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Abstract

The classical Corrádi-Hajnal theorem claims that every n-vertex graph G with
δ(G) ≥ 2n/3 contains a triangle factor, when 3|n. In this paper we asymptotically
determine the minimum degree condition necessary to guarantee a triangle factor in
graphs with sublinear independence number. In particular, we show that if G is an
n-vertex graph with α(G) = o(n) and δ(G) ≥ (1/2 + o(1))n, then G has a triangle
factor and this is asymptotically best possible. Furthermore, it is shown for every
r that if every linear size vertex set of a graph G spans quadratic many edges, and
δ(G) ≥ (1/2 + o(1))n, then G has a Kr-factor for n sufficiently large. We also propose
many related open problems whose solutions could show a relationship with Ramsey-
Turán theory.

Additionally, we also consider a fractional variant of the Corrádi-Hajnal Theorem,
settling a conjecture of Balogh-Kemkes-Lee-Young. Let t ∈ (0, 1) and w : E(Kn) →
[0, 1]. We call a triangle in Kn heavy if the sum of the weights on its edges is more
than 3t. We prove that if 3|n and w is such that for every vertex v the sum of w(e)
over edges e incident to v is at least

(
1+2t
3 + o(1)

)
n, then there are n/3 vertex disjoint

heavy triangles in G.
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1 Introduction

Given an n-vertex graph G and an h-vertex graph H, an H-tiling is a collection of vertex
disjoint copies of H in G. A perfect H-tiling or an H-factor is an H-tiling that covers all of
the vertices of G. One obvious necessary condition for an H-factor in G is h|n. Throughout
the rest of the paper we will assume that this divisibility condition holds whenever necessary.
We also always assume that n is sufficiently large.

For a given graphH, a fundamental problem in graph theory is to find sufficient conditions
for a graph G to have an H-factor. A classical result of Tutte gives necessary and sufficient
conditions for the case H = K2. Another celebrated result of this type is the Hajnal-
Szemerédi Theorem [13] which states that every n-vertex graph G with δ(G) ≥ (1 − 1/r)n
has a Kr-factor. The case r = 3 was proved earlier by Corrádi and Hajnal [6]. The almost
balanced complete r-partite graph on n vertices shows that the minimum degree condition
in the Hajnal-Szemerédi theorem is sharp. This extremal example, which is very similar to
the Turán graph, has chromatic number r, has an independent set of size greater than n/r,
it is almost regular and very far from random-like.

Although the Hajnal-Szemerédi Theorem was proved many years ago, there has been
significant recent activity on related theorems. For example, Alon-Yuster [1], Komlós-
Sárközy-Szemerédi [19] and Kühn-Osthus [21] have all proved theorems similar to the Hajnal-
Szemerédi Theorem where complete graphs factors are replaced with H-factors where H is an
arbitrary graph; Kierstead-Kostochka proved the Hajnal-Szemerédi Theorem with an Ore-
type degree condition [18]; Fischer [12], Martin-Szemerédi [23], and Keevash-Mycroft [16]
have proved multipartite variants; and Wang [28], Keevash-Sudakov [17], Czygrinow-Kier-
stead-Molla [8], Czygrinow-DeBiasio-Kierstead-Molla [7], Treglown [27] and Balogh-Lo-Mol-
la [4] have all proved analogues of the Hajnal-Szemerédi Theorem in directed and oriented
graphs.

Erdős and Sós [11] began studying a variation on Turán’s theorem that excludes graphs
with high independence number such as Turán graph. They investigated the maximum
number of edges in an n-vertex, Kr-free graph with independence number o(n). These types
of problems became known as Ramsey-Turán problems, and have been studied extensively
over the past 40 years, see for example [3] [9] [10] [24] [25]. The following question is a
Ramsey-Turán type of variant of the Hajnal-Szemerédi theorem.

Question 1.1. Let G be an n vertex graph with α(G) = o(n). What is the minimum degree
condition on G that guarantees a Kk-factor in G for k ≥ 3?

