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Abstract. We establish a so-called counting lemma that allows embeddings of certain
linear uniform hypergraphs into sparse pseudorandom hypergraphs, generalizing a result
for graphs [Embedding graphs with bounded degree in sparse pseudorandom graphs,
Israel J. Math. 139 (2004), 93–137]. Applications of our result are presented in the
companion paper [Counting results for sparse pseudorandom hypergraphs II].

§1. Introduction

Many problems in extremal combinatorics concern embeddings of graphs and hyper-
graphs of fixed isomorphism type into a large host graph/hypergraph. The systematic
study of pseudorandom graphs was initiated by Thomason [15, 16] and since then many
embedding results have been developed for host pseudorandom graphs. For example,
a well-known consequence of the Chung–Graham–Wilson theorem [2] asserts that dense
pseudorandom graphs G contain the “right” number of copies of any fixed graph, where
“right” means approximately the same number of copies as expected in a random graph
with the same density as G. In view of this result, the question arises to which extent it
can be generalized to sparse pseudorandom graphs, and results in this direction can be
found in [3–5, 12]. We continue this line of research for embedding properties of sparse
pseudorandom hypergraphs. Counting lemmas for pseudorandom hypergraphs were also
investigated by Conlon, Fox and Zhao [6].
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Let G “ pV,Eq be a k-uniform hypergraph. For every 1 ď i ď k´1 and every i-element
set tx1, . . . , xiu P

`

V
i

˘

, let

NGpx1, . . . , xiq “

"

txi`1, . . . , xku P

ˆ

V

k ´ i

˙

: tx1, . . . , xku P E

*

,

i.e., NGpx1, . . . , xiq is the set of elements of
`

V
k´i

˘

that form an edge of G together with
tx1, . . . , xiu. In what follows, our hypergraphs will usually be k-uniform and will have n
vertices. The parameters n and k will often be omitted if there is no danger of confusion.

Property 1.1 (Boundedness Property). Let k ě 2. We define BDDpd, C, pq as the family
of n-vertex k-uniform hypergraphs G “ pV,Eq such that, for all 1 ď r ď d and all families
of distinct sets S1, . . . , Sr P

`

V
k´1

˘

, we have

|NGpS1q X . . .XNGpSrq| ď Cnpr. (1)

Property 1.2 (Tuple Property). Let k ě 2. We define TUPLEpd, δ, pq as the family of
n-vertex k-uniform hypergraphs G “ pV,Eq such that, for all 1 ď r ď d, the following
holds.

ˇ

ˇ|NGpS1q X . . .XNGpSrq| ´ np
r
ˇ

ˇ ă δnpr (2)

for all but at most δ
`

p n
k´1q
r

˘

families tS1, . . . , Sru of r distinct sets of
`

V
k´1

˘

.

The notion of pseudorandomness considered in this paper is given in Definition 1.3
below.

Definition 1.3. A k-uniform hypergraph G “ pV,Eq is pd1, C, d2, δ, pq-pseudorandom if
|E| “ p

`

n
k

˘

and G satisfies BDDpd1, C, pq and TUPLEpd2, δ, pq.

Note that property TUPLE implies edge-density close to p, but we put the condition
|E| “ p

`

n
k

˘

in the definition of pseudorandomness for convenience. We remark that similar
notions of pseudorandomness in hypergraphs were considered in [8, 9].

Our main result, Theorem 1.4 below, estimates the number of copies of some linear
k-uniform hypergraphs in sparse pseudorandom hypergraphs. An embedding of a hy-
pergraph H into a hypergraph G is an injective mapping φ : V pHq Ñ V pGq such that
tφpv1q, . . . , φpvkqu P EpGq whenever tv1, . . . , vku P EpHq. An edge e of a linear k-uniform
hypergraph EpHq is called connector if there exist v P V pHq r e and k edges e1, . . . , ek

containing v such that |e X ei| “ 1 for 1 ď i ď k. Note that, for k “ 2, a connector is an
edge that is contained in a triangle. Moreover, since H is linear, e X ei ‰ e X ej for all
1 ď i ă j ď k. Given a k-uniform hypergraph H, let

dH “ maxtδpJq : J Ă Hu and DH “ mintkdH ,∆pHqu,
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where δpJq and ∆pJq stand, respectively, for the minimum and maximum degree of a
vertex in V pJq. Note that dH ď DH .

Kohayakawa, Rödl and Sissokho [12] proved the following counting lemma: given a fixed
triangle-free graph H and p “ ppnq " n´1{DH with p “ op1q, for all ε ą 0 and C ą 1,
there exists δ ą 0 such that, if G is an n-vertex pDH , C, 2, δ, pq-pseudorandom graph and
n is sufficiently large, then

ˇ

ˇ|EpH,Gq| ´ nvpHqpepHq
ˇ

ˇ ă εnvpHqpepHq,

where EpH,Gq stands for the set of all embeddings from H into G. Our main theorem
generalizes this result for k-uniform hypergraphs.

Theorem 1.4. Let k ě 2 and m ě 4 be integers and let ε ą 0 and C ą 1 be fixed. Let H
be a linear k-uniform connector-free hypergraph on m vertices. Then there exists δ ą 0
for which the following holds for any p “ ppnq with p " n´1{DH and p “ op1q and for any
sufficiently large n.

