemerédi [21, 22] for graphs, it is well-known that one can
prove a hypergraph regularity lemma which ‘regularizes’ not one, but multiple hypergraphs

H(k)
1 , . . . ,H(k)

s (on a common vertex set V ) simultaneously. More precisely, in the context of

Theorem 3.7, the t-bounded (η, δ(D),≥D,aP)-family above will satisfy that, for each 1 ≤ i ≤
s, the pair (H(k)

i ,P) has DEV(δk), where t = t(s, k, η, δk, δ) and |V | ≥ n0 = n0(s, k, η, δk, δ).
We shall prove Theorem 3.7 by induction on k ≥ 2. To avoid formalism, we shall be proving

the case s = 1, but our induction hypothesis will assume the general case. 2
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4. Proof of Theorem 3.7

The proof of Theorem 3.7 is by induction on k ≥ 2. The induction begins with k = 2 as
a known base case. Indeed, Alon et al. [1] proved an algorithmic version of the Szemerédi
Regularity Lemma, which is Theorem 3.7 (k = 2) with DEV replaced by DISC. Gowers [4, 5]
proved that DEV and DISC are equivalent properties when k = 2, and so the base case of
Theorem 3.7 holds. We assume Theorem 3.7 holds through k − 1 ≥ 2, and prove it for k ≥ 3.
To that end, we need a few supporting considerations.

4.1. Supporting material. Suppose H(k) is a k-uniform hypergraph with vertex set V =
V (H(k)), where |V | = n. Let P = P(k − 1,a) be an a-family of partitions on V . We define

the index of P w.r.t. H(k) as

indH(k)(P) =
1

nk

∑{
d2(H(k)|P̂(k−1))

∣∣Kk(P̂(k−1))
∣∣ : P̂(k−1) ∈ P̂(k−1)

}
.

Clearly,

0 ≤ indH(k)(P) ≤ 1. (6)

The proof of Theorem 3.7 is similar to that of Szemerédi [21, 22], where we will use the
following so-called Index-pumping Lemma (Lemma 4.1 below). To introduce this lemma, let

H(k) be a k-uniform hypergraph with vertex set V = V (H(k)), where |V | = n. Since this proof
is by induction on k, suppose we already have a ‘regular partition’ P = P(k − 1,a) of V up
through k − 1. More precisely,

• let P = P(k − 1,a) be an arbitrary t-bounded, (η, δ(D),≥D,a)-family on V .

We now test how H(k) behaves on P. In particular, we test whether (H(k),P) has DEV(δk),
which we may do in time O(n2k). Indeed,

• for each polyad P̂(k−1) ∈ P̂(k−1), we test (by using Definition 2.6) whether or not

(H(k), P̂(k−1)) has DEV(dP̂(k−1) , δk), where dP̂(k−1) = d(H(k)|P̂(k−1)).

We arrive at two cases.

Case 1. Suppose we find that most polyads P̂(k−1) ∈ P̂(k−1) satisfy that (H(k), P̂(k−1)) has
DEV(dP̂(k−1) , δk). Then we stop, and P is the partition we seek in Theorem 3.7.

Case 2. Suppose we find many polyads P̂(k−1) ∈ P̂(k−1) for which the pair (H(k), P̂(k−1)) fails

to have DEV(dP̂(k−1) , δk). Then, for each such P̂(k−1) ∈ P̂(k−1),

• Theorem 2.16 builds (in timeO(n3k)) an rP̂(k−1)-witness ~Q(k−1)

P̂(k−1)
= {Q(k−1)

1 , . . . ,Q(k−1)
rP̂(k−1)

}
of ¬DISC(dP̂(k−1) , δ̃k, rP̂(k−1)),

where δ̃k = δ̃k(δk) > 0 depends on δk, and where rP̂(k−1) ≤ r(D), where r(D) depends on D.
Now,

• Lemma 4.1 (below) constructs, in time O(nk−1), a new partition P ′ from P and the

witnesses ~Q(k−1)

P̂(k−1)
, over those polyads P̂(k−1) ∈ P̂(k−1) failing to have DEV(dP̂(k−1) , δk),

where

indH(k)(P̂ ′) ≥ indH(k)(P) +
δ̃4
k

2
.

We now state the Index-pumping Lemma precisely.
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Lemma 4.1 (Index-pumping Lemma). Fix an integer k ≥ 2, and let ν, δ̃k > 0 be fixed. For
each 2 ≤ i ≤ k − 1, let δi : (0, 1]k−i → (0, 1) be a function, where we set δ = (δ2, . . . , δk−1).
Let r : (0, 1]k−2 → N be an arbitrary function. Let Dold = (Dold

2 , . . . , Dold
k−1) ∈ (0, 1]k−2 and

aold = (aold
1 , . . . , aold

k−1) ∈ Nk−1 be fixed. Then, there exist Dnew = (Dnew
2 , . . . , Dnew

k−1) ∈ (0, 1]k−2,

anew = (anew
1 , . . . , anew

k−1) ∈ Nk−1, and n0 ∈ N so that the following holds.

Suppose H(k) is a k-uniform hypergraph with vertex set V = V (H(k)), where |V | = n ≥
n0. Suppose Pold = Pold(k − 1,a) is a told-bounded (ν, δ(Dold),≥Dold,aold)-family on V ,

where told = max{aold
1 , . . . , aold

k−1} and where δ(Dold) =
(
δi(D

old
i , . . . , Dold

k−1)
)k−1

i=2
. Suppose that

P̂
(k−1)
∗ ⊆ P̂(k−1) is a given collection of polyads satisfying the following properties:

(1) ∀ P̂(k−1) ∈ P̂
(k−1)
∗ , one is given an rP̂(k−1)-witness ~Q(k−1)

P̂(k−1)
of ¬DISC(dP̂(k−1) , δ̃k, rP̂(k−1)),

where rP̂(k−1) ≤ r(Dold) = r(Dold
2 , . . . , Dold

k−1);
(2) ∑{∣∣Kk(P̂(k−1))

∣∣ : P̂(k−1) ∈ P̂
(k−1)
∗

}
≥ δ̃knk.

Then,

(a) there exists a tnew-bounded (ν, δ(Dnew),≥Dnew,anew)-family Pnew = Pnew(k−1,anew)
on V for which

indH(k)(Pnew) ≥ indH(k)(Pold) +
δ̃4
k

2
,

where tnew = max{anew
1 , . . . , anew

k−1} and where δ(Dnew) =
(
δi(D

new
i , . . . , Dnew

k−1)
)k−1

i=2
.

(b) Moreover, there exists an algorithm which, in time O(nk−1), constructs the partition

Pnew above from Pold and the given collection of witnesses { ~Q(k−1)

P̂(k−1)
: P̂(k−1) ∈ P̂

(k−1)
∗ }.

Lemma 4.1 is essentially given as Lemma 8.3 of [17] and Lemma 6.3 of [5]. The proof of
Lemma 4.1 is given in [5, 17], but with no focus to being algorithmic. We shall not give a
formal proof of Lemma 4.1, but we will sketch a proof to indicate how its algorithmic part is
obtained.

Indeed, the approach in [17] is similar to Szemerédi’s [21, 22]. Consider the Venn Diagram

of the intersections of the rP̂(k−1)-witnesses ~Q(k−1)

P̂(k−1)
, over P̂(k−1) ∈ P̂

(k−1)
∗ . By Statement (1)

in the hypothesis of Lemma 4.1, these witnesses are given to us. (In [17], these witnesses are
assumed to exist, but here, we will build them with Theorem 2.16.) This Venn diagram has at
most

2|P̂
(k−1)
∗ |r(Dold)

regions (this number is independent of n), where each region is a (k − 1, k − 1)-cylinder. This
Venn Diagram defines a refinement P ′

old of Pold, so that P ′
old is itself a partition. The index

of P ′
old will be larger than that of Pold on account of the fact that, in Statement (2), we

assumed many k-tuples were lost to polyads P̂(k−1) ∈ P̂
(k−1)
∗ . The (k − 1, k − 1)-cylinders

of P ′
old may not have DEV(δk), so we apply Theorem 3.7 to each (where we assume, by

induction on k, that Theorem 3.7 is algorithmic for k − 1 (cf. Remark 3.8)). This process
produces the partition Pnew, where it is well-known that, as a refinement of P ′

old, we have
indH(k)(Pnew) ≥ indH(k)(P ′

old). For the formal details of this outline, see [5, 17].
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4.2. Proof of Theorem 3.7. The proof of Theorem 3.7 was casually revealed when we intro-
duced the Index-pumping Lemma. Here, we proceed with the formal details.

Let η, δk > 0 be given. For each 2 ≤ i ≤ k − 1, let δi : (0, 1]k−i → (0, 1) be a function, and
set δ = (δ2, . . . , δk−1). We begin our argument by defining some auxiliary parameters.

4.2.1. Auxiliary parameters for Theorem 3.7. In all that follows, set

dk = δ̄k = ν =
1

3
min{δk, η} and t0 = d2/νe. (7)

Let

δ̃k = δ′k,Thm.2.16(dk, δ̄k) (8)

be the constant guaranteed by the Witness-Construction Theorem (Theorem 2.16). More gen-
erally, recall that Theorem 2.16 has the following quantification:

∀ k, dk, δk,∃ δ′k : ∀ dk−1, ∃ δk−1 : . . . ∀ d2,∃ δ2, r0, n0 : . . .

This means that for each 2 ≤ i ≤ k − 1, the constant δi (which is guaranteed to exist by
Theorem 2.16) depends on dj , for all i ≤ j ≤ k − 1 (which were given earlier). In other words,
Theorem 2.16 guarantees the existence of the following function

δi,Thm.2.16(dk, xk−1, . . . , xi) : {dk} × (0, 1]k−i−1 → (0, 1) (9)

where xk−1 = dk−1, . . . , xi = di ∈ (0, 1] are variables. Similarly, with variables xk−1 =
dk−1, . . . , x2 = d2 ∈ (0, 1], let

r0(dk, xk−1, . . . , x2) : {dk} × (0, 1]k−2 → N (10)

be the function guaranteed by the Theorem 2.16. We shall assume, w.l.o.g., that for each
2 ≤ i ≤ k − 1 and for every xk−1, . . . , xi ∈ (0, 1], we have

δi(xk−1, . . . , xi) ≤ δi,Thm.2.16(dk, xk−1, . . . , xi). (11)

Indeed, for otherwise, we would replace the given function δi with the function δi,Thm.2.16 and
produce a partition P which is ‘more regular’ than was sought. In what follows, we set
δ = (δ2, . . . , δk), and we emphasize that, in what follows,

k, ν, δ̃k, δ, and r are fixed (as a result of (7)–(11)). (12)

It remains to define the promised integer t. Similarly as in the proof of Szemerédi [21, 22],
this integer will be determined by an iterative procedure using the Index-pumping Lemma
(Lemma 4.1). To that end, recall that Lemma 4.1 has the following quantification:

∀ k, ν, δ̃k, δ, r,Dold,aold,∃Dnew,anew, n0 : . . .

We apply Lemma 4.1 with the fixed choices k, ν, δ̃k, δ, and r from (12) so that Lemma 4.1
defines functions

Dnew(Dold,aold) = Dnew(ν, δ̃k, δ, r = r0,Dold,aold) ∈ (0, 1]k−2,

and anew(Dold,aold) = anew(ν, δ̃k, δ, r = r0,Dold,aold) ∈ Nk−1, (13)

where Dold ∈ (0, 1]k−2 and aold ∈ Nk−1 are sequences of variables. (Henceforth, we make the

abbreviations D = Dnew and a = anew.) Now, we successively define sequences D(i) ∈ (0, 1]k−2

and a(i) ∈ Nk−1, as follows. With t0 given in (7), set

D(1) = (d2 = 1, . . . , dk−1 = 1) and a(1) = (a
(1)
1 = t0, a

(1)
2 = 1, . . . , a

(1)
k−1 = 1). (14)
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For i ≥ 2, set (cf. (13))

D(i) = D(D(i−1),a(i−1)) = (d
(i)
2 , . . . , d

(i)
k−1),

a(i) = a(D(i−1),a(i−1)) =
(
a

(i)
1 , . . . , a

(i)
k−1

)
,

and ti = max
{
a

(i)
1 , . . . , a

(i)
k−1

}
(15)

(recall the functions given in (13)). Set (cf. (8))

t = max
1≤i≤istop

ti, where istop =

⌊
2

δ̃4
k

⌋
. (16)

This concludes the description of parameters we need to prove Theorem 3.7.

4.2.2. The argument (algorithm) for Theorem 3.7. Let H(k) be a k-uniform hypergraph with

vertex set V = V (H(k)), where we assume n = |V | is sufficiently large. Our goal is to construct,
in time O(n3k), a family of partitions P = P(k − 1,aP) of V which is t-bounded (cf. (16)),

which is an (η, δ(D),≥D,a)-family, where (H(k),P) has DEV(δk), and where the sequences

D and a will be given byD(i) and a(i) (cf. (14) and (15)), resp., for some 1 ≤ i ≤ istop (cf. (16)).
To begin, let V = V1∪· · ·∪Vt0 (cf. (7)) be a vertex partition satisfying bn/t0c ≤ |Vi| ≤ dn/t0e,

for each 1 ≤ i ≤ t0. Let P1 = {P(1)
1 , . . . ,P

(k−1)
1 } be an initial family of partitions, where for

each 2 ≤ j ≤ k−1, the partition P
(j)
1 consists of the

(
t0
j

)
many (j, j)-cylinders K(j)(Vi1 , . . . , Vij ),

where 1 ≤ i1 < · · · < ij ≤ t0. Then, P1 is a t0-bounded (ν, δ(D(1)),≥D(1),a(1))-family of
partitions (cf. (14)). Indeed, all but

t0

(
dn/t0e

2

)
nk−2 <

nk

t0

(7)
< νnk

many k-tuples K ∈
(
V
k

)
belong to Crossk(P

(1)
1 ), and every K ∈ Crossk(P

(1)
1 ) satisfies that,

for every 2 ≤ j ≤ k − 1, and for every J ∈
(
K
j

)
, the pair (P(j)(J), P̂(j−1)(J)) has DEV(1, 0)

(cf. Conditions (a)–(c) of Definition 3.2).
For an integer 1 ≤ i < istop (cf. (16)), assume P1, . . . ,Pi are constructed families of parti-

tions of V , where

Pi = Pi(k − 1,ai) is a ti-bounded (ν, δ(D(i)),≥D(i),a(i))-family, (17)

for D(i), a(i) and ti given in (14)–(15). We proceed with the following Steps 1–4.

Step 1. Identify, in time O(n2k), the sets

P̂
(k−1)
i,¬DEV =

{
P̂(k−1) ∈ P̂

(k−1)
i : (H(k), P̂(k−1)) does not have DEV(d(H(k)|P̂(k−1)), δ̄k)

}
,

P̂
(k−1)
i,typ =

{
P̂(k−1) ∈ P̂

(k−1)
i : P̂(k−1) is (δ(D(i)),≥D(i))-typical (cf. Definition 3.5)

}
,

P̂
(k−1)
i,atyp =

{
P̂(k−1) ∈ P̂

(k−1)
i : P̂(k−1) is not (δ(D(i)),≥D(i))-typical

}
.

Identify, in time O(nk), the sets (cf. (7))

P̂
(k−1)
i,dense =

{
P̂(k−1) ∈ P̂

(k−1)
i : d(H(k)|P̂(k−1)) ≥ dk

}
, P̂

(k−1)
i,sparse = P̂

(k−1)
i \ P̂

(k−1)
i,dense.
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Identify, in time O(1), the set

P̂
(k−1)
i,∗ = P̂

(k−1)
i,¬DEV ∩ P̂

(k−1)
i,typ ∩ P̂

(k−1)
i,dense. (18)

(The last identification uses that |P̂(k−1)
i | = O(1).)