As we mentioned earlier, the main motivation for Question 1.1 is the fact that the ext-
remal example for the Hajnal-Szemerédi theorem is a very structured graph. Krivelevich-
Sudakov-Szabó [20] considered the pseudo-random version of the Corrádi-Hajnal theorem.
In particular, they proved that every n-vertex graph G satisfying some pseudo-random condi-
tions has a triangle-factor. The pseudo-random condition they require implies α(G) = o(n).
In fact, their condition implies that the graph has uniform edge distribution, a much stronger
condition, in Question 1.1, we impose a much weaker hypothesis, though for this price we
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need a higher minimum degree condition. Our first main result is to answer Question 1.1 for
k = 3.

Theorem 1.2. For every ε > 0, there exists γ > 0 and n0 such that the following holds.
For every n-vertex graph G with n > n0, if δ(G) ≥ (1/2 + ε)n and α(G) ≤ γn, then G has
a triangle factor.

The following examples show that the minimum degree condition in the statement of The-
orem 1.2 is asymptotically best possible. For n = 2k, consider the graph G = Kk−1 ∪ Kk+1.
This graph does not have a triangle factor and δ(G) = n/2− 2. Another example for n = 2k
is the following. Consider the graph consisting of Kk+2 and Kk−1 sharing one vertex. Since
3|2k, we have that both k + 2 ≡ 2 (mod 3) and k − 1 ≡ 2 (mod 3). Hence, this graph has
no triangle factor and δ(G) = n/2− 2. For n = 2k + 1 consider the graph consisting of two
copies of Kk+1 sharing one vertex. Since 3|2k + 1, we have k + 1 ≡ 2 (mod 3). Hence, this
graph has no triangle factor and δ(G) = (n− 1)/2.

In the Appendix it is shown for every r that if every linear size vertex set of a graph
G spans quadratic many edges, and δ(G) ≥ (1/2 + o(1))n, then G has a Kr-factor for n
sufficiently large.

We also prove the triangle case of the conjecture proposed by Balogh-Kemkes-Lee-Young
([2], Conjecture 1). Let t ∈ (0, 1) and w : E(Kn) → [0, 1]. We call x, y, z ∈ V (Kn) a heavy
triangle if w(xy) + w(xz) + w(yz) > 3t, for v ∈ V (Kn) we write dw(v) for the sum of the
weights on the edges incident to v and let δw(Kn) = minv∈V (Kn) dw(v).

Theorem 1.3. For any t ∈ (0, 1) and ε > 0 there exists n0 such that for 3k = n ≥ n0, if
w : V (Kn)→ [0, 1] is such that δw(Kn) ≥

(
1+2t
3

+ ε
)
n then there are k vertex-disjoint heavy

triangles in G.

This theorem is asymptotically best possible for every t ∈ (0, 1) by the following example
from [2]. Let n be divisible by 3, let U ⊆ V (Kn) such that |U | = 2n/3 + 1 and, for every
e ∈ E(G), set w(e) = t if e ∈ E(G[U ]), and otherwise set w(e) = 1. Since every heavy
triangle intersects U in at most two vertices, there are no n/3 vertex disjoint heavy triangles
in G. Furthermore, we have that δw(G) = |V (G) \ U |+ t(|U | − 1) = (1 + 2t)n/3− 1.

As was pointed out in [2], when t = 2/3 and w(e) ∈ {0, 1} for every e ∈ E, the Corrádi-
Hajnal Theorem implies that G has a heavy triangle factor when δw(G) ≥ 2n/3. It is
interesting to note that when w(e) is allowed to take any value in (0, 1) we can show that
we must force δw(G) to be greater than 7n/9 − 1 to guarantee a heavy triangle factor by
replacing t with 2/3 in the example above.

Notation. Most of the notation that we use is standard. For a collection of subsets U ofG we
let V (U) :=

⋃
U∈U U . Similarly, for a collection of subgraphs U we let V (U) :=

⋃
U∈U V (U).

For any v ∈ V and U ⊆ V , we let dU(v) = d(v, U) be the number of edges incident to v and
a vertex in U . For U,W ⊆ V , we let eG(U,W ) :=

∑
u∈U d(u,W ).