If G is an n-vertex k-uniform hypergraph that is pDH , C, 2, δ, pq-pseudorandom, then
ˇ

ˇ|EpH,Gq| ´ nmpepHq
ˇ

ˇ ă εnmpepHq.

This paper is organized as follows. In Section 2 we state an important result, Lemma 2.3,
and we give some results that are needed for the proof of Lemma 2.3. In Section 3 we
state the so-called “Extension Lemma”, an important step in the proof of Theorem 1.4. In
Section 4, we prove Lemma 2.3 and Theorem 1.4. We finish with some concluding remarks
in Section 5.

§2. Auxiliary results

We begin by generalizing the definitions of BDD and TUPLE to deal not only with sets
of k ´ 1 vertices, but with sets of i vertices, for any 1 ď i ď k ´ 1.

Property 2.1 (General Boundedness Property). Let k ě 2 and 1 ď i ď k´ 1. We define
BDDipd, C, pq as the family of n-vertex k-uniform hypergraphs G “ pV,Eq such that, for
all 1 ď r ď d and all families of distinct sets S1, . . . , Sr P

`

V
i

˘

, we have

|NGpS1q X . . .XNGpSrq| ď Cnk´ipr. (3)

Note that BDDk´1pd, C, pq is the same as BDDpd, C, pq.

Property 2.2 (General Tuple Property). Let k ě 2 and 1 ď i ď k ´ 1. We define
TUPLEipd, δ, pq as the family of n-vertex k-uniform hypergraphs G “ pV,Eq such that, for
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all 1 ď r ď d, the following holds.
ˇ

ˇ

ˇ

ˇ

|NGpS1q X . . .XNGpSrq| ´

ˆ

n

k ´ i

˙

pr
ˇ

ˇ

ˇ

ˇ

ă δ

ˆ

n

k ´ i

˙

pr (4)

for all but at most δ
`

pn
iq
r

˘

families tS1, . . . , Sru of r distinct sets of
`

V
i

˘

. We note that
TUPLEk´1pd, δ, pq is the same as TUPLEpd, δ, pq.

Let d ě 2 be an integer and let δ ą 0. Roughly speaking, the next result (Lemma 2.3)
states that if G is a p2, C, 2, δ1, pq-pseudorandom k-uniform hypergraph on n vertices and
p “ ppnq " n´1{d, then G is in fact p2, C, d, δ, pq-pseudorandom for all sufficiently large n
as long as δ1 is sufficiently small.

Lemma 2.3. For all δ ą 0, C ą 1 and integers k, d ě 2, there exists δ1 ą 0 such
that the following holds when p “ ppnq " n´1{d and n is sufficiently large: if G is a
p2, C, 2, δ1, pq-pseudorandom k-uniform hypergraph, then G is p2, C, d, δ, pq-pseudorandom.

Since we have n´1{DH ě n´1{dH for any k-graph H, Lemma 2.3 tells us that it suffices
to consider pDH , C, dH , δ, pq-pseudorandom hypergraphs G in the proof of Theorem 1.4.

In the remainder of this section we prove some results that are important in the proof of
Lemma 2.3. We start with some simple combinatorial facts and in Section 2.1 we, roughly
speaking, show how to obtain properties BDDi for every 1 ď i ď k´ 1 and TUPLE1 from
our pseudorandomness assumption. The proof of the following well-known lemma can be
seen in [12].

Fact 2.4. For every δ ą 0, there exists γ ą 0 such that, if a family of real numbers ai ě 0,
for 1 ď i ď N , satisfies the following inequalities:

(i )
řN
i“1 ai ě p1´ γqNa,

(ii )
řN
i“1 ai

2 ď p1` γqNa2,

then
ˇ

ˇti : |ai ´ a| ă δau
ˇ

ˇ ą p1´ δqN.

Let r ě 1 and a ą 0. Since
`

na
r

˘

{ar
`

n
r

˘

Ñ 1 when n Ñ 8, we obtain the following
lemma, which provides a combinatorial inequality that will be used often.

Fact 2.5. Let σ ą 0, r ě 1 and a ą 0. Then, the following holds for a sufficiently large n.
ˇ

ˇ

ˇ

ˇ

ˆ

na

r

˙

´ ar
ˆ

n

r

˙
ˇ

ˇ

ˇ

ˇ

ď σar
ˆ

n

r

˙

.
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2.1. Extending properties BDD and TUPLE. In this section we prove two results,
Lemmas 2.6 and 2.7, that give conditions for a hypergraph G to satisfy properties BDDi

for every 1 ď i ď k ´ 1, and TUPLE1.

Lemma 2.6. Let C ą 1 be an integer, let G be an n vertex k-uniform hypergraph and
consider 0 ă p “ ppnq ď 1. If G satisfies BDDp2, C, pq, then G satisfies BDDip2, C, pq for
all 1 ď i ď k ´ 1.

Proof. The proof follows by induction on i “ k´1, . . . , 1 and a simple averaging argument.
�

The next result gives necessary conditions for a k-uniform hypergraph to satisfy property
TUPLE1p2, δ, pq.