Step 2. Compute2 the sum

Si =
∑{∣∣∣Kk(P̂(k−1))

∣∣∣ : P̂(k−1) ∈ P̂
(k−1)
i,∗

}
.

If Si ≥ δ̄kn
k (cf. (7)), we proceed to Step 3. If Si < δ̄kn

k, then we stop, and the promised
partition is P = Pi. Indeed, since

P̂
(k−1)
i,¬DEV ⊆ P̂

(k−1)
i,∗ ∪ P̂

(k−1)
i,atyp ∪ P̂

(k−1)
i,sparse,

we have (cf. Remark 3.4)∑{∣∣∣Kk(P̂(k−1))
∣∣∣ : P̂(k−1) ∈ P̂

(k−1)
i,¬DEV

}
≤ Si +

∑{∣∣∣Kk(P̂(k−1))
∣∣∣ : P̂(k−1) ∈ P̂

(k−1)
i,atyp

}
+
∑{∣∣∣Kk(P̂(k−1))

∣∣∣ : P̂(k−1) ∈ P̂
(k−1)
i,sparse

}
< δ̄kn

k + ηnk + dkn
k

(7)
< δkn

k,

so that P = Pi has property DEV(δk) (cf. Definition 3.3). Moreover, since Pi is a ti-bounded

(ν, δ(D(i)),≥D(i),a(i))-family, with ν < η (cf. (7)), then it is also an (η, δ(D(i)),≥D(i),a(i))-
family (cf. (7)), as desired.

Step 3. If Si ≥ δ̄kn
k, then we will apply Theorem 2.16 to each P̂(k−1) ∈ P̂

(k−1)
i,∗ . We first

verify that the hypothesis of Theorem 2.16 will be satisfied. To that end, fix P̂(k−1) ∈ P̂
(k−1)
i,∗ ,

and let P be the corresponding (k, k− 1)-complex (cf. (5)). In the context of Theorem 2.16, P
plays the role of H(k−1), and (H(k) ∩ Kk(P̂(k−1))) ∪P plays the role of H(k). Since

P̂(k−1) ∈ P̂
(k−1)
i,∗

(18)

⊆ P̂
(k−1)
i,typ ,

we have that P is (δ(D(i)),≥D(i))-typical, or in other words (cf. Definition 3.3), P has

DEV(dP̂(k−1) , δ(D(i))) for some density sequence dP̂(k−1) which is coordinate-wise at leastD(i).
Since

P̂(k−1) ∈ P̂
(k−1)
i,∗

(18)

⊆ P̂
(k−1)
i,¬DEV ∩ P̂

(k−1)
i,dense,

we have that (H(k), P̂(k−1)) does not have DEV(d(H(k)|P̂(k−1)), δ̄k), where d(H(k)|P̂(k−1)) ≥ dk.
Moreover, we have chosen the constants dk, δ̄k and δ̃k (cf. (7) and (8)) and the functions δ(D(i))
and

r0(D(i)) = r0(dk, d
(i)
k−1, . . . , d

(i)
2 )

(cf. (9)–(11)) appropriately for an application of Theorem 2.16. Thus, the hypothesis of The-
orem 2.16 is satisfied, and so Theorem 2.16 constructs, in time O(n3k), an rP̂(k−1)-witness

~Q(k−1)

P̂(k−1)
, given by

Q(k−1)

1,P̂(k−1)
, . . . ,Q(k−1)

rP̂(k−1) ,P̂(k−1)
⊆ P̂(k−1), (19)

2Since Si = O(nk) has O(logn) many digits, Step 2 is done in time O(logn).
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of ¬DISC(d(H(k), P̂(k−1)), δ̃k, rP̂(k−1)), where rP̂(k−1) ≤ r0(D(i)). Repeat the application of

Theorem 2.16 over all P̂(k−1) ∈ P̂
(k−1)
i,∗ .

Step 4. If Si ≥ δ̄kn
k, then we will apply Lemma 4.1 to the family of partitions Pi and the

collection of witnesses ~Q(k−1)

P̂(k−1)
, over all P̂(k−1) ∈ P̂

(k−1)
i,# . We first verify that the hypothesis of

Lemma 4.1 will be satisfied. Indeed, by our induction hypothesis in (17), Pi is a constructed ti-

bounded (ν, δ(D(i)),≥D(i),a(i)) family of partitions. Assumption (1) of Lemma 4.1 is satisfied

because the set P̂
(k−1)
i,∗ was constructed in Step 1 (cf. (18)), and for each P̂(k−1) ∈ P̂

(k−1)
i,∗ , a

corresponding rP̂(k−1)-witness ~Q(k−1)

P̂(k−1)
was constructed in Step 3 (cf. (19)). Assumption (2) of

Lemma 4.1 is satisfied because we assume Si ≥ δ̄knk, and so

Si =
∑{∣∣∣Kk(P̂(k−1))

∣∣∣ : P̂(k−1) ∈ P̂
(k−1)
i,∗

}
≥ δ̄knk

(8)

≥ δ̃kn
k.

Thus, Lemma 4.1 constructs, in time O(nk−1), a ti+1-bounded (ν, δ(D(i+1)),≥D(i+1),a(i+1))

family of partitions Pi+1, where ti+1, D(i+1), and a(i+1) are given in (15), for which

indH(k)(Pi+1) ≥ indH(k)(Pi) +
δ̃4
k

2
.

Return to Step 1 with the newly constructed family Pi+1.

From (6), we may repeat Steps 1–4 above at most istop = b2/δ̃4
kc times (cf. (16)), which

proves Theorem 3.7.

5. Counting and Extension Lemmas

In this section, we present Counting and Extension Lemmas for regular complexes. All
results in this section can be derived, in a standard way, from the following Counting Lemma
for cliques due to Gowers [4, 5],

Theorem 5.1 (Clique Counting Lemma, Gowers). Let integers ` ≥ k ≥ 2 be fixed. For
all µ, dk > 0, there exists δk > 0 so that for all dk−1 > 0, there exists δk−1 > 0 so that, . . . , for
all d2 > 0, there exists δ2 > 0 and positive integer n0 so that the following holds.

Set δ = (δ2, . . . , δk), and let d = (dΛj : Λj ∈ [`]j , 2 ≤ j ≤ `) be a sequence satisfying, for

each 2 ≤ j ≤ k, dΛj ≥ dj for all Λj ∈ [`]j. Let H = {H(j)}kj=1 be an (`, k)-complex, where

H(1) = V1 ∪ · · · ∪ V` has n0 ≤ n ≤ |Vi| ≤ n + 1 for each 1 ≤ i ≤ `. If H has DEV(d, δ), then

H(k) ∈H has ∣∣K`(H(k))
∣∣ = (1± µ)

k∏
j=2

∏
Λj∈[`]j

dΛj × n`

many cliques K
(k)
` .

We now present a version of Theorem 5.1 which allows us to count copies of the (`, k)-

octohedron O(k) = K(k)(U1, . . . , U`), |U1| = · · · = |U`| = 2, within an (`, k)-complex H.

Theorem 5.2 (Octohedral Counting Lemma). Let integers ` ≥ k ≥ 2 be fixed. For all
µ, dk > 0, there exists δk > 0 so that for all dk−1 > 0, there exists δk−1 > 0 so that, . . . , for all
d2 > 0, there exists δ2 > 0 and positive integer n0 so that the following holds.
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Set δ = (δ2, . . . , δk), and let d = (dΛj : Λj ∈ [`]j , 2 ≤ j ≤ k) be a sequence satisfying that

for all 2 ≤ j ≤ k and Λj ∈ [`]j, dΛj ≥ dj. Let H = {H(j)}kj=1 be an (`, k)-complex, where

H(1) = V1 ∪ · · · ∪Vk has n0 ≤ n ≤ |Vi| ≤ n+ 1, 1 ≤ i ≤ `. If H has DEV(d, δ), then H(k) ∈H
has ∣∣EMB(O(k),H(k))

∣∣ = (1± µ)
k∏
j=2

∏
Λj∈[`]j

dΛj × n2`

many labeled partite-isomorphic copies of the (`, k)-octohedron O(k) = K(k)(U1, . . . , U`).

We next present a type of extension lemma (cf. Lemma 5.4), which we will describe in terms
of the following auxiliary graph Γ.

Definition 5.3. For integers ` ≥ k ≥ 2, let H = {H(j)}kj=1 be an (`, k)-complex, and let O(k)

be the (`, k)-octohedron. We define the octohedral-incidence graph ~Γ = ~Γk,`(H) of H as follows.

Set V (~Γ) = K`(H(k)). For L,L′ ∈ V (Γ), put {L,L′} ∈ ~Γ if, and only if, there exists a labeled

partite-embedding ψ of O(k) in H with imψ = L ∪ L′, i.e., L ∪ L′ induces a copy of O(k) in
H(k).

We now state the Octohedral Extension Lemma.

Theorem 5.4 (Octohedral Extension Lemma). Fix integers ` ≥ k ≥ 2. For all ζ, dk > 0,
there exists δk > 0 so that for all dk−1 > 0, there exists δk−1 > 0 so that, . . . , for all d2 > 0,
there exist δ2 > 0 and positive integer n0 so that the following holds.

Set δ = (δ2, . . . , δk), and let d = (dΛj : Λj ∈ [`]j , 2 ≤ j ≤ k) be a sequence satisfying that, for

all 2 ≤ j ≤ k and for all Λj ∈ [`]j, dΛj ≥ dj. Let H = {H(j)}kj=1 be an (`, k)-complex, where

H(1) = V1 ∪ · · · ∪ V` has n0 ≤ n ≤ |Vi| ≤ n + 1 for each i ∈ [`]. If H has DEV(d, δ) and if
Γ = Γk,`(H) is the octohedral-incidence graph of H (cf. Definition 5.3), then

(1) all but ζ|K`(H(k))| cliques L ∈ K`(H(k)) satisfy

degΓ(L) = (1± ζ)

k∏
j=2

∏
Λj∈[`]j

d2j−1
Λj

× n`;

(2) all but ζ|K`(H(k))|2 pairs of cliques L 6= L′ ∈ K`(H(k)) satisfy

degΓ(L,L′) = (1± ζ)
k∏
j=2

∏
Λj∈[`]j

d2·2j−3
Λj

× n`.

6. The Negative-Extension Lemma

In the previous section, we stated Counting and Extension Lemmas corresponding to when
a complex H has the deviation property DEV. In this section, we explore what happens when
the property of deviation fails to hold. We give our main result as Theorem 6.2, which we call
the Negative-Extension Lemma. We first motivate this result.

Suppose H(k) is a (k, k)-cylinder with underlying (k, k − 1)-cylinder H(k−1), where d =

d(H(k)|H(k−1)) > 0. For δ > 0, suppose that (H(k),H(k−1)) does not have DEV(d, δ). State-

ment (2) of Fact 2.10 then guarantees that (H(k),H(k−1)) does not have COUNTemb(d, δ). As

such, by Definition 2.9 (recall (1) and (2)), there exists some ∅ 6= S(k) ⊆ O(k) = K(k)(U1, . . . , Uk)
so that ∣∣EMB(S(k), (H(k),H(k−1)))

∣∣ 6= (1± δ)d|S(k)|∣∣EMB(O(k−1),H(k−1))
∣∣. (20)
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The Negative-Extension Lemma (Theorem 6.2) will conclude that, as a result of (20), there

are ‘many’ k-tuples K ∈ Kk(H(k−1)) which ‘belong’ to some unusual number of labeled partite

embeddings of S(k) in H(k). To make our plan precise, we need some supporting concepts.

6.1. Supporting concepts, and the Negative-Extension Lemma. We use the following

notation. For a (k, k)-complex H = {H(j)}kj=1, and for an integer 1 ≤ i ≤ k, let H(i) def
=

{H(j)}ij=1. Note that H(i) is a (k, i)-complex. Now, let

Γi = Γi,k(H(i)) (21)

be the octohedral-incidence graph (cf. Definition 5.3) of H(i). Clearly,

Γk ⊆ Γk−1 ⊆ · · · ⊆ Γ2. (22)

We also use the following variant of the octohedral-incidence graph Γk, which accomodates
arbitary subhypergraphs ∅ ⊆ S(k) ⊆ O(k) = K(k)(U1, . . . , Uk).

Definition 6.1 (incidence digraph, anchor). Fix a (2, k, k)-cylinder ∅ ⊆ S(k) ⊆ O(k) =

K(k)(U1, . . . , Uk). Fix a k-tuple A = {a1, . . . , ak}, where for each i ∈ [k], ai ∈ Ui. Let

H(k) = {H(j)}kj=1 be a (k, k)-complex. We define the (S(k), A)-incidence digraph ~ΓA(S(k)) =
~ΓA(S(k),H(k)) of H(k) as follows. Set V (~ΓA(S(k))) = Kk(H(k−1)). For K,K ′ ∈ V (~ΓA(S(k))),

put (K,K ′) ∈ ~ΓA(S(k)) if, and only if, there exists a labeled partite-embedding ψ of S(k) in

(H(k),H(k−1)) (cf. Definition 2.8) so that ψ(A) = K and imψ = K ∪K ′. We will say that A is

the anchor of ~ΓA(S(k)), and we will write Ā = (U1 ∪ · · · ∪ Uk) \A.

When working with the (S(k), A)-incidence digraph ~ΓA(S(k)) = ~ΓA(S(k),H) of a (k, k)-

complex H, we use the following standard notation. For K,K ′ ∈ V (~Γ), we write

N~ΓA(S(k))(K) =
{
K ′′ ∈ V (~ΓA(S(k))) : (K,K ′′) ∈ ~ΓA(S(k))

}
,

N~ΓA(S(k))(K,K
′) = N~ΓA(S(k))(K) ∩N~ΓA(S(k))(K

′),

deg~ΓA(S(k))(K) =
∣∣∣N~ΓA(S(k))(K)

∣∣∣ and deg~ΓA(S(k))(K,K
′) =

∣∣∣N~ΓA(S(k))(K,K
′)
∣∣∣ . (23)

Note that all neighborhoods and degrees defined above are out-neighborhoods and out-degrees.
We now consider the following statement EXT, which considers a hypergraph ∅ 6= S(k) ⊆

O(k), an anchor A for which Ā ∈ S(k) (cf. Definition 6.1), and a (k, k)-complex H(k).

EXTA(S(k)) = EXTA(S(k), ξ,H(k)). Fix ∅ 6= S(k) ⊆ O(k) = K(k)(U1, . . . , Uk), and fix an

anchor A for which Ā ∈ S(k)(cf. Definition 6.1). Let ξ > 0 be given, and let H(k) = {H(j)}kj=1

be a (k, k)-complex with d[k] = d(H(k)|H(k−1)) > 0. Then, the following condition holds:

(1) If A ∈ S(k), then all but ξ|H(k)| edges H ∈ H(k) satisfy the following implication:

If deg~ΓA(S(k)\{Ā})(H) > ξ degΓk−1
(H),

then deg~ΓA(S(k))(H) = (1± ξ)d[k] deg~ΓA(S(k)\{Ā})(H);
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(2) If A 6∈ S(k), then all but ξ|Kk(H(k−1))| cliques K ∈ Kk(H(k−1)) satisfy the following
implication:

If deg~ΓA(S(k)\{Ā})(K) > ξ degΓk−1
(K),

then deg~ΓA(S(k))(K) = (1± ξ)d[k] deg~ΓA(S(k)\{Ā})(K).

For future purposes, it will be convenient to have a compact presentation of the statement
EXTA(S(k)) = EXTA(S(k), ξ,H(k)) (see (26) below). To that end, let

A(k) = A(k)(S(k), A,H(k)) =

{
H(k) if A ∈ S(k),

Kk(H(k−1)) if A 6∈ S(k).
(24)

In the language of A(k), we will combine Conditions (1) and (2) of EXTA(S(k)) into one
presentation, as follows. Set

A(k)
bad = A(k)

bad(S(k), A, ξ,H(k)) =
{
K ∈ A(k) : deg~ΓA(S(k)\Ā)(K) > ξ degΓk−1

(K)

but deg~ΓA(S(k))(K) 6= (1± ξ)d[k] deg~ΓA(S(k)\Ā)(K)
}
. (25)

Then,

EXTA(S(k), ξ,H(k)) is true ⇐⇒ |A(k)
bad| < ξ|A(k)|. (26)

We now state the main result of the section, the Negative-Extension Lemma.