We use the notion of a multiset in several places, and when U is a multiset, we write
νU(u) to represent the multiplicity of the element u ∈ U .
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The notation a � b means that there exists an increasing function f such that when a
and b are constants and a ≤ f(b) the argument holds. The function f is not always explicitly
specified, but could be computed.

Outline of the paper. We first introduce and prove all the tools for the absorbing method
in Section 2. In Section 3 we prove Theorem 1.2. In Section 3.1, we state the two main
lemmas and show how they imply Theorem 1.2. Then, in Sections 3.2 and 3.3, we prove
the two main lemmas of Theorem 1.2. In Section 4, we prove Theorem 1.3. The Appendix
contains the proof of a result on the existence of Kr-factors in graphs.

2 Tools for the absorbing method

We will refer to the follow theorem throughout as the Chernoff bound, see e.g. Corollary 2.3,
Theorem 2.8 and Theorem 2.10 in [15].

Theorem 2.1. Let X be a hypergeometric random variable or let X =
∑n

i=1Xi where
X1, . . . , Xn are independent random indicator variables. If 0 < λ ≤ 3/2, then

P(|X − EX| ≥ λEX) ≤ 2 exp

(
−λ

2

3
EX
)
. (1)

In particular, (1) applies when X is a binomial random variable.

The absorbing method of Rödl, Ruciński and Szemerédi [26] is used in the proofs of both
Theorem 1.2 and Theorem 1.3, and the results of this section are used in both of the proofs.
When reading this section in the context of Theorem 1.3, all references to triangles should
be interpreted as references to heavy triangles.

The proof of the absorbing lemma for Theorem 1.3 (Lemma 4.1), while non-trivial, is
standard within the context of the absorbing method. However, the absorbing lemma for
Theorem 1.2 (Lemma 3.1) is more involved. The framework for the proof of Lemma 3.1 is
established in this section. This framework will also be used in the proof of Lemma 4.1, but
most of it is not necessary for Theorem 1.3.

The main problem we had in applying a standard argument to create an absorbing lemma
for Theorem 1.2 is that there does not necessarily exists k ∈ N such that for every set of
3-vertices W there exist Ω(n3k) sets U of size 3k such that both G[U ] and G[W ∪ U ] have
perfect triangle factors. Below, we construct a graph to demonstrate this property.

Example 2.2. Fix k ∈ N and 0 < ε < 1/6. Let V1, V2, . . . , V2m+1 be disjoint sets that
partition [n] where |V1| = b(1/2− ε)nc and |V2|, . . . , |V2m+1| ≥ d2εne. Note that m can be

as large as
⌊
dn/2+εne
2d2εne

⌋
≥ ε−1/8. Let G′ be the graph on [n], where for every i ∈ [m] we add

all possible edges between V1, V2i, V2i+1, i.e. G′[V1 ∪ V2i ∪ V2i+1] is the complete 3-partite
graph with parts V1, V2i and V2i+1 for every i ∈ [m]. Note that δ(G′) ≥ (1/2 + ε)n, and
every triangle in G′ has exactly one vertex in V1. We obtain G by adding edges inside Vi
for every i ∈ [2m + 1] so that dG(v, Vi) = o(n) for every v ∈ Vi and α(G[Vi]) = o(n). It
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is well-known that, with high probability, if every possible edge in G[Vi] is selected with
probability logn

n
= p = o(1), then G will have the desired properties. Let G′′ := G−G′.

Claim 2.3. For every fixed k, there exists a 3-set W ⊆ V such that there are only o(n3k)
sets U ⊆ V of size 3k such that both G[U ] and G[U ∪W ] have a triangle factor.

Proof. Let {w1, w2, w3} := W ⊆ V \ V1 such that W is an independent set and |W ∩ (V2i ∪
V2i+1)| 6= 3 for any i ∈ [m]. Let U ⊆ V such that G[U ] has a triangle factor T1 and G[U ∪W ]
has a triangle factor T2. If E(G′′[U ∪ W ]) = ∅, then every T ∈ T1 ∪ T2 has exactly one
vertex in V1, so |U ∩ V1| = k and |(W ∪ U) ∩ V1| = k + 1, but this contradicts the fact that
W ∩ V1 = ∅. Therefore, E(G′′[U ∪W ]) 6= ∅, but there are only o(n3k) sets U ⊆ V of size 3k
such that G′′[U ∪W ] contains an edge.