Lemma 2.7. For all C ą 1, δ ą 0 and an integer k ě 2, there exists σ ą 0 such that the
following holds for p " n´1{2 and sufficiently large n.

If G is a p2, C, 2, σ, pq-pseudorandom n-vertex k-uniform hypergraph, then G satisfies
TUPLE1p2, δ, pq.

Proof. We must prove that (4) holds for 1 ď r ď 2. Since the proofs of the cases r “ 1
and r “ 2 are similar, we present only the proof for the case r “ 2. We will show that the
two inequalities required to apply Fact 2.4 hold.

Fix C ą 1, δ ą 0 and an integer k ě 2. Let γ ą 0 be obtained by an application
of Fact 2.4 with parameter δ ą 0 and let σ “ σpC, γq be a sufficiently small constant.
Now let p " n´1{2 and consider a sufficiently large n. Suppose that G “ pV,Eq is a
p2, C, 2, σ, pq-pseudorandom n-vertex k-uniform hypergraph. Thus,

ÿ

tu,vuPpV
2q

|Npuq XNpvq| “
ÿ

SPp V
k´1q

ˆ

|NpSq|

2

˙

ě
ÿ

SPp V
k´1q : |NpSq|ěp1´σqnp

ˆ

|NpSq|

2

˙

ě p1´ σq
ˆ

n

k ´ 1

˙ˆ

p1´ σqpn
2

˙

ě p1´ σq4
ˆ

n

2

˙ˆ

n

k ´ 1

˙

p2

ě p1´ γq
ˆ

n

2

˙ˆ

n

k ´ 1

˙

p2, (5)

where the first inequality is trivial and the second follows from TUPLEp2, σ, pq and in the
third inequality we apply Fact 2.5.
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Heading for an application of Fact 2.4 we consider the following sum.
ÿ

tu,vuPpV
2q

|Npuq XNpvq|2 “
ÿ

pS1,S2qPp V
k´1q

2

ˆ

|NpS1q XNpS2q|

2

˙

“
ÿ

pS1,S2qPp V
k´1q

2

S1‰S2

ˆ

|NpS1q XNpS2q|

2

˙

`
ÿ

S1Pp V
k´1q

ˆ

|NpS1q|

2

˙

. (6)

We will bound the two sums in (6). By BDDp2, C, pq, the choice of p and an application
of Fact 2.5, we have

ÿ

S1Pp V
k´1q

ˆ

|NpS1q|

2

˙

ď

ˆ

n

k ´ 1

˙ˆ

Cnp

2

˙

ď p1` σqC2
ˆ

n

2

˙ˆ

n

k ´ 1

˙

p2.

Since p " n´1{2, we obtain
ÿ

S1Pp V
k´1q

ˆ

|NpS1q|

2

˙

ď σ

ˆ

n

2

˙ˆˆ

n

k ´ 1

˙

p2
˙2

. (7)

To bound the remaining sum, define A and B as the families of pairs tS1, S2u with
S1, S2 P

`

V
k´1

˘

and S1 ‰ S2 such that |NpS1q XNpS2q| ď p1` σqnp2 for all pairs in A, and
|NpS1q XNpS2q| ą p1` σqnp2 for all pairs in B. By Fact 2.5 we obtain

ÿ

tS1,S2uPA

ˆ

|NpS1q XNpS2q|

2

˙

ď
1
2

ˆ

n

k ´ 1

˙2ˆ
p1` σqp2n

2

˙

ď
p1` σq3

2

ˆ

n

2

˙ˆˆ

n

k ´ 1

˙

p2
˙2

. (8)

By BDDp2, C, pq, TUPLEp2, σ, pq and Fact 2.5 applied with σ, r “ 2 and a “ Cp2, we
have

ÿ

tS1,S2uPB

ˆ

|NpS1q XNpS2q|

2

˙

ď
σ

2

ˆ

n

k ´ 1

˙2ˆ
Cp2n

2

˙

ď
σp1` σqC2

2

ˆ

n

2

˙ˆˆ

n

k ´ 1

˙

p2
˙2

. (9)

Replacing (7), (8) and (9) in (6), we have
ÿ

tu,vuPpV
2q

|Npuq XNpvq|2 ď
`

σ ` p1` σq3 ` σp1` σqC2˘
ˆ

n

2

˙ˆˆ

n

k ´ 1

˙

p2
˙2

ď p1` γq
ˆ

n

2

˙ˆˆ

n

k ´ 1

˙

p2
˙2

. (10)
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Equations (5) and (10) can be seen as inequalities (i ) and (ii ) in Fact 2.4. Therefore,
we conclude that, for at least p1´ δq

`

n
2

˘

pairs of vertices tu, vu P
`

V
2

˘

, we have
ˇ

ˇ

ˇ

ˇ

|Npuq XNpvq| ´

ˆ

n

k ´ 1

˙

p2
ˇ

ˇ

ˇ

ˇ

ă δ

ˆ

n

k ´ 1

˙

p2.

�

§3. Extension Lemma and corollaries

In this section we prove a result called Extension Lemma (Lemma 3.1) from where we
derive Corollaries 3.3 and 3.4, which are used in the proof of Theorem 1.4.