Theorem 6.2 (The Negative-Extension Lemma). Let integer k ≥ 2 be fixed. For all
dk, δk > 0, there exists ξ > 0 so that for all dk−1 > 0, there exists δk−1 > 0 so that, . . . , for all
d2 > 0, there exist δ2 > 0 and positive integer n0 so that the following holds.

Set δk−1 = (δ2, . . . , δk−1). Let H = H(k) be a (k, k)-complex with density sequence dk, as
given in Setup 2.15, where n ≥ n0. Suppose dk satisfies that, for each 2 ≤ j ≤ k, dΛj ≥ dj for

all Λj ∈ [k]j. Assume that

(1) H(k−1) has DEV(dk−1, δk−1), but that

(2) (H(k),H(k−1)) does not have DEV(d[k], δk).

Then, there exists a hypergraph ∅ 6= S(k) ⊆ O(k) = K(k)(U1, . . . , Uk) so that, whenever an

anchor A satisfies Ā ∈ S(k), the statement EXTA(S(k), ξ,H(k)) is false. In other words, the

hypergraphs A(k) = (S(k), A,H(k)) and A(k)
bad = A(k)

bad(S(k), A, ξ,H(k)) satisfy |A(k)
bad| ≥ ξ|A

(k)|.

We proceed to define the constants for Theorem 6.2.

6.2. The constants of Theorem 6.2. Let k ≥ 2 be a fixed integer, and let dk, δk > 0 be
given. We define the constant ξ promised by Theorem 6.2 by

ξ =
1

100k2k
δkd

2k

k . (27)

Let dk−1 > 0 be given. We formally define the constant δk−1 in upcoming (29), but we first
motivate how we choose it. To that end, define auxiliary constants (cf. (27))

µ = 1/2 and ζk−1 = ξdk2k−1

k−1 . (28)

Recall from the hypothesis of Theorem 6.2 that we will be working with a (k, k − 1)-complex

H(k−1) = {H(j)}k−1
j=2 which has DEV(dk−1, δk−1), where the constants dk−2, . . . , d2 of dk−1 and
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the constants δk−1, . . . , δ2 of δk−1 will be disclosed below. For such a complex H(k−1), we want
δk−1 > 0 to be small enough so that the following conditions are satisfied (cf. (28)):

(a) we can estimate |Kk(H(k−1))| within an error of 1± µ;

(b) we can estimate |EMB(O(k−1),H(k−1))| within an error of 1± µ;

(c) all but ζk−1|Kk(H(k−1))| cliques K ∈ Kk(H(k−1)) satisfy

degΓk−1
(K) = (1± ζk−1)

k−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

× nk.

To guarantee that (a), (b), and (c) above are satisfied, we need δk−1 > 0 to be small enough to
enable applications of Theorems 5.1, 5.2, and 5.4. With dk−1 given above, and with µ = 1/2
from (28), let

δThm.5.1, k − 1 = δThm.5.1(` = k, k − 1, µ = 1/2, dk−1) > 0

and δThm.5.2, k − 1 = δThm.5.2(` = k, k − 1, µ = 1/2, dk−1) > 0

be the constants guaranteed by Theorems 5.1 and 5.2. With dk−1 given above, and with ζk−1

from (28), let

δThm.5.4, k − 1 = δThm.5.4(` = k, k − 1, ζ = ζk−1, dk−1) > 0

be the constant guaranteed by Theorem 5.4. Now, set

δk−1 = min {δThm.5.1, k − 1, δThm.5.2, k − 1, δThm.5.4, k − 1} (29)

which concludes our definition of the promised constant δk−1.
Inductively, assume dk−1, δk−1, . . . , di, δi, di−1 have been disclosed, for a fixed integer i satis-

fying 3 ≤ i ≤ k − 1. Moreover, assume that we have defined auxiliary constants (cf. (28))

ζk−1 = ξdk2k−1

k−1 , ζk−2 = ξd
( k
k−1)2k−1

k−1 d
( k
k−2)2k−2

k−2 , . . . ζi−1 = ξ
k−1∏
j=i−1

d
(kj)2j

j . (30)

We define δi−1 similarly to how we defined δk−1 (cf. (29)). In particular, we want δi−1 > 0 to
be small enough so that (a) and (b) above are satisfied with µ = 1/2. These tasks are handled
by Theorems 5.1 and 5.2, which have the following common quantification of constants:

∀µ, ∀dk−1, ∃δk−1 : . . . ∀di−1, ∃δi−1 : . . .

With µ = 1/2 from (28), and with dk−1, δk−1, . . . , di−1 inductively disclosed above, let

δThm.5.1, i− 1 = δThm.5.2(` = k, k − 1, µ = 1/2, dk−1, δk−1, . . . , di, δi, di−1) > 0

and δThm.5.2, i− 1 = δThm.5.2(` = k, k − 1, µ = 1/2, dk−1, δk−1, . . . , di, δi, di−1) > 0

be the constants guaranteed by Theorems 5.1 and 5.2. We also want δi−1 > 0 to be small
enough so that (c) above is satisfied with ζk−1 from (28). Moreover, we want δi−1 > 0 to be
small enough so that the following sequence (c′) of conditions is satisfied (cf. (30)):

(c′) • all but ζk−1|Kk(H(k−1))| cliques K ∈ Kk(H(k−1)) satisfy

degΓk−1
(K) = (1± ζk−1)

k−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

× nk;
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• all but ζk−2|Kk(H(k−2))| cliques K ∈ Kk(H(k−2)) satisfy

degΓk−2
(K) = (1± ζk−2)

k−2∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

× nk;

...

• all but ζi−1|Kk(H(i−1))| cliques K ∈ Kk(H(i−1)) satisfy

degΓi−1
(K) = (1± ζi−1)

i−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

× nk.

To guarantee that the sequence (c′) of conditions above will be satisfied, we fix an integer h
satisfying i−1 ≤ h ≤ k−1, and we appeal to Theorem 5.4, which has the following quantification
of constants:

∀ζ, ∀dh, ∃δh : ∀dh−1, ∃δh−1 : . . . ∀di−1, ∃δi−1 : . . .

With dh, δh, . . . , di−1, δi−1 inductively disclosed above, and with ζ = ζh from (30), let

δThm.5.4, i− 1, h = δThm.5.4(` = k, h, ζ = ζh, dh, δh, . . . , di, δi, di−1)

be the constant guaranteed by Theorem 5.4. Set

δThm.5.4, i− 1 = min {δThm.5.4, i− 1, h : i− 1 ≤ h ≤ k − 1} .

Finally, set

δi−1 = min {δThm.5.1, i− 1, δThm.5.2, i− 1, δThm.5.4, i− 1} . (31)

We continue this way until δ2 is reached. This concludes our definitions of the constants.

6.3. The argument for Theorem 6.2. Set δk−1 = (δ2, . . . , δk−1), where each δj , 2 ≤ j ≤
k − 1, was defined in (31). Let H(k) be a (k, k)-complex with density sequence dk, as given
in Setup 2.15, where n ≥ n0. Suppose dk satisfies that, for each 2 ≤ j ≤ k, dΛj ≥ dj for all

Λj ∈ [k]j , where dj was given above. Suppose that H(k−1) has DEV(dk−1, δk−1), but that

(H(k),H(k−1)) does not have DEV(d[k], δk). Theorem 6.2 promises a hypergraph ∅ 6= S(k) ⊆
O(k) = K(k)(U1, . . . , Uk) so that, for any anchor A for which Ā ∈ S(k) (cf. Definition 6.1),

the statement EXTA(S(k), ξ,H(k)) is false. We begin our argument by defining the promised

hypergraph S(k).

6.3.1. Defining the hypergraph S(k). First, we appeal to (20), and take any hypergraph ∅ 6=
S(k) ⊆ O(k) for which∣∣EMB(S(k), (H(k),H(k−1)))

∣∣ 6= (1± δk)d
|S(k)|
[k]

∣∣EMB(O(k),H(k−1))
∣∣. (32)

Indeed, Assumption (2) of our hypothesis says that (H(k),H(k−1)) does not have DEV(d[k], δk).

As such, Statement (2) of Fact 2.10 gives that (H(k),H(k−1)) does not have COUNTemb(d[k], δk).

Thus, some ∅ 6= S(k) ⊆ O(k) satisfying (32) is guaranteed to exist by Definition 2.9.

Second, take ∅ 6= S(k)
min ⊆ S(k) to be an edge-minimal subhypergraph for which∣∣EMB(S(k)

min, (H
(k),H(k−1)))

∣∣ 6= (1± δk

2|S
(k)|−|S(k)

min|

)
d
|S(k)

min|
[k]

∣∣EMB(O(k−1),H(k−1))
∣∣. (33)
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(Note that in (33), we require the error δk/2
|S(k)|−|S(k)

min| to decrease as |S(k)
min| decreases.) Note

that S(k)
min must exist, because S(k) itself satisfies (32). Note also that S(k)

min 6= ∅, because∣∣EMB(∅, (H(k),H(k−1)))
∣∣ = (1± 0)d0

[k]

∣∣EMB(O(k−1),H(k−1))
∣∣.

Since S(k)
min 6= ∅ is edge-minimal w.r.t. (33), we have that, for each e ∈ S(k)

min,∣∣EMB(S(k)
min \ {e}, (H

(k),H(k−1)))
∣∣ =

(
1± δk

2|S
(k)|−|S(k)

min|+1

)
d
|S(k)

min|−1

[k]

∣∣EMB(O(k),H(k−1))
∣∣. (34)

For simplicity of notation, we shall write

δ′k :=
δk

2|S
(k)|−|S(k)

min|
and S(k) := S(k)

min. (35)

Then, we may rewrite (33) as∣∣EMB(S(k), (H(k),H(k−1)))
∣∣ 6= (1± δ′k)d

|S(k)|
[k]

∣∣EMB(O(k−1),H(k−1))
∣∣, (36)

and we may rewrite (34) as, for each e ∈ S(k),∣∣EMB(S(k) \ {e}, (H(k),H(k−1)))
∣∣ =

(
1±

δ′k
2

)
d
|S(k)|−1
[k]

∣∣EMB(O(k−1),H(k−1))
∣∣. (37)

This concludes our definition of the promised hypergraph S(k).
We pause to say a word about the inequality in (36). We have that either∣∣EMB(S(k), (H(k),H(k−1)))

∣∣ < (1− δ′k)d
|S(k)|
[k]

∣∣EMB(O(k−1),H(k−1))
∣∣,

or
∣∣EMB(S(k), (H(k),H(k−1)))

∣∣ > (1 + δ′k)d
|S(k)|
[k]

∣∣EMB(O(k−1),H(k−1))
∣∣.

In our proof, it will be symmetric to handle either situation above. We therefore assume,
w.l.o.g., that the latter holds:∣∣EMB(S(k), (H(k),H(k−1)))

∣∣ > (1 + δ′k)d
|S(k)|
[k]

∣∣EMB(O(k−1),H(k−1))
∣∣. (38)

We proceed to develop a proof by contradiction. Assume the hypergraph S(k) from (38)
doesn’t have the desired property of Theorem 6.2. In particular, assume that there exists an
anchor A, where Ā ∈ S(k), for which the statement EXTA(S(k), ξ,H(k)) is true. With this
assumption, we will prove the following.

Claim 6.3. Assuming the statement EXTA(S(k), ξ,H(k)) is true for some Ā ∈ S(k), we have∣∣EMB(S(k), (H(k),H(k−1)))
∣∣ ≤ (1 +

3

4
δ′k

)
d
|S(k)|
[k]

∣∣EMB(O(k−1),H(k−1))
∣∣.

Now, the bound in Claim 6.3 is a direct contradiction with the bound in (38). Thus, it must

be the case that for any anchor A, where Ā ∈ S(k), the statement EXTA(S(k), ξ,H(k)) is false,
as promised by Theorem 6.2. Thus, to complete the proof of Theorem 6.2, it only remains to
prove Claim 6.3.
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6.4. Proof of Claim 6.3. Assume that the statement EXTA(S(k), ξ,H(k)) is true for some

anchor A with Ā ∈ S(k).
Recall that in (24)–(26), we abbreviated the truth of the statement EXTA(S(k), ξ,H(k)) in

terms of the following hypergraphs A(k) and A(k)
bad:

A(k) = A(k)(S(k), A,H(k)) =

{
H(k) if A ∈ S(k),

Kk(H(k−1)) if A 6∈ S(k),

A(k)
bad = A(k)

bad(S(k), A, ξ,H(k)) =
{
K ∈ A(k) : deg~ΓA(S(k)\Ā)(K) > ξ degΓk−1

(K)

but deg~ΓA(S(k))(K) 6= (1± ξ)d[k] deg~ΓA(S(k)\Ā)(K)
}
.

Recall from (26) that our assumption that EXTA(S(k), ξ,H(k)) is true is equivalent to

|A(k)
bad| < ξ|A(k)| ≤ ξ|Kk(H(k−1))|. (39)

Define also the sets

A(k)
good = A(k)

good(S(k), A, ξ,H(k)) =
{
K ∈ A(k) : deg~ΓA(S(k)\Ā)(K) > ξ degΓk−1

(K)

and deg~ΓA(S(k))(K) = (1± ξ)d[k] deg~ΓA(S(k)\Ā)(K)
}
, (40)

and

A(k)
0 = A(k)

0 (S(k), A, ξ,H(k)) =
{
K ∈ A(k) : deg~ΓA(S(k)\Ā)(K) < ξ degΓk−1

(K)
}
. (41)

Note that

A(k) = A(k)
good ∪ A

(k)
bad ∪ A

(k)
0 (42)

is a partition.

Using the partition A(k) = A(k)
good∪A

(k)
bad∪A

(k)
0 from (42), observe that (recall Definition 2.8)∣∣EMB(S(k), (H(k),H(k−1)))

∣∣ =
∑

K∈A(k)

deg~ΓA(S(k))(K)

(42)
=

∑
K∈A(k)

good

deg~ΓA(S(k))(K) +
∑

K∈A(k)
bad

deg~ΓA(S(k))(K) +
∑

K∈A(k)
0

deg~ΓA(S(k))(K). (43)

We now bound each of the sums above.
First, using the definition of A(k)

good in (40), we have∑
K∈A(k)

good

deg~ΓA(S(k))(K) ≤ (1 + ξ)d[k]

∑
K∈A(k)

deg~ΓA(S(k)\{Ā})(K)

= (1+ξ)d[k]

∣∣EMB(S(k)\{Ā}, (H(k),H(k−1)))
∣∣ (37)

≤ (1+ξ)

(
1 +

δ′k
2

)
d
|S(k)|
[k]

∣∣EMB(O(k−1),H(k−1))
∣∣

≤
(

1 + 2ξ +
δ′k
2

)
d
|S(k)|
[k]

∣∣EMB(O(k−1),H(k−1))
∣∣

(27), (35)

≤
(

1 +
2δ′k
3

)
d
|S(k)|
[k]

∣∣EMB(O(k−1),H(k−1))
∣∣. (44)
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(To see the last inequality, (27) gives ξ < δk/(2
k · 6), and (35) gives δk/2

k < δ′k.) Second, we
take ∑

K∈A(k)
0

deg~ΓA(S(k))(K) ≤
∑

K∈A(k)
0

deg~ΓA(S(k)\{Ā})(K),

since every labeled partite-embedding of S(k) in H(k) is also a labeled partite-embedding of

S(k) \ {Ā} in H(k). Using the definition of A(k)
0 in (41), we have∑

K∈A(k)
0

deg~ΓA(S(k))(K) ≤
∑

K∈A(k)
0

deg~ΓA(S(k)\{Ā})(K)

≤ ξ
∑

K∈A(k)

degΓk−1
(K) = ξ

∣∣EMB(O(k−1),H(k−1))
∣∣. (45)

Third, we take ∑
K∈A(k)

bad

deg~ΓA(S(k))(K) ≤
∑

K∈A(k)
bad

degΓk−1
(K), (46)

since every labeled partite-embedding of S(k) in H(k) is also a labeled partite-embedding of
O(k−1) in H(k−1). More strongly, we have the following bound (which we prove in a moment).