Definition 2.4. Let G(V,E) be an n-vertex graph. Distinct vertices x, y ∈ V are (c, k)-
linked if there are at least (cn)3k−1 multisets U ⊆ V of size 3k − 1 such that the following
holds. Let U ′ be the set of elements of U , without repetition. Then, both G[U ′ ∪ {x}] and
G[U ′ ∪ {y}] have triangle factors in the following sense: if a vertex in U has multiplicity i
then it should be in exactly i triangles. We also call U a k-linking set for {x, y}.

For a vertex v ∈ V , denote by Lc,k(v) the set of vertices that are (c, k)-linked with v. A
set V ′ ⊆ V is (c, k)-linked if every pair of vertices in V ′ are (c, k)-linked.

Definition 2.5. For k ∈ N and 0 < φ < ψ ≤ 1, call a partition M = {V1, . . . , Vd} of V
(ψ, φ, k)-linked if |Vi| ≥ ψn and Vi is (φ, k)-linked for every i ∈ [d]. Note that d ≤ 1/ψ.

In Example 2.2, for every i ∈ [2m + 1], Vi is (ε, 1)-linked, in particular, {V1, . . . , V2m+1}
is a (2ε, ε, 1)-linked partition of G.

Claim 2.6. Consider the graph from Example 2.2. For any k ∈ N and φ > 0, if vi ∈ Vi and
vj ∈ Vj where i 6= j, then vi and vj are not (φ, k)-linked.

Proof. We show that there are o(n3k−1) sets U that are k-linking multiset for {vi, vj}. Let
U be such a multiset. Since there are only o(n3k−1) multisets of order 3k − 1 such that
an element of U has multiplicity greater than 1, we can assume that U is actually a set.
Furthermore, we can assume that both G′′[U + vi] and G′′[U + vj] are independent sets,
since there are only o(n3k−1) sets of order 3k − 1 that do not have this property. This
implies that U + vi and U + vj both have exactly k vertices in V1, so, since i 6= j, neither
i nor j is 1. Therefore, we can assume without loss of generality that i is even. Hence,
|(U + vi)∩ Vi| = |(U + vi)∩ Vi+1| and |(U + vj)∩ Vi| = |(U + vj)∩ Vi+1|, which is impossible
since i 6= j.

Now we study properties of a linked partition of any graph.

Proposition 2.7. For a graph G = (V,E), let x1, x2 ∈ V , k1, k2 ∈ N, c, c1, c2 > 0, k :=
k1 + k2 and c′ := min{c, c1, c2}. If

|Lc1,k1(x1) ∩ Lc2,k2(x2)| ≥ cn,

then x1 and x2 are (1
3
c′, k)-linked.
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Proof. Assume k1 ≤ k2. Let (x, U1, U2) be an ordered triple such that x ∈ Lc1,k1(x1) ∩
Lc2,k2(x2) and Ui is a ki-linking set for {xi, x} and i ∈ [2]. There are at least

cn · (c1n)3k1−1 · (c2n)3k2−1 ≥ (c′n)3k1+3k2−1

such ordered triples and if U := {x}∪U1∪U2 then U is a k1 +k2 linking set for {x1, x2}. Let
(x′, U ′1, U

′
2) be another such triple such that U = {x′}∪U ′1 ∪U ′2. By first picking x′ and then

U ′1 from the multiset U (and using the fact that x + 1 ≤ 3 · (3/2)x for all values of x > 0),
we have that there at most

(3k1 + 3k2 − 1) ·
(

3k1 + 3k2 − 2

3k1 − 1

)
≤

(
3 ·
(

3

2

)3k1+3k2−2
)
· 23k1+3k2−2 = 33k1+3k2−1

such triples (x′, U ′1, U
′
2) and the conclusion follows.