3.1. Extension Lemma. Before starting the discussion concerning the Extension Lemma
we shall define some concepts. Consider k-uniform hypergraphs G andH. Given sequences
W “ w1, . . . , w` P V pHq

` and X “ x1, . . . , x` P V pGq
`, define EpH,G,W,Xq as the set

of embeddings f P EpH,Gq such that fpwiq “ xi for all 1 ď i ď `. Furthermore, for a
sequence Y define the set of its elements by Y set “ ty1, . . . , y`u. We say that a subset of
vertices V 1 Ă V pHq is stable if EpHrV 1sq “ ∅, i.e., if there is no edge of H contained
in V 1.

Let H be a hypergraph with m vertices. We say that H is d-degenerate if there exists
an ordering v1, . . . , vm of V pHq such that dHi

pviq ď d for all 1 ď i ď m, where Hi “

Hrtv1, . . . , vius. In this case, we say that v1, . . . , vm is a d-degenerate ordering of the
vertices of H. Given a sequenceW P V pHq`, we define ωpH,W q “ |EpHq|´|EpHrW setsq|,
i.e., ωpH,W q is the number of edges of H that are not contained in W set.

Lemma 3.1 (Extension Lemma). Let C ě 1, m ě 1 and k ě 2. Let G and H be k-uniform
hypergraphs such that H is linear, |V pHq| “ m, |V pGq| “ n and p “ ppnq “ epGq{

`

n
k

˘

.
Suppose that 0 ď ` ď maxtk, dHu, and let W P V pHq` and X P V pGq` be fixed. If
G P BDDpDH , C, pq, then

|EpH,G,W,Xq| ď Cm´`nm´`pωpH,W q.

In particular, if W set Ă V pHq is stable, then |EpH,G,W,Xq| ď Cm´`nm´`pepHq.

For a k-uniform hypergraph H “ pV,Eq with |V | “ m vertices and for a positive
integer ` ď maxtk, dHu, Proposition 3.2 allows us to obtain a DH-degenerate ordering
v1, . . . , vm of V such that W “ v1, . . . , v` from a dH-degenerate ordering of V . Consider a
sequence L of the vertices of H. Given a subsequence W of V , we write L rW for the
sequence of L rW obtained from L by deleting the vertices of W . Given a sequence of
vertices Y in V `, we write L1 “ pY, L r Y q to denote the sequence L1 of V obtained by
removing Y from L and placing it before the elements of L.
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Proposition 3.2. Let H “ pV,Eq be a linear k-uniform hypergraph and let ` be an
integer with 0 ď ` ď maxtk, dHu. If W P V `, then there exists a DH-degenerate ordering
w1, . . . , w|V | of V such that W “ w1, . . . , w`.

Proof. Fix k ě 2 and let H, ` andW as in the statement of the proposition. Note that the
result is trivial wheneverW is empty, and if DH “ ∆pHq, then any ordering of the vertices
of H is DH-degenerate. Therefore, assume DH “ k ¨ dH and 1 ď |W | “ ` ď maxtk, dHu.

Let L be a dH-degenerate ordering of V and put L1 “ pW,L rW ). Given a vertex v
of H, define the left degree of v in L1 as the number of edges e such that v is the rightmost
element of e considering the ordering L1. Since L is dH-degenerate and, by the linearity
of H, any vertex v belongs to at most |W | edges containing vertices of W , the left degree
of v in L1 is at most |W | ` dH . We divide the proof into three cases.
Case 1: dH ą k. In this case, |W | ď dH . Then, the left degree of any vertex of H in L1

is at most 2dH ď k ¨ dH “ DH . Therefore, L1 is a DH-degenerate ordering of V .
Case 2: 2 ď dH ď k. Here we have |W | ď k. Therefore, since k ě 2, the left degree of
each vertex of H in L1 is at most k` dH ď k ¨ dH “ DH . Therefore, L1 is a DH-degenerate
ordering of V .
Case 3: dH “ 1. Here we have |W | ď k. Note that the only possibility for a vertex v
to have left degree larger than k ¨ dH “ k in L1 is if the following holds: |W | “ k and,
for every w P W , the vertex v belongs to an edge ew containing w and w is the rightmost
element of ew in L. But note that, since dH “ 1, there exists at most one vertex v with
this property, otherwise L would not be a dH-degenerate ordering. Let W 1 be the ordering
w1, . . . , w`, v. Now consider the ordering L2 “ pW 1, LrW 1q. It is clear that all the vertices
of H have left degree at most 2 ď k ¨ dH “ DH in L2. Therefore, L2 is a DH-degenerate
ordering of V . �

Now we prove the Extension Lemma.

Proof of Lemma 3.1. Fix C ě 1,m ě 1 and k ě 2. LetG andH be k-uniform hypergraphs
such that H is linear with |V pHq| “ m, |V pGq| “ n and p “ ppnq “ epGq{

`

n
k

˘

. Let ` be
an integer with 0 ď ` ď maxtk, dHu, and let W P V pHq` and X P V pGq`. Suppose
that G P BDDpDH , C, pq. By Proposition 3.2, we know that there exists a DH-degenerate
ordering v1, . . . , vm of V pHq such thatW is its initial segment. We will prove by induction
on h that, for all ` ď h ď m,

|EpHh, G,W,Xq| ď Ch´`nh´`pωpHh,W q, (11)

where Hh “ Hrtv1, . . . , vhus.
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If h “ `, the statement is trivial. Suppose that ` ă h ď m and

|EpHh´1, G,W,Xq| ď Ch´1´`nh´1´`pωpHh´1,W q.