Fact 6.4. ∑
K∈A(k)

bad

degΓk−1
(K) ≤ 8(k − 1)ξ

∣∣EMB(O(k−1),H(k−1))
∣∣.

Applying the bounds of (44)–(46) and the bound of Fact 6.4 to (43), we infer

∣∣EMB(S(k), (H(k),H(k−1))
∣∣ ≤ ((1 +

2

3
δ′k

)
d
|S(k)|
[k] + ξ + 8(k − 1)ξ

) ∣∣EMB(O(k−1),H(k−1))
∣∣

≤
(

1 +
2

3
δ′k + 8kξd−2k

k

)
d
|S(k)|
[k]

∣∣EMB(O(k−1),H(k−1))
∣∣, (47)

where we used |S(k)| ≤ 2k and d[k] ≥ dk from the hypothesis of Theorem 6.2. Now, since

8kξd−2k

k

(27)
<

1

12 · 2k
δk

(35)
<

1

12
δ′k,

we have ∣∣EMB(S(k), (H(k),H(k−1)))
∣∣ < (1 +

3

4
δ′k

)
d
|S(k)|
[k]

∣∣EMB(O(k−1),H(k−1))
∣∣,

as promised by Claim 6.3. Thus, it only remains to prove Fact 6.4.

6.5. Proof of Fact 6.4. We first outline the main idea of how we bound
∑

K∈A(k)
bad

degΓk−1
(K).

To begin, we divide the k-tuples K ∈ A(k)
bad into two classes: those for which degΓk−1

(K) is not
‘too large’, and those for which it is. More generally, we first partition the set of k-tuples
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V (Γk−1) = Kk(H(k−1)) as follows. With ζk−1 given in (28), define

Vζk−1-good(Γk−1) =
{
K ∈ V (Γk−1) = Kk(H(k−1)) :

degΓk−1
(K) < (1 + ζk−1)

k−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

× nk
 ,

and Vζk−1-bad(Γk−1) = V (Γk−1) \ Vζk−1-good(Γk−1). (48)

Then,

A(k)
bad ⊆ A

(k)
(24)

⊆ Kk(H(k−1)) = V (Γk−1)
(48)
= Vζk−1-good(Γk−1) ∪ Vζk−1-bad(Γk−1). (49)

As such, with ζk−1 ≤ 1,∑
K∈A(k)

bad

degΓk−1
(K) =

∑{
degΓk−1

(K) : K ∈ A(k)
bad ∩ Vζk−1-good(Γk−1)

}
+
∑{

degΓk−1
(K) : K ∈ A(k)

bad ∩ Vζk−1-bad(Γk−1)
}

(48)

≤ 2|A(k)
bad|

k−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

× nk +
∑{

degΓk−1
(K) : K ∈ Vζk−1-bad(Γk−1)

}
. (50)

To bound the first term in (50), we have from (26) that |A(k)
bad| ≤ ξ|Kk(H(k−1))| is ‘small’.

We will return to this in a moment. To bound the summation in (50), we iterate the approach

taken in (48) and (49). Namely, for 2 ≤ i ≤ k−1, we divide the k-tuples K ∈ Kk(H(i)) into two
classes: those for which degΓi

(K) is not ‘too large’, and those for which it is. More formally,
with ζi given in (30), define

Vζi-good(Γi) =

K ∈ V (Γi) = Kk(H(i)) : degΓi
(K) < (1 + ζi)

i∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

× nk
 ,

and Vζi-bad(Γi) = V (Γi) \ Vζi-good(Γi). (51)

Now, with Γk−1 ⊆ Γk−2 from (22), we have

Vζk−1-bad(Γk−1) ⊆ V (Γk−1)
(22)

⊆ V (Γk−2)
(51)
= Vζk−2-good(Γk−2) ∪ Vζk−2-bad(Γk−2).

Thus, with ζk−2 ≤ 1 and with Γk−1 ⊆ Γk−2, we may bound the summation of (50) by∑{
degΓk−1

(K) : K ∈ Vζk−1-bad(Γk−1)
}

(22)

≤
∑{

degΓk−2
(K) : K ∈ Vζk−1-bad(Γk−1) ∩ Vζk−2-good(Γk−2)

}
+
∑{

degΓk−2
(K) : K ∈ Vζk−1-bad(Γk−1 ∩ Vζk−2-bad(Γk−2)

}
(48)

≤ 2
∣∣Vζk−1-bad(Γk−1)

∣∣ k−2∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

× nk +
∑{

degΓk−2
(K) : K ∈ Vζk−2-bad(Γk−2)

}
.
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Inductively3, we conclude

∑{
degΓk−1

(K) : K ∈ Vζk−1-bad(Γk−1)
}
≤ 2nk

k−1∑
i=2

|Vζi-bad(Γi)|
i−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

 . (52)

Applying (52) to the second term of (50), we have

∑
K∈A(k)

bad

degΓk−1
(K) ≤ 2nk

|A(k)
bad|

k−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

+
k−1∑
i=2

|Vζi-bad(Γi)|
i−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

 .

(53)

As we mentioned earlier, |A(k)
bad| ≤ ξ|Kk(H

(k−1))| holds from (39). To further bound |A(k)
bad|, we

apply Theorem 5.1 with µ = 1/2 to |Kk(H(k−1))| to get

|Kk(H(k−1))| ≤ (1 + µ)

k−1∏
j=2

∏
Λj∈[k]j

dΛj × nk < 2

k−1∏
j=2

∏
Λj∈[k]j

dΛj × nk,

=⇒ |A(k)
bad| ≤ ξ|Kk(H

(k−1))| ≤ 2ξ
k−1∏
j=2

∏
Λj∈[k]j

dΛj × nk. (54)

Applying (54) to (53) yields

∑
K∈A(k)

bad

degΓk−1
(K) ≤ 4ξ

k−1∏
j=2

∏
Λj∈[k]j

d2j

Λj
× n2k + 2nk

k−1∑
i=2

|Vζi-bad(Γi)|
i−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

 . (55)

Now, for fixed 2 ≤ i ≤ k− 1, we bound |Vζi-bad(Γi)|. With ζi > 0 from (30), Theorem 5.4 gives

|Vζi-bad(Γi)| ≤ ζi|Kk(H(i))|. To further bound |Vζi-bad(Γi)|, we apply Theorem 5.1 with µ = 1/2

to |Kk(H(i))| to get

|Kk(H(i))| ≤ (1 + µ)

i∏
j=2

∏
Λj∈[k]j

dΛj × nk < 2
i∏

j=2

∏
Λj∈[k]j

dΛj × nk,

=⇒ |Vζi-bad(Γi)| ≤ ζi|Kk(H(i))| ≤ 2ζi

i∏
j=2

∏
Λj∈[k]j

dΛj × nk. (56)

Applying (56) to (55) gives

∑
K∈A(k)

bad

degΓk−1
(K) ≤ 2n2k

2ξ

k−1∏
j=2

∏
Λj∈[k]j

d2j

Λj

+ 2

k−1∑
i=2

ζi ∏
Λi∈[k]i

dΛi ×
i−1∏
j=2

∏
Λj∈[k]j

d2j

Λj


≤ 2n2k

2ξ
k−1∏
j=2

∏
Λj∈[k]j

d2j

Λj

+ 2
k−1∑
i=2

ζi i−1∏
j=2

∏
Λj∈[k]j

d2j

Λj

 . (57)

To finish the proof of Fact 6.4, only calculations remain.

3Note that the summation in (52) does not include i = 1, because every K ∈ Kk(H(1)) satisfies degΓ1
(K) = nk.
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Indeed, fix 2 ≤ i ≤ k − 1. Recall from the hypothesis of Theorem 6.2 that the density
sequence dk satisfies dΛj ≥ dj for all Λj ∈ [k]j and for all 2 ≤ j ≤ k. As such, our definition of
ζi in (30) gives

ζi = ξ
k−1∏
j=i

d
(kj)2j

j ≤ ξ
k−1∏
j=i

∏
Λj∈[k]j

d2j

Λj
= ξ

∏k−1
j=2

∏
Λj∈[k]j d

2j

Λj∏i−1
j=2

∏
Λj∈[k]j d

2j
Λj

. (58)

Applying (58) to (57) gives

∑
K∈A(k)

bad

degΓk−1
(K) ≤ 2n2k

2ξ
k−1∏
j=2

∏
Λj∈[k]j

d2j

Λj

+ 2ξ(k − 2)
k−1∏
j=2

∏
Λj∈[k]j

d2j

Λj


= 4ξ(k − 1)

k−1∏
j=2

∏
Λj∈[k]j

d2j

Λj
× n2k. (59)

To conclude the proof of Fact 6.4, it only remains to bound
∑

K∈A(k)
bad

degΓk−1
(K) in terms of

|EMB(O(k−1),H(k−1))|. To that end, with µ = 1/2, Theorem 5.2 gives

∣∣EMB(O(k−1),H(k−1))
∣∣ ≥ (1− µ)

k−1∏
j=2

∏
Λj∈[k]j

d2j

Λj
× n2k ≥ 1

2

k−1∏
j=2

∏
Λj∈[k]j

d2j

Λj
× n2k. (60)

Comparing (59) and (60), we infer∑
K∈A(k)

bad

degΓk−1
(K) ≤ 8ξ(k − 1)

∣∣EMB(O(k−1),H(k−1))
∣∣,

as promised by Fact 6.4.

7. Proof of Theorem 2.16

The proof of Theorem 2.16 will involve applications of Theorems 5.2, 5.4, and 6.2. In addi-
tion to these tools, we will also need the following lemma, a nonconstructive version of which
appeared as Lemma 2.6 in [18], where it was called the ‘Picking Lemma’. The proof of that
version follows by an application of the Markov Inequality, but here, we will need a constructive
counterpart, proved in the Appendix.

Lemma 7.1 (Algorithmic Picking Lemma). Let σs, . . . , σ2, c > 0 be given together with
an integer r ≥ 1. Let X be a set of size m, and let G2, . . . , Gs be graphs with vertex set X
satisfying |G2| ≤ σ2m

2, . . . , |Gs| ≤ σsm2. Then, for every subset Y ⊆ X of size |Y | ≥ cm, there
exists an algorithm which chooses, in time O(m3), vertices Z = Zr = {z1, . . . , zr} ⊂ Y so that,
for all 2 ≤ i ≤ s, |Gi[Z]| ≤ (2(s− 1)σi/c

2)r2.

We proceed to define the constants of Theorem 2.16 (which will be presented in a similar
way to how we defined the constants of Theorem 6.2).
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7.1. The Constants of Theorem 2.16. Let integer k ≥ 2 be fixed, and let dk, δk > 0 be
given. To define the promised constant δ′k > 0, we appeal to Theorem 6.2, which we recall has
the following quantification:

∀dk, ∀δk, ∃ξ : . . .

With dk, δk > 0 given above, let

ξ = ξThm.6.2(k, dk, δk) > 0 (61)

be the constant guaranteed by Theorem 6.2. We define the promised constant δ′k by

δ′k =

(
ξ

10

)8

. (62)

Let dk−1 > 0 be given. We formally define the constant δk−1 > 0 in upcoming (64), but we
first motivate how we choose it. To that end, define auxiliary constants

µ =

√
2− 1√
2 + 1

= 3− 2
√

2 and ζk−1 =
d2
kξ

2

128(k − 1)2
d
k(2k−1)
k−1 . (63)

Recall from the hypothesis of Theorem 2.16 that we will be working with a (k, k)-complex

H(k−1) = {H(j)}k−1
j=2 satisfying that

(1) H(k−1) = {H(j)}k−1
j=1 has DEV(dk−1, δk−1), but where

(2) (H(k),H(k−1)) does not have DEV(d[k], δk),

where d[k] ≥ dk, and where the constants dk−2, . . . , d2 of dk−1 and the constants δk−1, . . . , δ2 of

δk−1 will be disclosed below. For such a complex H(k), we want δk−1 > 0 to be small enough
so that the following conditions are satisfied:

(a) there exists a hypergraph ∅ 6= S(k) ⊆ O(k) = K(k)(U1, . . . , Uk) so that, for any anchor

A with Ā ∈ S(k), the statement EXTA(S(k), ξ,H(k)) is false (cf. (61));

(b) we can estimate |Kk(H(k−1))| within an error of 1± µ;

(c) all but ζk−1|Kk(H(k−1))| cliques K ∈ Kk(H(k−1)) satisfy

degΓk−1
(K) = (1± ζk−1)

k−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

× nk,

and all but ζk−1|Kk(H(k−1))|2 pairs of cliques K 6= K ′ ∈ Kk(H(k−1)) satisfy

degΓk−1
(K,K ′) = (1± ζk−1)

k−1∏
j=2

∏
Λj∈[k]j

d2·2j−3
Λj

× nk.

To guarantee that (a), (b), and (c) above are satisfied, we need δk−1 > 0 to be small enough to
enable applications of Theorems 6.2, 5.1, and 5.4, respectively. With dk, δk > 0 given above,
with ξ > 0 from (61), and with dk−1 > 0 given above, let

δThm.6.2, k−1 = δThm.6.2, k−1(k, dk, δk, ξ, dk−1) > 0

be the constant guaranteed by Theorem 6.2. With µ > 0 from (63), and with dk−1 given above,
let

δThm.5.1, k−1 = δThm.5.1, k−1(` = k, k − 1, µ, dk−1) > 0

be the constant guaranteed by Theorem 5.1. With ζk−1 > 0 from (63), and with dk−1 given
above, let

δThm.5.4, k−1 = δThm.5.4, k−1(` = k, k − 1, ζk−1, dk−1) > 0
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be the constant guaranteed by Theorem 5.4. Now, set

δk−1 = min {δThm.6.2, k−1, δThm.5.1, k−1, δThm.5.4, k−1} . (64)

This concludes our definition of the promised constant δk−1 > 0.
Inductively, assume dk−1, δk−1, . . . , di, δi, di−1 > 0 have been disclosed, for a fixed integer i

satisfying 3 ≤ i ≤ k − 1. Moreover, assume we have defined auxiliary constants (cf. (63)):

ζk−1 =
d2
kξ

2

128(k − 1)2
d
k(2k−1)
k−1 , ζk−2 =

d2
kξ

2

128(k − 1)2
d
( k
k−1)(2k−1)

k−1 d
( k
k−2)(2k−1−1)

k−2 , . . .

. . . ζi−1 =
d2
kξ

2

128(k − 1)2

k−1∏
j=i−1

d
(kj)(2j+1−1)

j . (65)

We define δi−1 similarly to how we defined δk−1 (cf. (64)). In particular, we want δi−1 > 0 to
be small enough so that (a) is satisfied with ξ from (61). This task is handled by Theorem 6.2,
which has the following quantification of constants:

∀dk, ∀δk,∃ξ : ∀dk−1, ∃δk−1 : . . . ,∀di−1, ∃δi−1 : . . .

With dk, δk > 0 given above, with ξ given in (61), and with dk−1, δk−1, . . . , di−1 inductively
disclosed above, let

δThm.6.2, i−1 = δThm.6.2, i−1(k, dk, δk, ξ, dk−1, δk−1, . . . , di−1) > 0

be the constant guaranteed by Theorem 6.2. We also want δi−1 > 0 to be small enough so
that (b) above is satisfied with µ > 0 from (63). Moreover, we want δi−1 > 0 to be small
enough so that the following sequence (b′) of conditions is satisfied (cf. (63)):

(b′) • we can estimate |Kk(H(k−1))| within an error of 1± µ;

• we can estimate |Kk(H(k−2))| within an error of 1± µ;

...