Definition 2.8. Given a partition M = {V1, . . . , Vd} of V , 0 < φ < 1 and any multiset I
of [d] of order 3, let t(M, I) be the number of triangles T such that |V (T ) ∩ Vi| = νI(i) for
every 1 ≤ i ≤ d and let

fφ(M, I) =

{
1 if t(M, I) ≥ φn3,

0 otherwise.
(2)

Also, let Fφ(M) := {I : fφ(M, I) = 1}, and, for i ∈ [d], let tφ(M, i) be the number of times

the index i appears in a multiset of Fφ(M) with multiplicity, i.e. 3·|Fφ(M)| =
∑d

i=1 tφ(M, i).
When the partition M is clear from context, we often use Fφ and tφ(i) to refer to Fφ(M)
and tφ(M, i), respectively. For convenience, we let k : Fφ(M)× [3]→ [d] be the map defined
by {k(I, 1), k(I, 2), k(I, 3)} = I and k(I, 1) ≤ k(I, 2) ≤ k(I, 3) for every I ∈ Fφ(M).

For the graph from Example 2.2, Fε2({V1, . . . , V2m+1}) = {{1, 2i, 2i + 1} : i ∈ [m]},
k({1, 2i, 2i + 1}, 1) = 1, k({1, 2i, 2i + 1}, 2) = 2i, and k({1, 2i, 2i + 1}, 3) = 2i + 1 for every
i ∈ [m].

Definition 2.9. Given constants 0 < η < φ < ψ ≤ 1 and a partition M = {V1, . . . , Vd}
of V and A ⊆ V , a collection N is called (M, φ, η)-absorbable (with respect to A) if it
consists of 3 · |Fφ(M)| vertex disjoint subsets of V \ A and if there exists a bijective map
X : Fφ(M)× [3]→ N such that

• X(I, j) ⊆ Vk(I,j) for every j ∈ [3] and

• |X(I, 1)| = |X(I, 2)| = |X(I, 3)| ≤ ηn.

For every (M, φ, η)-absorbable collection N we will always implicitly assume that a fixed
function X exists. Call A an (M, φ, η)-absorber if for any collection N of disjoint sets that
is (M, φ, η)-absorbable with respect to A, G[A ∪ V (N )] has a triangle factor.
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When d = 1, Lemma 2.10 is very similar to lemmas that appear in other results which
use the absorbing method and the proof is nearly identical, for example see Lemma 1.1 in
[22] for a general result used for hypergraph matching.

Lemma 2.10. For any k and 0 < η � σ � φ� ψ ≤ 1, the following holds. If G = (V,E)
is a graph and M = {V1, . . . , Vd} is a (ψ, φ, k)-linked partition of V , then there exists an
(M, φ, η)-absorber A ⊆ V such that |A| ≤ σn.

Proof. Let ` := 9 · k and η � ξ � σ. For any 3-set W = {w1, w2, w3} ⊆ V denote by LW
the set of ordered `-tuples (u1, . . . , u`) ∈ V ` such that u3ku6ku9k is a triangle and, for j ∈ [3],
the multiset {u3k·(j−1)+1, . . . , u3k·j−1} is a k-linking multiset for {wj, u3k·j}. Note that if the
vertices u1, . . . , u` are distinct and U := {u1, . . . , u`}, then G[U ] and G[U ∪W ] both have
triangle factors. We say that the 3-set W is acceptable if |Lw| ≥ 4(φn)`.

Form a random subset of `-tuples A′ ⊆ V ` where each `-tuple is picked independently at
random with probability p := ξn1−`. We have the following:

E|A′| = p · |V `| = ξn, (3)

E|A′ ∩ LW | ≥ p · 4(φn)` = 4ξφ`n for every acceptable 3-set W. (4)

We call a pair of `-tuples (u1, . . . , u`) and (u′1, . . . , u
′
`) a bad pair if a vertex appears more

than once in the list u1, . . . , u`, u
′
1, . . . , u

′
`. The number of bad pairs is at most (2`)2 · n2`−1.