Since v1, . . . , vm is DH-degenerate we have dHh
pvhq ď DH . By G P BDDpDH , C, pq, we

know that any embedding from Hh´1 to G can be extended to an embedding from Hh to G
in at most CnpdHh

pvhq different ways. Since ωpHh,W q “ ωpHh´1,W q ` dHh
pvhq, applying

the induction hypothesis, we conclude that

|EpHh, G,W,Xq| ď CnpdHh
pvhq|EpHh´1, G,W,Xq|

ď CnpdHh
pvhqCh´1´`nh´1´`pωpHh´1,W q

“ Ch´`nh´`pωpHh,W q.

�

3.2. Corollaries of the Extension Lemma. Given k-uniform hypergraphs G and H,
we write E indpH,Gq and E indpH,Gq for the set of non-induced and induced embeddings
from H into G, respectively. The following corollary bounds from above the number of
embeddings in E indpH,Gq for some hypergraphs G whenever H is linear.

Corollary 3.3. Let C ě 1, m, k, η ą 0 and p “ ppnq “ op1q with m ě k ě 2. Then, for
all k-uniform hypergraphs G and H, where |V pGq| “ n and H is linear with |V pHq| “ m

the following holds. If G P BDDpDH , C, pq and n is sufficiently large, then
ˇ

ˇE ind
pH,Gq

ˇ

ˇ ă ηnmpepHq.

Proof. Fix C ě 1, m ě k ě 2, η ą 0 and let p “ ppnq “ op1q. Let G and H be as in the
statement and let n be sufficiently large.

Fix an edge tx1, . . . , xku P EpGq and a non-edge tw1, . . . , wku ofH. Applying Lemma 3.1
with W “ pw1, . . . , wkq and X “ px1, . . . , xkq, we conclude that the number of em-
beddings f from V pHq into V pGq such that fpwiq “ xi for 1 ď i ď k is bounded
from above by Cm´knm´kpEpHq. Since G P BDDpDH , C, pq, we have |EpGq| ď Cnkp,
from where we conclude that there exist at most Cnkp choices for tx1, . . . , xku in EpGq.
Note that there exist at most

`

m
k

˘

choices for tw1, . . . , wku in
`

V pHq
k

˘

. Then, we can
choose px1, . . . , xkq and pw1, . . . , wkq, respectively, in Ck!nkp and k!

`

m
k

˘

ways. There-
fore, |E indpH,Gq| ď KnmpepHq`1 for some constant K “ KpC, k,mq. Since p “ op1q the
lemma follows for any η ą 0 and any sufficiently large n. �

Let G and H be k-uniform hypergraphs with |V pGq| “ n and consider a set X Ă
`

V pHq
k´1

˘

.
If f is an embedding fromH into G, we denote by fk´1pXq the family tfpx1q, . . . , fpxk´1qu,
for all tx1, . . . , xk´1u P X.
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Given δ ą 0, define BGpδ, rq as the families tX1, . . . , Xru of r distinct sets of
`

V pGq
k´1

˘

such
that

ˇ

ˇ|NGpX1q X . . .XNGpXrq| ´ np
r
ˇ

ˇ ě δnpr.

Consider the following definition.

Bstb
G pδ, rq “

#

tX1, . . . , Xru P BGpδ, rq :
r
ď

i“1
Xi is stable in G

+

.

Given r distinct sets X1, . . . , Xr of
`

V pGq
k´1

˘

, we say that X “ tX1, . . . , Xru is δ-bad if
X P Bstb

G pδ, rq. Let H be a k-uniform hypergraph with m vertices and let v1, . . . , vm be
a dH-degenerate ordering of V pHq. Define Hi “ Hrv1, . . . , vis. We say that an embed-
ding f : V pHh´1q Ñ V pGq is δ-clean if fk´1pNHh

pvhqq R Bstb
G pδ, dHh

pvhqq. Moreover, if
f : V pHh´1q Ñ V pGq is not δ-clean, then we say that f is δ-polluted. We denote the set of
embeddings f P EpHh´1, Gq such that f is δ-polluted by Eδ-pollpHh´1, Gq. Similarly, we de-
note by Eδ-cleanpHh´1, Gq the set of embeddings f P EpHh´1, Gq such that f is δ-clean. The
next corollary shows that if H is linear and connector-free then most of the embeddings
from Hh´1 into a sufficiently pseudorandom hypergraph G are clean, for 1 ď h ď m.

Corollary 3.4. Let δ ą 0, C ą 1, m ě 4 and k ě 2 be fixed constants. Let H be an
m-vertex linear k-uniform hypergraph that is connector-free and let v1, . . . , vm be a dH-
degenerate ordering of V pHq. Suppose that 1 ă h ď m and put r “ dHh

pvhq. If G is
pDH , C, dH , δ, pq-pseudorandom, then

|Eδ-pollpHh´1, Gq| ď δ
`

r!ppk ´ 1q!qrCh´1´rpk´1q˘nh´1pepHh´1q.