• we can estimate |Kk(H(i−1))| within an error of 1± µ.

To guarantee that the sequence (b′) of conditions above will be satisfied, we fix an integer h
satisfying i− 1 ≤ h ≤ k− 1, and appeal to Theorem 5.1, which has the following quantification
of constants:

∀µ, ∀dh, ∃δh : ∀dh−1, ∃δh−1 : . . . ∀di−1, ∃δi−1 : . . .

With µ > 0 from (63), and with dh, δh, . . . , di−1 > 0 inductively disclosed above, let

δThm.5.1, i−1, h = δThm.5.1, i−1, h(` = k, h, µ, dh, δh, . . . , di−1) > 0

be the constant guaranteed by Theorem 5.1. Set

δThm.5.1, i−1 = min {δThm.5.1, i−1, h : i− 1 ≤ h ≤ k − 1} .
Finally, we also want δi−1 > 0 to be small enough so that (c) above is satisfied with ζk−1 > 0
from (63). Moreover, we want δi−1 > 0 to be small enough so that the following sequence (c′)
of conditions is satisfied (cf. (65)):

(c′) • all but ζk−1|Kk(H(k−1))| cliques K ∈ Kk(H(k−1)) satisfy

degΓk−1
(K) = (1± ζk−1)

k−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

× nk,
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and all but ζk−1|Kk(H(k−1))|2 pairs of cliques K 6= K ′ ∈ Kk(H(k−1)) satisfy

degΓk−1
(K,K ′) = (1± ζk−1)

k−1∏
j=2

∏
Λj∈[k]j

d2·2j−3
Λj

× nk;

• all but ζk−2|Kk(H(k−2))| cliques K ∈ Kk(H(k−2)) satisfy

degΓk−2
(K) = (1± ζk−2)

k−2∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

× nk,

and all but ζk−2|Kk(H(k−2))|2 pairs of cliques K 6= K ′ ∈ Kk(H(k−2)) satisfy

degΓk−2
(K,K ′) = (1± ζk−2)

k−2∏
j=2

∏
Λj∈[k]j

d2·2j−3
Λj

× nk;

...

• all but ζi−1|Kk(H(i−1))| cliques K ∈ Kk(H(i−1)) satisfy

degΓi−1
(K) = (1± ζi−1)

i−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

× nk,

and all but ζi−1|Kk(H(i−1))|2 pairs of cliques K 6= K ′ ∈ Kk(H(i−1)) satisfy

degΓi−1
(K,K ′) = (1± ζi−1)

i−1∏
j=2

∏
Λj∈[k]j

d2·2j−3
Λj

× nk.

To guarantee that the sequence (c′) of conditions above will be satisfied, we fix an integer h
satisfying i− 1 ≤ h ≤ k− 1, and appeal to Theorem 5.4, which has the following quantification
of constants:

∀ζh, ∀dh, ∃δh : ∀dh−1, ∃δh−1 : . . . ∀di−1, ∃δi−1 : . . .

With ζh > 0 from (65), and with dh, δh, . . . , di−1 > 0 inductively disclosed above, let

δThm.5.4, i−1, h = δThm.5.4, i−1, h(` = k, h, ζh, dh, δh, . . . , di−1) > 0

be the constant guaranteed by Theorem 5.4. Set

δThm.5.4, i−1 = min {δThm.5.4, i−1, h : i− 1 ≤ h ≤ k − 1} .
Now, set

δi−1 = min {δThm.6.2, i−1, δThm.5.1, i−1, δThm.5.4, i−1} . (66)

This concludes our definition of the promised constant δi−1 > 0. We continue this way until
δ2 > 0 is reached.

It remains to define the integer r0 promised by Theorem 2.16. To that end, set

r0 = 2
k−1∏
j=2

d
(kj)(2−2j)

j , (67)

where we omit floors and ceilings for simplicity. Finally, in all that follows, we take the integer
n0 to be sufficiently large whenever needed. This concludes our description of the promised
constants.
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7.2. The Algorithm for Theorem 2.16. Set δk−1 = (δ2, . . . , δk−1), where each δj , 2 ≤
j ≤ k − 1, was defined in (66). Let H(k) be a (k, k)-complex with density sequence dk, as
given in Setup 2.15, where n ≥ n0. Suppose dk satisfies that, for each 2 ≤ j ≤ k, dΛj ≥ dj

for all Λj ∈ [k]j , where dj was given above. Suppose H(k−1) has DEV(dk−1,dk−1), but that

(H(k),H(k−1)) does not have DEV(d[k], δk). Our goal is to construct, in timeO(n3k), a collection

of subhypergraphs Q(k−1)
1 , . . . ,Q(k−1)

r ⊆ H(k−1), where r ≤ r0 (cf. (67)), so that∣∣∣ ⋃
i∈[r]

Kk(Q
(k−1)
i )

∣∣∣ > δ′k

∣∣∣Kk(H(k−1))
∣∣∣ and

∣∣∣d(H(k)|Q(k−1)
1 , . . . ,Q(k−1)

r

)
− d[k]

∣∣∣ > δ′k, (68)

where δ′k was defined in (62).
Our algorithm will take place in five steps. Before emerging into techical details, we give an

overview of the algorithm.

• Assumptions (1) and (2) of Theorem 2.16 allow us to apply the Negative-Extension

Lemma to the (k, k)-complex H(k). In Step 1, we will apply Theorem 6.2 to H(k)

to conclude that there exists a hypergraph ∅ 6= S(k) ⊆ O(k) = K(k)(U1, . . . , Uk) so

that, for any anchor A for which Ā ∈ S(k), the statement EXTA(S(k), ξ,H) is false.

In order to find the hypergraph S(k), we will test, for each ∅ 6= S(k) ⊆ O(k), for each
fixed choice of anchor A with Ā ∈ S(k), and for each k-tuple K ∈ Kk(H(k−1)), whether

or not deg~ΓA(S(k))(K) is ‘close’ to what is expected. Since EXTA(S(k), ξ,H) is false,

our search will find some ∅ 6= S(k) ⊆ O(k) so that, for any anchor A with Ā ∈ S(k),
‘many’ K ∈ Kk(H(k−1)) will have deg~ΓA(S(k))(K) being ‘far’ from what is expected. The

running time of Step 1 will be O(n2k).
We will assume, w.l.o.g., that many of the k-tuples K above have deg~ΓA(S(k))(K)

being ‘too large’, and we will denote the set of such K by A(k)
bad,+.

While Step 1 involved the (k, k)-complex H(k) = {H(j)}kj=1, Steps 2-4 will consider the under-

lying (k, k − 1)-complex H(k−1) = {H(j)}k−1
j=1 .

• Assumption (1) of Theorem 2.16 allows us to apply the Extension Lemma to the

(k, k−1)-complex H(k−1). In Step 2, we will apply Theorem 5.4 to H(k−1) to conclude

that ‘nearly’ all K ∈ Kk(H(k−1)) have degΓk−1
(K) being ‘close’ to what is expected. We

will remove, one-by-one, all k-tuples K ∈ A(k)
bad,+ (see Step 1) for which degΓk−1

(K) is

‘far’ from what is expected. The application of Theorem 5.4 will guarantee that ‘many’

k-tuples of A(k)
bad,+ remain after this removal, and we will denote this remaining set by

Ã(k)
bad,+. The running time of Step 2 will be O(n2k).

• Assumption (1) of Theorem 2.16 allows us to apply the Extension Lemma to each of

the complexes H(k−1), H(k−2), . . . , H(2). In Step 3, we will apply Theorem 5.4 to each
of the complexes H(k−1, H(k−2), . . . , H(2) to conclude that, for each 2 ≤ i ≤ k − 1,
‘nearly’ all pairs of k-tuples K 6= K ′ ∈ Kk(H(i)) have degΓi

(K,K ′) being ‘close’ to what
is expected. For each 2 ≤ i ≤ k − 1, we will consider the auxiliary graph Gi formed by
the set of pairs K 6= K ′ ∈ Kk(H(i)) for which degΓi

(K,K ′) is ‘far’ from what is expected.
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The application of Theorem 5.4 will then guarantee that the graphs Gi, 2 ≤ i ≤ k − 1,
are ‘sparse’. The running time of Step 3 will be O(n3k).

• In Step 4, we will apply the Picking Lemma to the set Y = Ã(k)
bad,+ ⊆ Kk−1(H(k−1)) = X

(see Step 2) and the graphs Gi (see Step 3), 2 ≤ i ≤ k − 1. Lemma 7.1 will choose a

set Z = Zr ⊂ Y = Ã(k)
bad of size r ≤ r0 (cf. (67)) so that, for each 2 ≤ i ≤ k − 1, the

induced subgraph Gi[Z] is still ‘sparse’. In other words, for each 2 ≤ i ≤ k − 1, most
pairs K 6= K ′ ∈ Gi[Z] will have degΓi

(K,K ′) being ‘close’ to what is expected. This

property will be a key detail in Step 5. The running time of Step 4 will be O(n3k).

• In Step 5, we will observe that each K ∈ Z defines a complex QK = {Q(j)
K }

k−1
j=2 which is

a subcomplex of H(k−1) = {H(j)}k−1
j=2 . We will show that the collection Q(k−1)

K ∈Q(k−1),

over all K ∈ Z, is precisely the r-witness we promised in (68). A key ingredient in ver-

ifying that Q(k−1)
K , over all K ∈ Z, is the promised r-witness will be that each graph

Gi[Z], 2 ≤ i ≤ k − 1, is ‘sparse’. The running time of Step 5 will be O(nk).

We now proceed to fill in the details of the outline above, beginning with Step 1.

Step 1: Applying the Negative-Extension Lemma. By Assumptions (1) and (2) of

Theorem 2.16, the (k, k − 1)-complex H(k−1) has DEV(dk−1, δk−1), but (H(k),H(k−1)) does

not have DEV(d[k], δk), where d[k] = d(H(k)|H(k−1)). As such, with ξ given in (61), Theorem 6.2

guarantees the existence of a subhypergraph ∅ 6= S(k) ⊆ O(k) = K(k)(U1, . . . , Uk) so that, for

any anchor A with Ā ∈ S(k), the statement EXTA(S(k), ξ,H(k)) is false. Now, with a greedy

search, we determine the hypergraph ∅ 6= S(k) ⊆ O(k), and we find a ‘large’ set of k-tuples
K ∈ Kk(H(k)) witnessing that the statement EXTA(S(k), ξ,H(k)) is false. Indeed, for each

∅ 6= S(k) ⊆ O(k), fix an arbitrary anchor A for which Ā ∈ S(k). As we did in (24), define

A(k) = A(k)(S(k), A, ξ,H(k)) =

{
H(k) if A ∈ S(k),

Kk(H(k−1)) if A 6∈ S(k).

Now, for each K ∈ A(k),

test if deg~ΓA(S(k)\{Ā})(K) > ξ degΓk−1
(K). (69)

Since

V (~ΓA(S(k) \ {Ā})) ⊆ V (Γk−1) = Kk(H(k−1)),

where |Kk(H(k−1))| = O(nk), the test in (69) can be done in time O(nk). If (69) holds,

test if deg~ΓA(S(k))(K) = (1± ξ)d[k] deg~ΓA(S(k)\Ā)(K). (70)

The test in (70) can similarly be done in time O(nk). Thus, over all K ∈ A(k), the tests of (69)
and (70) can be done in time O(n2k).

Now, set (cf. (25))

A(k)
bad = A(k)

bad(S(k), A, ξ,H(k)) =
{
K ∈ A(k) : deg~ΓA(S(k)\Ā)(K) > ξ degΓk−1

(K)

but deg~ΓA(S(k))(K) 6= (1± ξ)d[k] deg~ΓA(S(k)\Ā)(K)
}
,



AN ALGORITHMIC HYPERGRAPH REGULARITY LEMMA 31

which we have identified in time O(n2k). Since the statement EXTA(S(k), ξ,H(k)) is false,

there must be some ∅ 6= S(k) ⊆ O(k) so that, for any anchor A with Ā ∈ S(k), we have∣∣A(k)
bad

∣∣ ≥ ξ|A(k)| ≥ ξ|H(k)| = ξd[k]|Kk(H(k−1))|, (71)

where we used that d[k] = d(H(k)|H(k−1)). Moreover, the tests of (69) and (70) will (eventually)

find the hypergraph ∅ 6= S(k) ⊆ O(k) and the corresponding set A(k)
bad, all in time O(n2k). (For

the remainder of this section, we fix an arbitrary anchor A with Ā ∈ S(k).)

We now refine the set A(k)
bad, as follows. Denote by A(k)

bad,+ the set of k-tuples K ∈ A(k)
bad for

which

deg~ΓA(S(k))(K) > (1 + ξ)d[k] deg~ΓA(S(k)\{Ā})(K), (72)

and set A(k)
bad,− = A(k)

bad \ A
(k)
bad,+. Then, one of A(k)

bad,+ or A(k)
bad,− has size at least 1

2 |A
(k)
bad|. In

our proof, it will be symmetric to handle these two cases, so we assume, w.l.o.g., that∣∣A(k)
bad,+

∣∣ ≥ 1

2

∣∣A(k)
bad

∣∣ (71)

≥ 1

2
ξd[k]|Kk(H(k−1))|. (73)

Clearly, the set A(k)
bad,+ can be found in time O(n2k), since we will, in fact, identify it as we

build A(k)
bad. We now proceed to Step 2.

Step 2: Applying the Extension Lemma to H(k−1). We apply Theorem 5.4 to the

(k, k − 1)-complex H(k−1) to further refine the set A(k)
bad,+. To that end, by Assumption (1)

in the hypothesis of Theorem 2.16, H(k−1) has DEV(dk−1, δk−1). With ζk−1 given in (63),

Statement (1) of the Extension Lemma guarantees that all but ζk−1|Kk(H(k−1))| many elements

K ∈ Kk(H(k−1)) satisfy

degΓk−1
(K) = (1± ζk−1)

k−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

× nk. (74)

Now, let Ã(k)
bad,+ denote the set of k-tuples K ∈ A(k)

bad,+ for which (74) holds. Since ζk−1 <
1
4ξdk ≤

1
4ξd[k] from (63), we infer from (73) that∣∣Ã(k)

bad,+

∣∣ ≥ 1

4
ξd[k]|Kk(H(k−1))|. (75)

Moreover, we can identify the set Ã(k)
bad,+, arguing similarly as in Step 1.

For future reference, let us now review that every element K ∈ Ã(k)
bad,+ has the following

properties (on account of (71), (72), and (74)):

deg~ΓA(S(k)\{Ā})(K) > ξ degΓk−1
(K), where degΓk−1

(K) = (1± ζk−1)

k−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

,

and deg~ΓA(S(k))(K) > (1 + ξ)d[k] deg~ΓA(S(k)\{Ā})(K). (76)

We now proceed to Step 3.

Step 3: Applying the Extension Lemma to each of H(k−1), . . . ,H(2). We now apply
Theorem 5.4 to each of the complexes H(k−1), . . . ,H(2). To that end, for each 2 ≤ i ≤ k − 1
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and with ζi given in (65), Statement (2) of the Extension Lemma guarantees that all but

ζi|Kk(H(i))|2 many pairs K,K ′ ∈ Kk(H(i)) satisfy

degΓi
(K,K ′) ≤ (1 + ζi)

i∏
j=2

∏
Λj∈[k]j

d2·2j−3
Λj

× nk < 2

i∏
j=2

∏
Λj∈[k]j

d2·2j−3
Λj

× nk. (77)

We now record, for each 2 ≤ i ≤ k − 1, the pairs K 6= K ′ ∈ Kk(H(i)) for which (78) fails.