Hence,

E|{bad pairs in A′}| ≤ p2(2`)2 · n2`−1 = 4ξ2(`)2n. (5)

Therefore, by Markov’s inequality, with probability at most 1/2,
(a) A′ has at most 8ξ2(`)2n bad-pairs.

Furthermore, since there are at most
(
n
3

)
acceptable sets W , the Chernoff bound and the

union bound with (3) and (4) imply that w.h.p. A′ is such that
(b) |A′| ≤ 2ξn and
(c) |A′ ∩ LW | ≥ 2ξφ`n for all acceptable 3-sets W .

Therefore there exists A′ that satisfies properties (a), (b) and (c). We now remove both
elements from every bad pair in A′. We also remove any tuples in A′ that are not in LW
for any acceptable 3-set W . We call A the remaining part of A′. Note that for every
(u1, . . . , u`) ∈ A, there is a triangle factor in G[{u1, . . . , u`}]. Since φ` ≥ 16`2ξ,

|A ∩ LW | ≥ ξφ`n for every acceptable 3-set W. (6)

Let A be the union of the vertices in the `-tuples of A. We have that |A| ≤ 2`ξn ≤ σn.
Let N be a collection of disjoint subsets of V \ A that is (M, φ, η)-absorbable. For every
I ∈ Fφ, |X(I, 1)| = |X(I, 2)| = |X(I, 3)| ≤ ηn, so there exists a partition W of V (N ) into
parts of size 3 such that for every W ∈ W there exists I ∈ Fφ such that W has one vertex
in each of X(I, 1), X(I, 2) and X(I, 3). Note that

|W| = |V (N )|/3 ≤ 3ηn · |Fφ|/3 ≤ ηnd3 ≤ ξφ`n. (7)
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We claim that every W ∈ W is acceptable. By construction, there exists an I ∈ Fφ
such that W has one vertex in each of X(I, 1), X(I, 2) and X(I, 3). We can label W as
{w1, w2, w3} so that wj ∈ X(I, j) ⊆ VK(I,j) for each j ∈ [3]. Since fφ(I) = 1, there are φn3

triangles u3ku6ku9k such that u3k·j ∈ Vk(I,j) for j ∈ [3]. Furthermore, for any j ∈ [3], since
VK(I,j) is (φ, k) linked, there are at least (φn)3k−1 k-linking multisets for {wj, u3k·j}, for each
j ∈ [3]. Therefore,

|LW | ≥ (φn)3(3k−1)φn3 ≥ 4(φn)`,

so W is acceptable.
Hence, by (6) and (7), we can match every W ∈ W to a different `-tuple in A ∩ LW to

construct a triangle factor of G[V (N ) ∪ A].

3 Proof of Theorem 1.2

3.1 Overview

Following the absorbing method, the heart of the proof is the following two lemmas, which
we show implies the theorem.

Lemma 3.1 (Absorbing Lemma for Theorem 1.2). For 0 < γ � ζ � σ � ε < 1/6 the
following holds. If G = (V,E) is a graph such that δ(G) ≥ (1/2 + ε)n and α(G) ≤ γn, then
there exists U ⊆ V such that |U | ≤ 2σn and for every W ⊆ V \ U such that |W | is at most
ζn and divisible by 3, G[U ∪W ] has a triangle factor.

Lemma 3.2 (Triangle Covering Lemma for Theorem 1.2). For any ε > 0, there exists
γ > 0 and n0 such that the following holds. For every n-vertex graph G with n > n0,
δ(G) ≥ (1/2 + ε)n and α(G) ≤ γn, there is a triangle tiling of all but at most 16/ε + 1
vertices.

Proof of Theorem 1.2. Let 0 < γ � ζ � σ � ε < 1/6 be as in Lemma 3.1 and such that γ
is small enough so that Lemma 3.2 holds when ε and γ are replaced with ε′ := ε − 2σ and
γ′ := γ/(1− 2σ), respectively. Let U ⊆ V be a set of size at most σn that is guaranteed by
Lemma 3.1 and let V ′ := V \ U , n′ := |V ′| and G′ := G[V ′]. Note that δ(G′) ≥ (1/2 + ε′)n′

and α(G′) ≤ γn ≤ γ′n′, so Lemma 3.2 implies that there exists a triangle tiling T1 such that
if W := V ′ \ V (T1), then |W | ≤ 16/ε′ + 1. Since n is divisible by 3, |W | is divisible by 3
and Lemma 3.1 implies that there exists a triangle factor T2 of G[W ∪ U ], and T1 ∪ T2 is a
triangle factor of G.