Proof. Fix constants δ ą 0, C ą 1, m ě 4 and k ě 2. Let H be an m-vertex linear k-
uniform hypergraph that is connector-free. Consider a dH-degenerate ordering v1, . . . , vm

of V pHq. Let 1 ă h ď m and put r “ dHh
pvhq. Suppose that G is pDH , C, dH , δ, pq-

pseudorandom.
By definition, an embedding f : V pHh´1q Ñ V pGq is δ-polluted if fk´1pNHh

pvhqq P

Bstb
G pδ, rq. Let NHh

pvhq “ tW1, . . . ,Wru where Wi “ twi,1, . . . , wi,k´1u for all 1 ď i ď r

(Note that since H is linear, the sets W1, . . . ,Wr are pairwise disjoint). Let

Word “ pw1,1, . . . , w1,k´1, w2,1, . . . , w2,k´1, . . . , wr,1 . . . , wr,k´1q

be an ordering of W1 Y . . .YWr. Therefore,

Eδ-pollpHh´1, Gq “
ď

X

˜

ď

Xord

EpHh´1, G,Word, Xordq

¸

,
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where the first union is over all families X “ tS1, . . . , Sru P B
stb
G pδ, rq and the second union

is over all ppk ´ 1q!qr possible orderings of Si for 1 ď i ď r, and all r! orderings of X.
Therefore,

|Eδ-pollpHh´1, Gq| ď
ÿ

X

ÿ

Xord

|EpHh´1, G,Word, Xordq|.

Note that, since Hh is linear and connector-free,
Ť

NHh
pvhq is stable in Hh. Since G P

BDDpDH , C, pq and |Word| “ rpk ´ 1q, we know from the conclusion of Lemma 3.1 that

|EpHh´1, G,Word, Xordq| ď Ch´1´rpk´1qnh´1´rpk´1qpepHh´1q.

Since r “ dHh
pvhq ď dH and G satisfies TUPLEpdH , δ, pq, we have

ˇ

ˇBstb
G pδ, rq

ˇ

ˇ ď δnrpk´1q.
Then, the first of the sums contains at most δnrpk´1q terms. Since the second sum is over
r!ppk ´ 1q!qr terms, we obtain

|Eδ-pollpHh´1, Gq| ď δ
`

r!ppk ´ 1q!qrCh´1´rpk´1q˘nh´1pepHh´1q.

�

§4. Proof of the main result

Before proving Theorem 1.4 we prove Lemma 2.3. The proof of Lemma 2.3 is simple
and rely on Facts 2.4 and 2.5, and Lemma 2.6. For simplicity, we will not explicit the
constants used in its proof.

Proof of Lemma 2.3. Fix δ ą 0, C ą 1 and integers k, d ě 2, and let 2 ď r ď d. Let
γ ą 0 be obtained by an application of Fact 2.4 with parameters δ. Now let σ “ σpk, r, γq

be a sufficiently small constant. Let δ2.7 be obtained by an application of Lemma 2.7
with parameter C, σ and k and put δ1 “ mintδ, δ2.7u. Consider p " n´1{d and let n be
sufficiently large.

Suppose G “ pV,Eq is an n-vertex k-uniform p2, C, 2, δ1, pq-pseudorandom hypergraph.
By Lemma 2.7, the following two inequalities hold, respectively, for more than p1 ´ σqn

vertices u P V and for more than p1´ σq
`

n
2

˘

pairs tu, vu P
`

V
2

˘

.
ˇ

ˇ

ˇ

ˇ

|Npuq| ´

ˆ

n

k ´ 1

˙

p

ˇ

ˇ

ˇ

ˇ

ă σ

ˆ

n

k ´ 1

˙

p, (12)
ˇ

ˇ

ˇ

ˇ

|Npuq XNpvq| ´

ˆ

n

k ´ 1

˙

p2
ˇ

ˇ

ˇ

ˇ

ă σ

ˆ

n

k ´ 1

˙

p2. (13)
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We must check that the inequalities (i ) and (ii ) of Fact 2.4 hold. For inequality (i ),
consider the following sum over distinct sets S1, . . . , Sr P

`

V
k´1

˘

.
ÿ

S1,...,SrPp V
k´1q

|NpS1q X . . .XNpSrq| “
ÿ

uPV

ˆ

|Npuq|

r

˙

ě p1´ σqn
ˆ

p1´ σq
`

n
k´1

˘

p

r

˙

ě p1´ γq
ˆ

`

n
k´1

˘

r

˙

npr, (14)

where the first inequality follows from (12) and the last one follows from Fact 2.5. It
remains to prove that inequality (ii ) of Fact 2.4 holds. Consider the following sum over
distinct sets S1, . . . , Sr P

`

V
k´1

˘

.