Indeed, for each 2 ≤ i ≤ k − 1, let Gi be the graph with vertex set V (Gi) = Kk(H(k−1)) and
edge set

Gi =

{K,K ′} ∈
(
Kk(H(k−1))

2

)
: degΓi

(K,K ′) > 2
i∏

j=2

∏
Λj∈[k]j

d2·2j−3
Λj

× nk
 . (78)

Note that the graphs Gi, 2 ≤ i ≤ k − 1, may be constructed in time O(n3k). Indeed, for

each 2 ≤ i ≤ k − 1, the graph Gi has vertex set Kk(H(k−1)) and the graph Γi has vertex

set Kk(H(i)) ⊇ Kk(H(k−1)), where |Kk(H(i))| = O(nk). As such, we may greedily test the
Γi-codegree of pairs of vertices of Gi in time O(n3k).

Now, for each 2 ≤ i ≤ k−1, the application of Theorem 5.4 in (77) gives |Gi| < ζi|Kk(H(i))|2.
Since

V (Gi) = Kk(H(k−1)) ⊆ Kk(H(k−2)) ⊆ · · · ⊆ Kk(H(i)),

we rewrite |Gi| ≤ ζi|Kk(H(i))|2 in terms of |Kk(H(k−1))|2. For i = k − 1, nothing needs to be
done. For 2 ≤ i ≤ k − 2, we employ Theorem 5.1, which says that for each 2 ≤ i ≤ k − 1,

|Kk(H(i))| = (1± µ)

i∏
j=2

∏
Λj∈[k]j

dΛj × nk, (79)

where µ is given in (63). As such,

|Kk(H(i))|2 ≤ (1 +µ)2
i∏

j=2

∏
Λj∈[k]j

d2
Λj
×n2k and |Kk(H(k−1))|2 ≥ (1−µ)2

k−1∏
j=2

∏
Λj∈[k]j

d2
Λj
×n2k,

in which case

|Gi|
|Kk(H(k−1))|2

≤ ζi
|Kk(H(i))|2

|Kk(H(k−1))|2
≤ ζi

(
1 + µ

1− µ

)2 k−1∏
j=i+1

∏
Λj∈[k]j

d−2
Λj

(63)

≤ 2ζi

k−1∏
j=i+1

∏
Λj∈[k]j

d−2
Λj
,

or equivalently,

|Gi| ≤ 2ζi

k−1∏
j=i+1

∏
Λj∈[k]j

d−2
Λj
× |Kk(H(k−1))|2.

Altogether, we conclude that for each 2 ≤ i ≤ k − 1,

|Gi| <

{
ζk−1|Kk(H(k−1))|2 if i = k − 1,

2ζi
∏k−1
j=i+1

∏
Λj∈[k]j d

−2
Λj
× |Kk(H(k−1))|2 if 2 ≤ i ≤ k − 2.

(80)

We now proceed to Step 4.
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Step 4: Applying the Picking Lemma. In the context of the Picking Lemma, set X =
Kk(H(k−1)), where here we write |X| = m, and let G2, . . . , Gk−1 be the graphs constructed
in (78) of Step 2 on the common vertex set X. Set, for each 2 ≤ i ≤ k− 1 and ζi given in (65),

σi =

{
ζk−1 if i = k − 1,

2ζi
∏k−1
j=i+1

∏
Λj∈[k]j d

−2
Λj

if 2 ≤ i ≤ k − 1.
(81)

Then, (80) gives that, for each 2 ≤ i ≤ k − 1, |Gi| < σim
2. Set

c =
1

4
d[k]ξ, (82)

and set Y = Ã(k)
bad,+ (cf. (75) and (76)). Then,

Y = Ã(k)
bad,+ ⊆ A

(k)
bad,+ ⊆ A

(k)
bad ⊆ A

(k) ⊆ Kk(H(k−1)) = X,

and (75) and (82) give |Y | ≥ cm. Set

r = 2
√
δ′k

k−1∏
j=2

∏
Λj∈[k]j

d2−2j

Λj
, (83)

where we omit floors and ceilings for simplicity. Note that, as defined in (83), we have

r = 2
√
δ′k

k−1∏
j=2

∏
Λj∈[k]j

d2−2j

Λj
≤ 2

k−1∏
j=2

∏
Λj∈[k]j

d2−2j

Λj
≤ 2

k−1∏
j=2

d
(kj)(2−2j)

j

(67)
= r0, (84)

where we used that, for each 2 ≤ j ≤ k − 1, we have dΛj ≥ dj for all Λj ∈ [k]j .
We apply the (Algorithmic) Picking Lemma (Lemma 7.1) (with s = k− 1) to select, in time

O(m3) = O(n3k), vertices Z = Zr = {K1, . . . ,Kr} ⊂ Y = Ã(k)
bad,+ so that, for each 2 ≤ i ≤ k−1,

|Gi[Z]| < (2(k−1)σi/c
2)r2. The selected vertices Z = {K1, . . . ,Kr} ⊂ Ã(k)

bad,+ will play a critical

role in our algorithm. One key use we will later have of Z (in Step 4) is summarized in the
following claim.

Claim 7.2. ∑
1≤a<b≤r

degΓk−1
(Ka,Kb) ≤ 2r2

k−1∏
j=2

∏
Λj∈[k]j

d2·2j−3
Λj

× nk.

We prefer not to break the flow of the algorithm, and therefore defer this proof until Sec-
tion 7.3. We continue with Step 5 of our algorithm, which will conclude the proof of Theo-
rem 2.16.

Step 5: Constructing the subhypergraphs Q(k−1)
1 , . . . ,Q(k−1)

r . In Steps 1 and 2, we

constructed, in time O(n2k) the set Ã(k)
bad,+ ⊆ A

(k) (cf. (75) and (76)). In Step 3, we constructed,

in time O(n3k), the graphs Gi, 2 ≤ i ≤ k − 1, defined in (78). In Step 4, we used the Picking

Lemma to select, in time O(n3k), a subset Z = {K1, . . . ,Kr} ⊂ Ã(k)
bad,+ for which Claim 7.2

holds. The following claim, which is the last subroutine for proving Theorem 2.16, will now

allow us to construct the subhypergraphs Q(k−1)
1 , . . . ,Q(k−1)

r ⊆ H(k−1) promised in (68).
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Claim 7.3. Recall the hypergraph S(k) determined in Step 1, whose anchor satisfies Ā ∈ S(k).
Then, for each K ∈ A(k) (cf. (24)), one may construct, in time O(nk−1), a (k, k − 1)-complex

Q(k−1)
K = {Q(j)

K }
k−1
j=1 , where Q(j)

K ⊆ H(j) for each j ∈ [k − 1], so that

(1) N~ΓA(S(k)\{Ā})(K) = Kk(Q
(k−1)
K );

Consequently,

(2) N~ΓA(S(k))(K) = H(k) ∩N~ΓA(S(k)\{Ā})(K) = H(k) ∩ Kk(Q
(k−1)
K ).

Remark 7.4. Claim 7.3 holds more generally than we’ve stated above. In particular, State-
ment (1) of Claim 7.3 is true for all k-graphs ∅ ⊆ S(k) ⊆ O(k) = K(k)(U1, . . . , Uk), and for all
choices of anchors A. Statement (2) of Claim 7.3 is a consequence of Statement (1), since

N~ΓA(S(k))(K) = H(k) ∩N~ΓA(S(k)\{Ā})(K)

is a basic identity of the graphs ~ΓA(S(k)) and ~ΓA(S(k) \{Ā}). Thus, Statement (2) of Claim 7.3

is true for all hypergraphs ∅ 6= S(k) ⊆ O(k), and for all choices of anchors A for which Ā ∈ S(k).

The proof of Claim 7.3 is mechanical, but not difficult. We will first show how Claim 7.3
concludes the proof of Theorem 2.16. We return to the proof of Claim 7.3 in Section 7.4.

To finish the proof of Theorem 2.16, fix Ki ∈ Z, and let Q(k−1)
i = Q(k−1)

Ki
be the (k, k − 1)-

complex constructed in Claim 7.3. For each 1 ≤ i ≤ r, we define Q(k−1)
i = Q(k−1)

Ki
∈ Q(k−1)

i ,

and so by Claim 7.3, we have Q(k−1)
i ⊆ H(k−1). We prove the hypergraphs Q(k−1)

1 , . . . ,Q(k−1)
r ⊆

H(k−1) satisfy the conclusion of Theorem 2.16. Indeed, we already noted in (84) that r ≤ r0, as
required by Theorem 2.16. As well, it follows from our discussion above that the hypergraphs

Q(k−1)
1 , . . . ,Q(k−1)

r ⊆ H(k−1) were constructed in time O(n3k), as required by Theorem 2.16. It
remains to verify the conditions in (68), which we separate into the following two parts.

Fact 7.5. ∣∣∣ ⋃
i∈[r]

Kk(Q
(k−1)
i )

∣∣∣ > δ′k

∣∣∣Kk(H(k−1))
∣∣∣ .

Fact 7.6.

d
(
H(k)|Q(k−1)

1 , . . . ,Q(k−1)
r

)
> d[k] + δ′k.

We proceed immediately to the proofs of Facts 7.5 and 7.6.

Proof of Fact 7.5. We use Inclusion-Exclusion to conclude∣∣∣ ⋃
i∈[r]

Kk(Q
(k−1)
i )

∣∣∣ ≥∑
i∈[r]

∣∣∣Kk(Q(k−1)
i )

∣∣∣− ∑
1≤i<j≤r

∣∣∣Kk(Q(k−1)
i ) ∩ Kk(Q

(k−1)
j )

∣∣∣ . (85)

To bound the sums above, recall from Claim 7.3 that, for each i ∈ [r],∣∣∣Kk(Q(k−1)
i )

∣∣∣ =
∣∣∣N~ΓA(S(k)\{Ā})(Ki)

∣∣∣ = deg~ΓA(S(k)\{Ā})(Ki). (86)

Claim 7.3 also gives that, for each 1 ≤ i < j ≤ r,∣∣∣Kk(Q(k−1)
i ) ∩ Kk(Q

(k−1)
j )

∣∣∣ =
∣∣∣N~ΓA(S(k)\{Ā})(Ki) ∩N~ΓA(S(k)\{Ā})(Kj)

∣∣∣ ≤ degΓk−1
(Ki,Kj),

(87)
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where the last inequality holds because ~ΓA(S(k) \ {Ā}) ⊆ Γk−1, which holds because every

labeled partite-embedding of S(k) \ {Ā} in H(k) is also a labeled partite-embedding of O(k−1)

in H(k−1). Applying (86) and (87) to (85) yields∣∣∣ ⋃
i∈[r]

Kk(Q
(k−1)
i )

∣∣∣ ≥∑
i∈[r]

deg~ΓA(S(k)\{Ā})(Ki)−
∑

1≤i<j≤r
degΓk−1

(Ki,Kj).

Claim 7.2 immediately bounds the double summation above:∣∣∣ ⋃
i∈[r]

Kk(Q
(k−1)
i )

∣∣∣ ≥∑
i∈[r]

deg~ΓA(S(k)\{Ā})(Ki)− 2r2
k−1∏
j=2

∏
Λj∈[k]j

d2·2j−3
Λj

× nk. (88)

To bound the single summation in (88), we use that for every 1 ≤ i ≤ r, the k-tuple Ki ∈ Z ⊂
Y = A(k)

bad,+ satisfies the following properties from (76):

deg~ΓA(S(k)\{Ā})(Ki)
(76)
> ξ degΓk−1

(Ki)

(76)
>

1

2
ξ

k−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

× nk (62)
= 5(δ′k)

1/8
k−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

× nk. (89)

Applying (89) to (88) yields∣∣∣ ⋃
i∈[r]

Kk(Q
(k−1)
i )

∣∣∣ ≥ 5r(δ′k)
1/8

k−1∏
j=2

∏
Λj∈[k]j

d2j−1
Λj

× nk − 2r2
k−1∏
j=2

∏
Λj∈[k]j

d2·2j−3
Λj

× nk.

Employing the value r = 2
√
δ′k
∏k−1
j=2

∏
Λj∈[k]j d

2−2j

Λj
from (83) into the inequality above yields

∣∣∣ ⋃
i∈[r]

Kk(Q
(k−1)
i )

∣∣∣ ≥ 10(δ′k)
5/8

k−1∏
j=2

∏
Λj∈[k]j

dΛj × nk − 8δ′k

k−1∏
j=2

∏
Λj∈[k]j

dΛj × nk

≥ 2δ′k

k−1∏
j=2

∏
Λj∈[k]j

dΛj × nk
(79)

≥ δ′k|Kk(H(k−1))|.

This proves Fact 7.5. �

Proof of Fact 7.6. By Inclusion-Exclusion, we have

d
(
H(k)|Q(k−1)

1 , . . . ,Q(k−1)
r

)
=

∣∣∣H(k) ∩
⋃
i∈[r]Kk(Q

(k−1)
i )

∣∣∣∣∣∣⋃i∈[r]Kk(Q
(k−1)
i )

∣∣∣
≥

∑
i∈[r]

∣∣∣H(k) ∩ Kk(Q
(k−1)
i )

∣∣∣−∑1≤i<j≤r

∣∣∣H(k) ∩ Kk(Q
(k−1)
i ) ∩ Kk(Q

(k−1)
j )

∣∣∣∑
i∈[r]

∣∣∣Kk(Q(k−1)
i )

∣∣∣
≥

∑
i∈[r]

∣∣∣H(k) ∩ Kk(Q
(k−1)
i )

∣∣∣−∑1≤i<j≤r

∣∣∣Kk(Q(k−1)
i ) ∩ Kk(Q

(k−1)
j )

∣∣∣∑
i∈[r]

∣∣∣Kk(Q(k−1)
i )

∣∣∣ . (90)
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Recall from Claim 7.3 that for each i ∈ [r], we have∣∣∣Kk(Q(k−1)
i )

∣∣∣ =
∣∣∣N~ΓA(S(k)\{Ā})(Ki)

∣∣∣ = deg~ΓA(S(k)\{Ā})(Ki),

and
∣∣∣H(k) ∩ Kk(Q

(k−1)
i )

∣∣∣ =
∣∣∣N~ΓA(S(k))(Ki)

∣∣∣ = deg~ΓA(S(k))(Ki).

Recall from (87) that, for each 1 ≤ i < j ≤ r, we have that |Kk(Q
(k−1)
i ) ∩ Kk(Q

(k−1)
j )| ≤

degΓk−1
(Ki,Kj). We may therefore update (90) to say

d
(
H(k)|Q(k−1)

1 , . . . ,Q(k−1)
r

)
≥
∑

i∈[r] deg~ΓA(S(k))(Ki)−
∑

1≤i<j≤r degΓk−1
(Ki,Kj)∑

i∈[r] deg~ΓA(S(k)\{Ā})(Ki)
.

Claim 7.2 immediately bounds the double summation above:

d
(
H(k)|Q(k−1)

1 , . . . ,Q(k−1)
r

)
≥

∑
i∈[r] deg~ΓA(S(k))(Ki)−

(
2r2
∏k−1
j=2

∏
Λj∈[k]j d

2·2j−3
Λj

× nk
)

∑
i∈[r] deg~ΓA(S(k)\{Ā})(Ki)

.

(91)
To bound the single summation in the numerator, we use that, for every 1 ≤ i ≤ r, the k-tuple

Ki ∈ Z ⊂ Y = A(k)
bad,+ satisfies the following property from (76):

deg~ΓA(S(k))(Ki)
(76)
> (1 + ξ)d[k] deg~ΓA(S(k)\{Ā})(Ki). (92)

Applying (92) to (91) yields

d
(
H(k)|Q(k−1)

1 , . . . ,Q(k−1)
r

)
≥

(1 + ξ)d[k]

∑
i∈[r] deg~ΓA(S(k)\{Ā})(Ki)−

(
2r2
∏k−1
j=2

∏
Λj∈[k]j d

2·2j−3
Λj

× nk
)

∑
i∈[r] deg~ΓA(S(k)\{Ā})(Ki)

= (1 + ξ)d[k] −
2r2
∏k−1
j=2

∏
Λj∈[k]j d

2·2j−3
Λj

× nk∑
i∈[r] deg~ΓA(S(k)\{Ā})(Ki)

.