3.2 Proof of Lemma 3.1

First we prove a series of lemmas and claims as preparation for the proof of Lemma 3.1. The
first lemma is similar to the Dependent Random Choice Lemma.
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Lemma 3.3. Let F be a bipartite graph with classes (A,B) and 0 < ε ≤ 1 be such that
dF (a) ≥ ε|B| for every a ∈ A and dF (b) ≥ ε|A| for every b ∈ B. If B is sufficiently large,
then for every 0 < ψ < ε4/64 there exists a collection of disjoint subsets {S1, . . . , Sd} of B
such that

1. for every i ∈ [d], |Si| ≥ ψ|B|,

2.
∣∣∣⋃d

i=1 Si

∣∣∣ ≥ (1− ψ)|B|, and

3. for every i ∈ [d], there are at most ψ3|B| pairs in b, b′ ∈ Si such that |NF (b)∩NF (b′)| <
ψ4|A|.

Proof. Since 0 < ε ≤ 1 and 0 < ψ < ε4/64, we have the following:

− log(ψ/2)/ε < 4ψ−1/2/ε− 1 = 8ψ1/2/(2ψ · ε)− 1 < ε/(2ψ)− 1.

Hence, we can pick a positive integer d so that

− log(ψ/2)/ε < d < ε/(2ψ). (8)

Call a pair (b, b′) ∈ B2 bad if |NF (b) ∩ NF (b′)| < ψ4|A| and let Z ⊆ B2 be the set of
bad pairs. Let U = {a1, . . . , ad} ⊆ A be a set of d vertices selected uniformly at random
and independently with repetition for A, and define fi to be the random variable counting
|N(ai)

2 ∩ Z| for every i ∈ [d]. By (8),

Efi =
∑

(b,b′)∈Z

P(ai ∈ NF (b) ∩NF (b′)) =
∑

(b,b′)∈Z

|NF (b) ∩NF (b′)|
|A|

<
∑

(b,b′)∈Z

ψ4 <
ψ3

2d
|B|2. (9)

Let Y := {b ∈ B : b /∈
⋃d
i=1NF (ai)}, therefore, using (8),

E|Y | =
∑
b∈B

P(NF (b) ∩ U = ∅) =
∑
b∈B

(
1− |NF (b)|

|A|

)d
≤ (1− ε)d|B| ≤ e−εd|B| < ψ|B|

2
.

Markov’s inequality and the union bound implies that there exist a choice of {a1, . . . , ad} ⊆ A
such that |NF (ai)

2 ∩ Z| ≤ ψ3|B|2 for every i ∈ [d], and |V \
⋃d
i=1N(ai)| ≤ ψ|B|. Fix such

an {a1, . . . , ad} and let S ′i := N(ai) for i ∈ [d].
To make the sets S ′i disjoint, we use the following probabilistic argument. For every

vertex v ∈
⋃d
i=1 S

′
i we select uniformly at random and independently of other vertices an

index j from the set {j ∈ [d] : v ∈ S ′j}, and then assign v to the set Sj. At the end of this
process, the sets {S1, . . . , Sd} are disjoint, and using (8) we have,

E|Si| =
∑
v∈S′

i

|{j ∈ [d] : v ∈ S ′j}|−1 ≥
dF (ai)

d
≥ ε|B|

d
≥ 2ψ|B| for all i ∈ [d].
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Because each Si is the sum of independent random indicator variables, the Chernoff bound
implies that

P(|Si| ≤ ψ|B|) ≤ 2 exp(−((1/2)2 · 2ψ|B|)/3) < 1/d for all i ∈ [d],

and, with the union bound, there is an assignment such that |Si| ≥ ψ|B| for every i ∈ [d].