ÿ

S1,...,SrPp V
k´1q

ˇ

ˇ

ˇ

ˇ

ˇ

r
č

i“1
NpSiq

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
ÿ

pu,vqPV 2

ˆ

|Npuq XNpvq|

r

˙

“
ÿ

pu,vqPV 2

u‰v

ˆ

|Npuq XNpvq|

r

˙

`
ÿ

uPV

ˆ

|Npuq|

r

˙

. (15)

Let us estimate the sums in (15). In view of Lemma 2.6 applied for i “ 1 we can apply
the boundedness property to bound |Npuq| for every u P V , obtaining

ÿ

uPV

ˆ

|Npuq|

r

˙

ď n

ˆ

Cnk´1p

r

˙

ď C 1
ˆ

`

n
k´1

˘

r

˙

npr (16)

for some C 1 “ C 1pk, r, σq.
Now we estimate the remaining sum. Define A and B as the families of pairs tu, vu P

`

V
2

˘

such that |NpuqXNpvq| ď p1`σq
`

n
k´1

˘

p2 and |NpuqXNpvq| ą p1`σq
`

n
k´1

˘

p2, respectively.
Since p2nk´1 " 1, Fact 2.5 implies

ÿ

tu,vuPA

ˆ

|Npuq XNpvq|

r

˙

ď
n2

2

ˆ

p1` σqp2` n
k´1

˘

r

˙

ď
p1` σ1q

2

ˆ

`

n
k´1

˘

r

˙

pnprq2, (17)

where σ1 “ σ1pr, σq is a sufficiently small constant. Similarly, using the boundedness of G
and (13) we obtain

ÿ

tu,vuPB

ˆ

|Npuq XNpvq|

r

˙

ď
σn2

2

ˆ

Cpk ´ 1qk´1p2` n
k´1

˘

r

˙

ď σ1
ˆ

`

n
k´1

˘

r

˙

pnprq2. (18)

Replacing (16), (17) and (18) in (15), we have

ÿ

S1,...,SrPp V
k´1q

ˇ

ˇ

ˇ

ˇ

ˇ

r
č

i“1
NpSiq

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď p1` γq
ˆ

`

n
k´1

˘

r

˙

pnprq2, (19)
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where the above sum is over distinct sets S1, . . . , Sr.
Inequalities (14) and (19) can be seen as inequalities (i ) and (ii ) in Fact 2.4. Therefore,

we conclude that, for more than p1 ´ δq
`

p n
k´1q
r

˘

families of distinct sets S1, . . . , Sr P
`

V
k´1

˘

,
the following holds for all 1 ď r ď d.

ˇ

ˇ|NpS1q X . . .XNpSrq| ´ np
r
ˇ

ˇ ă δnpr.

To finish the proof, note that, since δ1 ď δ and G P TUPLEp2, δ1, pq, the following holds
for more than p1´ δq

`

n
k´1

˘

sets S1 P
`

V
k´1

˘

.
ˇ

ˇ|NpS1q| ´ np
ˇ

ˇ ă δnp.

�

Proof of Theorem 1.4. Let k ě 2 and m ě 4 be integers and fix C ą 1. Let H be a
linear k-uniform connector-free hypergraph on m vertices. Fix a dH-degenerate ordering
v1, . . . , vm of V pHq and put Hh “ Hrtv1, . . . , vhus.

We will use induction on h to prove that for every 1 ď h ď m and for every ε ą 0,
there exists δ ą 0 such that the following holds when p " n´1{DH and n is sufficiently
large: if G is an n-vertex k-uniform pDH , C, dH , δ, pq-pseudorandom hypergraph (recall
that Lemma 2.3 allows us to consider this stronger pseudorandomness condition on G),
then

ˇ

ˇ|EpHh, Gq| ´ n
hpepHhq

ˇ

ˇ ă εnhpepHhq. (20)

For every ε ą 0 and h “ 1 the result is trivial. Thus, assume 1 ă h ď m and suppose
the result holds for h´ 1 and for all ε ą 0.

Let ε ą 0 be given, let ε1 “ mintε{4, ε{6Cu and consider δ1 “ δ1pε1q given by the
induction hypothesis such that for p " n´1{DH with p “ op1q the following holds for
sufficiently large n.

ˇ

ˇ|EpHh´1, Gq| ´ n
h´1pepHh´1q

ˇ

ˇ ă ε1nh´1pepHh´1q. (21)

Fix η “ ε1{2 and define r “ dHvpvhq ď dH . Let δ be a sufficiently small constant and
suppose p " n´1{DH with p “ op1q and n is sufficiently large.

Suppose G is an n-vertex k-uniform pDH , C, dH , δ, pq-pseudorandom hypergraph. An
application of Corollary 3.3 with parameters C, h ´ 1, k, η and p for the graphs Hh´1

and G provides the following upper bound on the number of non-induced embeddings.
ˇ

ˇE ind
pHh´1, Gq

ˇ

ˇ ď ηnh´1pepHh´1q. (22)

By Corollary 3.4 applied with δ, C, m and k for the graphs Hh´1 and G, we have

|Eδ-pollpHh´1, Gq| ď ηnh´1pepHh´1q. (23)



14 Y. KOHAYAKAWA, G. O. MOTA, M. SCHACHT, AND A. TARAZ

By (22) and (23),
ˇ

ˇE ind
pHh´1, Gq Y Eδ-pollpHh´1, Gq

ˇ

ˇ ď 2ηnh´1pepHh´1q “ ε1nh´1pepHhq´r.