Employing (89) in the denominator, we have

d
(
H(k)|Q(k−1)

1 , . . . ,Q(k−1)
r

)
≥ (1 + ξ)d[k] −

2r

5(δ′k)
1/8

k−1∏
j=2

∏
Λj∈[k]j

d2j−2
Λj

.

Employing the value r = 2
√
δ′k
∏k−1
j=2

∏
Λj∈[k]j d

2−2j

Λj
from (83) into the inequality above yields

d
(
H(k)|Q(k−1)

1 , . . . ,Q(k−1)
r

)
≥ (1 + ξ)d[k] −

4

5
(δ′k)

3/8 = d[k] + ξd[k] −
4

5
(δ′k)

3/8.

Now, from the hypothesis of Theorem 2.16, we have d[k] ≥ dk, and it follows from the definition
of ξ in (61) that ξ ≤ dk ≤ d[k]. We therefore have

d
(
H(k)|Q(k−1)

1 , . . . ,Q(k−1)
r

)
≥ d[k] + ξ2 − 4

5
(δ′k)

3/8

(62)
= d[k] + 100(δ′k)

1/4 − 4

5
(δ′k)

3/8 ≥ d[k] + 99(δ′k)
3/8 > d[k] + δ′k.

This proves Fact 7.6. �
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7.3. Proof of Claim 7.2. We shall prove, more generally, that for each 2 ≤ i ≤ k − 1,∑
{Ka,Kb}∈Gi[Z]

degΓi
(Ka,Kb) ≤

i

k − 1
r2

k−1∏
j=2

∏
Λj∈[k]j

d2·2j−3
Λj

× nk. (93)

We first show that (93) implies Claim 7.2. Indeed, observe that∑
1≤a<b≤r

degΓk−1
(Ka,Kb) =

∑
{Ka,Kb}∈(Z2)\Gk−1

degΓk−1
(Ka,Kb) +

∑
{Ka,Kb}∈Gk−1

degΓk−1
(Ka,Kb)

(78)

≤ 2

(
r

2

) k−1∏
j=2

∏
Λj∈[k]j

d2·2j−3
Λj

× nk +
∑

{Ka,Kb}∈Gk−1

degΓk−1
(Ka,Kb).

Employing (93) with i = k − 1, we have

∑
{a,b}∈([r]

2 )

degΓk−1
(Ka,Kb) ≤

(
1 + (k − 1)

1

k − 1

)
r2

k−1∏
j=2

∏
Λj∈[k]j

d2·2j−3
Λj

× nk,

as desired.
To prove (93), we use induction on 2 ≤ i ≤ k−1. Since the base case i = 2 will be implicit in

the inductive step, we give its discussion in context (see (94) and (95) below). For 3 ≤ i ≤ k−1,
we have the recurrence∑
{Ka,Kb}∈Gi[Z]

degΓi
(Ka,Kb)

(22)

≤
∑

{Ka,Kb}∈Gi[Z]

degΓi−1
(Ka,Kb)

=
∑

{Ka,Kb}∈(Gi\Gi−1)[Z]

degΓi−1
(Ka,Kb) +

∑
{Ka,Kb}∈(Gi∩Gi−1)[Z]

degΓi−1
(Ka,Kb)

(78)

≤ 2|Gi[Z]|
i−1∏
j=2

∏
Λj∈[k]j

d2·2j−3
Λj

× nk +
∑

{Ka,Kb}∈Gi−1[Z]

degΓi−1
(Ka,Kb). (94)

Note that the last inequality of (94) also holds for i = 2. Indeed, when i = 2, the summation
in (94) is zero, and the first term is 2|G2[Z]|nk. However, when i = 2, the following stronger
inequality holds: ∑

{Ka,Kb}∈G2[Z]

degΓ2
(Ka,Kb) ≤ |G2[Z]| × nk. (95)

Now, for 2 ≤ i ≤ k − 1, we claim that

2|Gi[Z]|
i−1∏
j=2

∏
Λj∈[k]j

d2·2j−3
Λj

≤ 1

k − 1
r2

k−1∏
j=2

∏
Λj∈[k]j

d2·2j−3
Λj

,

or equivalently,

|Gi[Z]| ≤ r2

2(k − 1)

k−1∏
j=i

∏
Λj∈[k]j

d2·2j−3
Λj

, (96)

which, if true, completes our induction step.
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To see (96), recall that the Picking Lemma ensures that |Gi[Z]| ≤ 2(k − 1)(σi/c
2)r2, where

σi
(81)
=

{
ζk−1 if i = k − 1,

2ζi
∏k−1
j=i+1

∏
Λj∈[k]j d

−2
Λj

if 2 ≤ i ≤ k − 2,

and c = 1
4d[k]ξ was given in (82). To bound σk−1 = ζk−1, we have

σk−1 = ζk−1
(65)
=

d2
kξ

2

128(k − 1)2
d
k(2·2k−1−1)
k−1 ≤

d2
[k]ξ

2

128(k − 1)2

∏
Λk−1∈[k]k−1

d2·2k−1−1
Λk−1

≤
d2

[k]ξ
2

128(k − 1)2

∏
Λk−1∈[k]k−1

d2·2k−1k−3
Λk−1

,

where we used, for j ∈ {k − 1, k}, dΛj ≥ dj for all Λj ∈ [k]j . Thus, with |Gk−1[Z]| ≤
2(k − 1)(σk−1/c

2)r2 and c = 1
4d[k]ξ, we have

|Gk−1[Z]| ≤ 2(k − 1)
σk−1

c2
r2 ≤ r2

4(k − 1)

∏
Λk−1∈[k]k−1

d2·2k−1−3
Λk−1

<
r2

2(k − 1)

∏
Λk−1∈[k]k−1

d2·2k−1−3
Λk−1

,

which is (96) in the case i = k − 1.

For 2 ≤ i ≤ k − 2, we have from (81) that σi = 2ζi
∏k−1
j=i+1

∏
Λj∈[k]j d

−2
Λj

. To bound ζi in this

expression, observe that

ζi
(65)
=

d2
kξ

2
1

128(k − 1)2

k−1∏
j=i

d
(kj)(2·2j−1)

j ≤
d2

[k]ξ
2

128(k − 1)2

k−1∏
j=i

∏
Λj∈[k]j

d2·2j−1
Λj

=
d2

[k]ξ
2

128(k − 1)2

∏k−1
j=i

∏
Λj∈[k]j d

2·2j−3
Λj∏k−1

j=i

∏
Λj∈[k]j d

−2
Λj

≤
d2

[k]ξ
2

128(k − 1)2

∏k−1
j=i

∏
Λj∈[k]j d

2·2j−3
Λj∏k−1

j=i+1

∏
Λj∈[k]j d

−2
Λj

,

where we used that, for each 2 ≤ j ≤ k, dΛj ≥ dj for all Λj ∈ [k]j . As such, we may bound σi
by

σi
(81)
= 2ζi

k−1∏
j=i+1

∏
Λj∈[k]j

d−2
Λj
≤

d2
[k]ξ

2

64(k − 1)2

k−1∏
j=i

∏
Λj∈[k]j

d2·2j−3
Λj

.

Thus, with |Gi[Z]| ≤ 2(k − 1)(σi/c
2)r2 and c = 1

4d[k]ξ, we have

|Gi[Z]| ≤ 2(k − 1)
σi
c2
r2 ≤ 1

2(k − 1)
r2

k−1∏
j=i

∏
Λj∈[k]j

d2·2j−3
Λj

,

which is (96). This proves Claim 7.2.

7.4. Proof of Claim 7.3. In this section, we construct the promised (k, k − 1)-complex

Q(k−1)
K = {Q(j)

K }
k−1
j=1 . In what follows, we use the following standard notation: for a k-uniform

hypergraph G, and for a set L ⊆ V (G), let

NG(L) = {J ⊂ V (G) : L ∪ J ∈ G} ,
denote the G-neighborhood of L, which is a (k−|L|)-uniform hypergraph. Now, to construct the

promised (k, k−1)-complex Q(k−1)
K = {Q(j)

K }
k−1
j=1 is not difficult, but it is a bit formal. We begin
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with a discussion of the following example, where k = 4 and S(4) = O(4) = K(4)(U1, U2, U3, U4),

that is, S(4) is the complete 4-partite 4-uniform hypergraph with |U1| = |U2| = |U3| = |U4| = 2.

7.4.1. Example: constructing Q(3) when S(4) = O(4) = K(4)(U1, U2, U3, U4). Since S(4) = O(4),

we have that the anchor A satisfies A ∈ S(4), and therefore, A(4) = H(4) (cf. (24)). Now, fix

K ∈ A(4) = H(4), and let K = {v1, v2, v3, v4}, where vi ∈ Vi for all 1 ≤ i ≤ 4.

We construct the promised (4, 3)-complex Q(3)
K = Q(4)

{v1,v2,v3,v4} = {Q(j)
K }3j=1 recursively. To

begin, set

Q(1)
K = NH(4)({v1, v2, v3}) ∪NH(4)({v1, v2, v4}) ∪NH(4)({v1, v3, v4}) ∪NH(4)({v2, v3, v4}),

which is a (4, 1)-cylinder since it is just a partition of vertices into four sets. Next, set

Q(2)
K =

( ⋃
1≤i<j≤4

NH(4)({vi, vj})
)
∩ K2(Q(1)

K ).

Then, Q(2)
K = Q(2)

{v1,v2,v3,v4} consists of six bipartite graphs Q(2)
{vi,vj}, 1 ≤ i < j ≤ 4, where for

example,

Q(2)
{v1,v2} = NH(4)({v1, v2})

[
NH(4)({v1, v2, v3}), NH(4)({v1, v2, v4})

]
is the subgraph of NH(4)({v1, v2}) induced on NH(4)({v1, v2, v3}) ∪ NH(4)({v1, v2, v4}). Finally,
set

Q(3)
K =

(
NH(4)(v1) ∪NH(4)(v2) ∪NH(4)(v3) ∪NH(4)(v4)

)
∩ K3(Q(2)

K ).

Then, Q(3)
K consists of four 3-partite 3-graphs Q(3)

v1 , Q(3)
v2 , Q(3)

v3 , Q(3)
v4 , where for example,

Q(3)
v1

= NH(4)(v1) ∩ K3

(
Q(2)
{v1,v2} ∪Q

(2)
{v1,v3} ∪Q

(2)
{v1,v4}

)
is the subhypergraph of NH(4)(v1) induced on the triangles of Q(2)

{v1,v2}∪Q
(2)
{v1,v3}∪Q

(2)
{v1,v4}. This

defines the (4, 3)-complex Q(3)
K = {Q(j)

K }3j=1, where it is clear that for each 1 ≤ j ≤ 3, Q(j)
K may

be constructed in time O(nj).

7.4.2. Defining Q(k−1)
K for general S(k). To define the (k, k−1)-complex Q(k−1)

K = {Q(j)
K }

k−1
j=1 for

a general S(k) ⊆ O(k) = K(k)(U1, . . . , Uk), we proceed similarly to the example above. However,

now we must define each of the (k, j)-cylinders Q(j)
K , 1 ≤ j ≤ k − 1, inductively. Moreover, we

must be mindful of the fact that not all edges of O(k) = K(k)(U1, . . . , Uk) may be present in

S(k). (In particular, we are only guaranteed that Ā ∈ S(k), by hypothesis.)
We begin by making a few initial preparations. We write the anchor A as A = {a1, . . . , ak}.

We then write Ā = {b1, . . . , bk}, which by hypothesis is an element of S(k). Then, Ui = {ai, bi}
for all i ∈ [k]. Now, fix K ∈ A(k), where we recall from (24) that A(k) = H(k) if A ∈ S(k), and

A(k) = Kk(H(k−1)) if A 6∈ S(k). We write K = {v1, . . . , vk}, where vi ∈ Vi for all i ∈ [k]. We

will construct the promised complex Q(k−1)
K = {Q(j)

K }
k−1
j=1 recursively.

To construct the promised (k, 1)-cylinder Q(1)
K , we consider the family

(
A
k−1

)
of all (k − 1)-

tuples from the anchor A. To begin, for A′ = {ah1 , . . . , ahk−1
} ⊂ A, write A \ A′ = {ahk} and

write KA′ = {vh1 , . . . , vhk−1
}. Define

Q(1)
A′ =

{
NH(k)(KA′) if {ah1 , . . . , ahk−1

, bhk} ∈ S(k),

NKk(H(k−1))(KA′) if {ah1 , . . . , ahk−1
, bhk} 6∈ S(k).

(97)
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Define

Q(1)
K =

⋃
A′∈( A

k−1)

Q(1)
A′ ,

and note that Q(1)
K is a (k, 1)-cylinder. Trivially, Q(1)

K = {Q(1)
K } is a (k, 1)-complex whose sole

component Q(1)
K satisfies Q(1)

K ⊆ V1 ∪ · · · ∪ Vk = H(1). Moreover, Q(1)
K may be constructed in

time O(n).
For 2 ≤ i ≤ k − 1, assume we have constructed, in time O(ni−1), a (k, i − 1)-complex

Q(i−1)
K = {Q(j)

K }
i−1
j=1, where Q(j)

K ⊆ H(j) holds for all j ∈ [i − 1]. We construct, in time O(ni),

a (k, i)-cylinder Q(i)
K ⊆ H(i) ∩ Kk(Q

(i−1)
K ) by considering the family

(
A
k−i
)

of all (k − i)-tuples

from A = {a1, . . . , ak}. For A′ = {ah1 , . . . , ahk−i
} ⊂ A, write A \ A′ = {ahk−i+1

, . . . , ahk} and
KA′ = {vh1 , . . . , vhk−i

}. Define

Q(i)
A′ =

{
NH(k)(KA′) ∩ Ki(Q

(i−1)
K ) if {ah1 , . . . , ahk−i

, bhk−i+1
, . . . , bhk} ∈ S(k),

NKk(H(k−1))(KA′) ∩ Ki(Q
(i−1)
K ) if {ah1 , . . . , ahk−i

, bhk−i+1
, . . . , bhk} 6∈ S(k).

(98)

Define

Q(i)
K =

⋃
A′∈
(
A
k−i
)Q(i)

A′ ,

and note that Q(i)
K ⊆ H(i)∩Ki(Q(i−1)

K ) is a (k, i)-cylinder. As such, together with our induction

hypothesis, we may conclude that Q(i)
K = {Q(j)

K }ij=1 is a (k, i)-complex where Q(j)
K ⊆ H(j) holds

for each j ∈ [i]. Moreover, Q(i)
K may be constructed in time O(ni). Inductively, this defines the

promised (k, k − 1)-complex Q(k−1)
K = {Q(j)

K }
(k−1)
j=1 .

We claim that, by construction, the (k, k − 1)-complex Q(k−1)
K = {Q(j)

K }
(k−1)
j=1 has the prop-

erties promised by Claim 7.3. For that, it suffices to prove Q(k−1)
K satisfies Statement (1) of

Claim 7.3 (see Remark 7.4). Indeed, fix K ′ ∈ Kk(H(k−1)). Then, K ′ ∈ N~ΓA(S(k)\{Ā})(K) if, and

only if, there exists a labeled partite-embedding ψ of S(k) \ {Ā} in H(k) satisfying ψ(A) = K

and ψ(Ā) = K ′. In other words, K ∪ K ′ induces a copy of S(k) \ {Ā} in H(k), and K ∪ K ′
induces a copy of O(k−1) in H(k−1). However, our construction in (98) equivalently places

K ′ ∈ Kk−1(Q(k−1)
K ), and vice-versa.