Then, (21) implies

p1´ 2ε1qnh´1pepHhq´r ă
ˇ

ˇE ind
δ-cleanpHh´1, Gq

ˇ

ˇ ă p1` ε1qnh´1pepHhq´r. (24)

The next step is to bound from below the number of ways we can extend an embedding
f 1 P E ind

δ-cleanpHh´1, Gq to an embedding f P EpHh, Gq. Let f 1 be such an embedding.
Since f 1 is clean, f 1k´1pNHh

pvhqq R B
stb
G pδ, rq, i.e., either f 1p

Ť

NHh
pvhqq is not stable in G

or
ˇ

ˇNG

`

f 1k´1pNHh
pvhqq

˘

´ npr
ˇ

ˇ ă δnpr. Since H is linear and connector-free, it is easy to
see that

Ť

NHh
pvhq is stable in Hh. But since f 1 is an induced embedding, f 1p

Ť

NHh
pvhqq

is stable in G. Therefore,
ˇ

ˇNG

`

f 1k´1pNHh
pvhqq

˘

´ npr
ˇ

ˇ ă δnpr. (25)

To obtain an extension f P EpHh, Gq from f 1 P EpHh´1, Gq we must choose fpvhq in the
set NG

`

f 1k´1pNHh
pvhqq

˘

r f 1
`

V pHh´1q
˘

. Therefore, the number of such extensions is
ˇ

ˇNG

`

f 1k´1pNHh
pvhqq

˘

r f 1
`

V pHh´1q
˘ˇ

ˇ ě p1´ δqnpr ´ ph´ 1q ě p1´ 2δqnpr, (26)

where the first inequality is due to (25) and the last one follows from the choice of p.
By (24) and (26), we have

|EpHh, Gq| ě |E ind
δ-cleanpHh, Gq|

ě
ˇ

ˇE ind
δ-cleanpHh´1, Gq

ˇ

ˇ

ˇ

ˇNG

`

f 1k´1pNHh
pvhqq

˘

r f 1
`

V pHh´1q
˘
ˇ

ˇ

ą p1´ 2ε1qp1´ 2δqnh´1pepHhq´rnpr

ě p1´ εqnhpepHhq.

To finish the proof we must show that |EpHh, Gq| ă p1` εqnhpepHhq. Fix an embedding
f 1 P EpHh´1, Gq. Consider the case f 1 P E ind

δ-cleanpHh´1, Gq. Note that the number of ex-
tensions of f 1 to embeddings from Hh into G is at most

ˇ

ˇNG

`

f 1k´1pNHh
pvhqq

˘
ˇ

ˇ. Therefore,
by (24) and (25), the number of such embeddings is at most

ˇ

ˇE ind
δ-cleanpHh´1, Gq

ˇ

ˇ

ˇ

ˇNG

`

f 1k´1pNHh
pvhqq

˘
ˇ

ˇ ď p1` ε1qnh´1pepHhq´rp1` δqnpr

ď p1` ε{2qnhpepHhq. (27)

Now suppose f 1 P
 

EpHh´1, Gqr E ind
δ-cleanpHh´1, Gq

(

. By (21) and (24), we have
ˇ

ˇEpHh´1, Gqr E ind
δ-cleanpHh´1, Gq

ˇ

ˇ ď 3ε1nh´1pepHhq´r. (28)

But since r “ dHh
pvhq ď dH ď DH and G P BDDpDH , C, pq, every embedding f 1

from Hh´1 into G can be extended to at most Cnpr embeddings f P EpHh, Gq. In fact, to
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see this, apply property BDDpDH , C, pq to the family
 

f 1pS1q, . . . , f
1pS|NHh

pvhq|q
(

, where
tS1, S2, . . . , S|NHh

pvhq|u is the neighbourhood of vh in Hh. This fact together with (28)
implies that the number of extensions of an embedding in EpHh´1, Gq r E ind

δ-cleanpHh´1, Gq

to embeddings from Hh into G is at most p3ε1CqnhpepHhq ď pε{2qnhpepHhq. Therefore,
using (27) we conclude that |EpHh, Gq| ă p1` εqnhpepHhq. �

§5. Concluding remarks

We say that a graph G “ pV,Eq satisfies property Qpη, δ, αq if, for every subgraph GrSs
induced by S Ă V with |S| ě η|V |, we have pα ´ δq

`

|S|
2

˘

ă |EpGrSsq| ă pα ` δq
`

|S|
2

˘

.
In [11,14], answering affirmatively a question posed by Erdős (see, e.g.,[7] and [1, p. 363];
see also [13]), Rödl proved that for every positive integer m and for every positive α, η ă 1
there exist δ ą 0 and an integer n0 such that, if n ě n0, then every n-vertex graph G

satisfying Qpη, δ, αq contains all graphs with m vertices as induced subgraphs. In [10], we
apply Theorem 1.4 to obtain a variant of this result, which allows one to count the number
of copies (not necessarily induced) of some fixed 3-uniform hypergraph in hypergraphs
satisfying a property similar to Qpη, δ, αq, as long as they are subhypergraphs of sufficiently
“jumbled” 3-uniform sparse hypergraphs.
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