8. Appendix

8.1. Proof of Lemma 7.1. The proof of Lemma 7.1 (which is reduced to Claim 8.1 below)
will make a standard appeal to the Method of Conditional Expectations (cf. [14, 20]), which is
based on an original idea of Erdős and Selfridge [2]. Before we emerge into these details, we
note that it suffices to prove Lemma 7.1 when c = 1 (and consequently, Y = X). In particular,
let σs, . . . , σ2 > 0 be given, together with an integer r ≥ 1. Let X be a set of size m, and let
G2, . . . , Gs be graphs with vertex set X satisfying |G2| ≤ σ2m

2, . . . , |Gs| ≤ σsm2.

Suppose there exists an algorithm which chooses, in time O(|X|3) = O(m3),

vertices Z = Zr = {z1, . . . , zr} ⊂ Y = X so that, for all 2 ≤ i ≤ s,
|Gi[Z]| < 2(s− 1)σir

2. (99)
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Now, let Y ⊆ X of size |Y | ≥ c|X| be given, where c > 0 is a constant. Note that the induced
subgraphs Gi[Y ], 2 ≤ i ≤ s, satisfy

|Gi[Y ]| ≤ |Gi| ≤ σim2 =⇒ |Gi[Y ]|
|Y |2

≤ σi
m2

|Y |2
≤ σi
c2

=⇒ |Gi[Y ]| ≤ σi
c2
|Y |2.

We apply the algorithm in (99) to the induced subgraphs Gi[Y ], 2 ≤ i ≤ s. This algorithm
chooses, in time O(|Y |3) = O(m3), vertices Z = Zr = {z1, . . . , zr} ⊂ Y so that, for all 2 ≤ i ≤ s,

|Gi[Z]| = |(Gi[Y ])[Z]| ≤ 2(s− 1)
σi
c2
r2,

as desired.
We now prove (99), i.e., Lemma 7.1 when c = 1 and Y = X. To that end, let us assume,

w.l.o.g., that

|G2| = σ2m
2, . . . , |Gs| = σsm

2, where σs = max{σ2, . . . , σs}. (100)

Now, for each 2 ≤ i ≤ s, define the constant weight function ωi : Gi → {σs/σi}, i.e., for each
pair {x, x′} ∈ Gi, define

ωi({x, x′}) = σs/σi. (101)

Note that Gi has total weight

ωi(Gi) =
∑

{x,x′}∈Gi

ωi({x, x′}) =
σs
σi
|Gi|

(100)
= σsm

2.

Define G = G2 ∪ · · · ∪ Gs. Then, G is a simple weighted graph on vertex set X whose weight
function ω : G→ R is given by, for each {x, x′} ∈ G,

ω({x, x′}) =
∑

Gi3{x,x′}

ωi({x, x′}). (102)

Note that G has total weight

ω(G) =
∑

{x,x′}∈G

ω({x, x′}) =

s∑
i=2

ωi(Gi) = (s− 1)σsm
2.

We make the following claim.

Claim 8.1. There exists an algorithm which chooses, in time O(m3), vertices Z = Zr =
{z1, . . . , zr} ⊂ X so that ω(G[Z]) ≤ 2(s− 1)σsr

2.

We defer the proof of Claim 8.1 for a moment in favor of showing how it implies Lemma 7.1.
Let Z = Zr = {z1, . . . , zr} be the set chosen by Claim 8.1. Fix 2 ≤ i ≤ s. Then,

ωi(Gi[Z]) ≤ ω(G[Z]) ≤ 2(s− 1)σsr
2. (103)

On the other hand, by (101), we have that

ωi(Gi[Z]) =
σs
σi
|Gi[Z]|. (104)

Comparing (103) and (104), we see
σs
σi
|Gi[Z]| = ωi(Gi[Z]) ≤ ω(G[Z]) ≤ 2(s− 1)σsr

2,

from which |Gi[Z]| ≤ 2(s − 1)σir
2 follows. Thus, to finish the proof of Lemma 7.1, it only

remains to prove Claim 8.1.



42 BRENDAN NAGLE, VOJTĚCH RÖDL, AND MATHIAS SCHACHT

8.1.1. Proof of Claim 8.1. To select the promised vertices Z = Zr = {z1, . . . , zr} ⊂ X, we use
the following iterative procedure. For an integer 0 ≤ p < r, suppose we have selected vertices
Zp = {z1, . . . , zp} ⊂ X (if p = 0, then Zp = ∅) satisfying the following property:

Let Ar−p ⊆ X \ Zp of size |Ar−p| = r − p be selected uniformly at random.

Then, we have E[ω(G[Zp ∪Ar−p])] ≤ 2(s− 1)σsr
2. (105)

Observe that (105) is true when p = 0. Indeed, in this case, Z0 = ∅, and Ar ⊆ X is an
r-element set selected uniformly at random. Thus, using linearity of expectation, we see that

E[ω(G[Ar])]
(102)
=

s∑
i=2

E[ω(Gi[Ar])]
(101)
=

s∑
i=2

σs
σi

E[|G[Ar]|] =
s∑
i=2

σs
σi
|Gi|

(
r
2

)(
m
2

)
(100)
= (1 + o(1))(s− 1)σsr

2 < 2(s− 1)σsr
2.

Thus, (105) is true when p = 0. It remains to prove that we may select, in time O(m2), a vertex
v ∈ X \ Zp so that the set Zp+1 = Zp ∪ {z} still satisfies the property in (105). Thus, we stop
when p = r. Indeed, the set Zr is the desired set, since then Ar−p = ∅, and so we will have,
for all 2 ≤ i ≤ s, E[ω(G[Zr])] = ω(G[Zr]).

To prove the inductive step for (105), we make the following considerations. With the set
Zp = {z1, . . . , zp} fixed above, define

g(Zp) = g(z1, . . . , zp) = E
Ar−p∈

(
X\Zp

r−p
)[ω(G[Zp ∪Ar−p])],

where the expectation above is taken uniformly over all sets Ar−p ⊆ X\Zp of size |Ar−p| = r−p.
Thus, g(Zp) is the expected ω-weight of an induced subgraph G[Zp ∪ Ar−p] whose vertices
contain Zp, where Ar−p runs uniformly over all (r−p)-element sets of X \Zp. By our Induction
Assumption in (105), we have

g(Zp) = g(z1, . . . , zp) ≤ 2(s− 1)σsr
2. (106)

Fix an arbitrary vertex z ∈ X \ Zp, and write Zzp+1 = Zp ∪ {z}. Define

f(z) = g(Zzp+1) = g(z1, . . . , zp, z) = E
Ar−p−1∈

(X\Zz
p+1

r−p−1

)[ω(G[Zzp+1 ∪Ar−p−1])], (107)

where the expectation above is taken uniformly over all sets Ar−p−1 ⊆ X \ Zzp+1 of size

|Ar−p−1| = r−p−1. Thus, f(z) is the average ω-weight of an induced subgraphG[Zzp+1∪Ar−p−1]

whose vertices contain Zzp+1, where Ar−p−1 runs uniformly over all (r − p− 1)-element subsets

of X \ Zzp+1. As such, the quantity

1

|X \ Zp|
∑

z∈X\Zp

f(z) =
1

m− p
∑

z∈X\Zp

f(z)

is the average ω-weight of an induced subgraph G[Zp ∪Ar−p] whose vertices contain Zp, where
Ar−p runs uniformly over all (r − p)-element subsets of X \ Zp. Therefore,

1

m− p
∑

z∈X\Zp

f(z) = g(Zp) = g(z1, . . . , zp)
(106)

≤ 2(s− 1)σsr
2.
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Thus, to complete the inductive step for (105), we prove that we may select, in time O(m3), a
vertex z0 ∈ X \ Zp so that

f(z0) ≤ 1

m− p
∑

z∈X\Zp

f(z). (108)

We now proceed to prove (108).
To prove (108), we shall compute, for a fixed vertex z ∈ X \ Zp, the value of f(z) (which is

defined in (107)). This computation will take place in (117) below, but to get there, we will need
several considerations. To begin, for z ∈ X \ Zp fixed, we continue to write Zzp+1 = Zp ∪ {z}.
For a vertex x ∈ X \ Zzp+1, let

ω(G[{x}, Zzp+1])

denote the total ω-weight of all edges of the form {x, y} ∈ G, where y ∈ Zzp+1. (Note that

G[{x}, Zzp+1] is a star centered at x, with pendent vertices consisting of NG(x) ∩ Zzp+1.) Now,

define the following equivalence relation ∼ on X \ Zzp+1 by setting, for each x, x′ ∈ X \ Zzp+1,

x ∼ x′ ⇐⇒ ω(G[{x}, Zzp+1]) = ω(G[{x′}, Zzp+1]). (109)

Then, we may construct, in time O(m), the partition

X \ Zzp+1 = Xz
1 ∪ · · · ∪Xz

t (110)

induced by ∼. For future reference, let us write, for each 1 ≤ j ≤ t,

αj
def
=
{
ω(G[{x}, Zzp+1]) : x ∈ Xz

j

}
. (111)

With the vertex z ∈ X \ Zp fixed, observe that the partition in (110) satisfies t = t(z) ≤
(p + 2)s−1 = O(1). Indeed, for a fixed x ∈ X \ Zzp+1, each of the (s − 1) many graphs Gi,

2 ≤ i ≤ s, satisfies |NGi(x) ∩ Zzp+1| ∈ {0, 1, . . . , p + 1}, i.e., |NGi(x) ∩ Zzp+1| has (p + 2) many

possible sizes. By (101),

ωi(Gi[{x}, Zzp+1]) =
σs
σi
|NGi(x) ∩ Zzp+1|,

and so

ω(G[{x}, Zzp+1])
(102)
=

s∑
i=2

ωi(Gi[{x}, Zzp+1]) =
s∑
i=2

σs
σi
|NGi(x) ∩ Zzp+1|

may assume at most (p+ 2)s−1 possible values, as claimed.
With the vertex z ∈ X \ Zp still fixed, and with the partition X \ Zzp+1 = Xz

1 ∪ · · · ∪ Xz
t

from (110), we may now compute f(z) (which is defined in (107)). To that end, fix

an integer sum a1 + · · ·+ at = r − p− 1, where 0 ≤ aj ≤ |Xz
j |, 1 ≤ j ≤ t. (112)

For each 1 ≤ j ≤ t,

let Azj ∈
(
Xz
j

aj

)
be an arbitrary aj-subset, and let Az = Az(a1, . . . , at) =

t⋃
j=1

Azj . (113)

Define

f(z; a1, . . . , at) = E
(Az

1,...,A
z
t )∈

∏t
j=1 (X

z
j

aj
)
[ω(G[Zzp+1 ∪Az1 ∪ · · · ∪Azt ])]

= E
(Az

1,...,A
z
t )∈

∏t
j=1 (X

z
j

aj
)
[ω(G[Zzp+1 ∪Az(a1, . . . , at)])]. (114)
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where the expectation above is taken uniformly over all sequences (Az1, . . . , A
z
t ) ∈

∏t
j=1

(
Xz

j
aj

)
,

i.e., the expectation above is taken uniformly over all subsets Az = Az(a1, . . . , at) ⊆ X \ Zzp+1

of the form in (113). Then, f(z) (which is defined in (107)) is given by

f(z) =
∑

a1+···+at=r−p−1

∏t
j=1

(|Xz
j |
aj

)(
n−p−r
r−p−1

) f(z; a1, . . . , at), (115)

where the sum extends over all indices of the form in (112).
We now expand the expression for f(z) given in (115) by computing each term f(z; a1, . . . , at)

(cf. (114)), where a1 + · · · + at = r − p − 1 is of the form in (112). Indeed, by linearity of
expectation, we claim that

f(z; a1, . . . , at) = ω(G[Zzp+1]) +
t∑

j=1

αjaj

+

t∑
j=1

ω(G[Xz
j ])

(aj
2

)(|Xz
j |

2

) +
∑

1≤j<k≤t
ω(G[Xz

j , X
z
k ])

ajak
|Xz

j ||Xz
k |
. (116)

Indeed, the first term in (116) is ω(G[Zzp+1]), which is the total ω-weight of the edges of G[Zzp+1].

The first sum in (116) is the expected ω-weight of G[Az1∪· · ·∪Azt , Zzp+1] (cf. (111)). The second

sum in (116) is the expected ω-weight of
⋃t
j=1G[Azj ]. Finally, the third sum in (116) is the

expected ω-weight of
⋃

1≤j<k≤tG[Azj , A
z
k]. Thus, applying (116) to (115), we have that

f(z) =
∑

a1+···+at=r−p−1

∏t
j=1

(|Xz
j |
aj

)(
n−p−r
r−p−1

)
ω(G[Zzp+1]) +

t∑
j=1

αjaj

+

t∑
j=1

ω(G[Xz
j ])

(aj
2

)(|Xz
j |

2

) +
∑

1≤j<k≤t
ω(G[Xz

j , X
z
k ])

ajak
|Xz

j ||Xz
k |

 , (117)

where the (main) sum extends over all indices of the form in (112).
To prove (108), it remains to choose, in time O(m3), a vertex z0 ∈ X \ Zp so that f(z0) ≤

1
m−p

∑
z∈X\Zp

f(z). For that, we use the expression in (116) for f(z). Note that, for each

z ∈ X \Zp, the expression for f(z) in (117) depends only on z. Moreover, since all sums above
consist of O(1) many terms, we may compute, in time O(m2), the value of f(z) for a fixed
z ∈ X \ Zp. Now, in time O(m3), we compute all values of f(z) over all z ∈ X \ Zp, and select
z0 ∈ X \ Zp so that

f(z0) = min
z∈X\Zp

f(z).

Then, by our choice of z0, we have f(z0) ≤ 1
m−p

∑
z∈X\Zp

f(z), which proves (108). This proves

Claim 8.1, and hence, concludes the proof of Lemma 7.1.

8.2. Proof of Fact 2.10. The equivalence COUNTemb ⇐⇒ COUNTind is trivial to prove.
Indeed, let H(j) and H(j−1) be given as in Definition 2.9, where d = d(H(j)|H(j−1)) > 0, and
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fix δ > 0. Note that, for each ∅ ⊆ S(j) ⊆ O(j) = K(j)(U1, . . . , Uj), we have∣∣EMB(S(j), (H(j),H(j−1)))
∣∣ =

∑
S(j)⊆F(j)⊆O(j)

∣∣EMBind(F (j), (H(j),H(j−1)))
∣∣, and

∣∣EMBind(S(j), (H(j),H(j−1)))
∣∣ =

∑
S(j)⊆F(j)⊆O(j)

(−1)|F
(j)|−|S(j)|∣∣EMB(F (j), (H(j),H(j−1)))

∣∣.
With these identities, we may apply Definition 2.9 (and the Binomial Theorem) to conclude

that (H(j),H(j−1)) has COUNTemb(d, δ) if, and only if, (H(j),H(j−1)) has COUNTind(d, δ).

Now, suppose (H(j),H(j−1)) has COUNTemb(d, δ) and that, for each i ∈ [j], we have |Vi| =
Θ(n), and that |EMB(O(j−1),H(j−1))| = Ω(n2j ). Then,∑

v1,v′1∈V1

· · ·
∑

vj ,v′j∈Vj

∏{
ω(J) : J ∈ K(j)

(
{v1, v

′
1}, . . . , {vj , v′j}

)}
= O(n2j−1) +

∑
∅⊆S(j)⊆O(j)

(1− d)|S
(j)|(−d)2j−|S(j)|∣∣EMBind(S(j), (H(j),H(j−1)))

∣∣.
Since (H(j),H(j−1)) has COUNTemb(d, δ), it also has COUNTind(d, δ), and so we conclude∑

v1,v′1∈V1

· · ·
∑

vj ,v′j∈Vj

∏{
ω(J) : J ∈ K(j)

(
{v1, v

′
1}, . . . , {vj , v′j}

)}
≤ O(n2j−1) +

∣∣EMB(O(j−1),H(j−1))
∣∣d2j (1− d)2j × δ22j

≤ O(n2j−1) + δ2−2j
∣∣EMB(O(j−1),H(j−1))

∣∣ ≤ δ∣∣EMB(O(j−1),H(j−1))
∣∣,

where we used d(1− d) ≤ 1/4.
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