Proposition 3.4. For any 0 < ε < 1/6, if G = (V,E) is a graph on n vertices such that
δ(G) ≥ (1/2 + ε)n, then for every vertex v ∈ V , |Lε2,1(v)| ≥ 3

2
ε2n, for n sufficiently large.

Proof. For a vertex v ∈ V define

F (v) := {(u, e) ∈ (V − v)× E : ve and ue are triangles}.

Since δ(G) ≥ (1/2 + ε)n, we have e(G[N(v)]) ≥ ((1/2 + ε)n · 2εn)/2 for n sufficiently large,
furthermore for every edge uu′ ∈ E(G[N(v)]), |N(u) ∩N(u′)− v| ≥ 2εn− 1. Hence,

|F (v)| ≥
(

1

2
+ ε

)
n · εn · (2εn− 1) ≥ ε2n3. (10)

On the other hand,

|F (v)| ≤ (n− |Lε2,1(v)|) · (ε2n)2 + |Lε2,1(v)||E| ≤ ε4n3 + |Lε2,1(v)|n
2

2
. (11)

Since ε < 1/6, (10) and (11) imply that |Lε2,1(v)| ≥ 3
2
ε2n.

For reference, we now list the relationship between the constants used in the rest of this
section:

0 < γ � ζ � β � η � σ � φ� ψ � ε < 1/6. (12)

We will also have that d is a positive integer such that

d ≤ 1/ψ (13)

Lemma 3.5. Assuming (12), if G = (V,E) is a graph on n vertices where δ(G) ≥ (1/2+ε)n,
then there exists a (φ, ψ, 6)-linked partition M = {V1, . . . , Vd} of V for some d ≤ 1/ψ.

Proof. Let F be the bipartite graph with parts E and V such that ev ∈ E(F ) if ev is a
triangle in G. For every v ∈ V ,

dF (v) =
1

2
·
∑

v′∈NG(v)

|NG(v) ∩NG(v′)| ≥ 1

2
· δ(G) · (2δ(G)− n) ≥ ε|E|,

and, for every vv′ ∈ E(G),

dF (vv′) = |NG(v) ∩NG(v′)| ≥ 2 · δ(G)− n ≥ 2ε|V |.
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Therefore, by Lemma 3.3, there exists a disjoint collection of vertex sets {V ′1 , . . . , V ′d} such

that if R′ := V \
(⋃d

i=1 V
′
i

)
, then |R′| ≤ 2ψn, and, for every i ∈ [d], |V ′i | ≥ 2ψn and, for all

i ∈ [d], all but at most (2ψ)3n2 pairs v, v′ ∈ V ′i are such that

|NF (v) ∩NF (v′)| ≥ (2ψ)4n2. (14)

In the remainder of the proof, we will potentially remove some vertices from the each of
the sets V ′1 , . . . , V

′
d and the distribute these removed vertices and the vertices in R′ into the

sets to create the desired partition. To help achieve this, we build an auxiliary graph H with
V (H) = V (G) and in which two vertices v, v′ ∈ V (H) are adjacent if and only if v and v′

satisfy (14). Also, define Hi := H[V ′i ] for i ∈ [d]. For any i ∈ [d], note that

NHi
(v) ⊆ L4ψ2,1(v) for any v ∈ V ′i (15)

Let Ji := {v ∈ V (Hi) : dHi
(v) ≥ 8ψ2n} and V ′′i := V ′i \ Ji. Since e(Hi) ≤ (2ψ)3n2, we have

that

|Ji| ≤
8ψ3n2

8ψ2n
= ψn and |V ′′i | ≥ ψn for every i ∈ [d].

Let v, v′ ∈ V ′′i . Since v, v′ /∈ Ji,

|NHi
(v) ∩NHi

(v′)| ≥ 2 · (|V ′i | − 8ψ2n)− |V ′i | ≥ 27φn. (16)

By (15) and (16), Proposition 2.7 with k1 = 1, k2 = 1, c = 27φ and c1 = c2 = 4ψ2, implies
that v and v′ are (9φ, 2)-linked. Therefore, V ′′i is (9φ, 2)-linked. Similarly, Proposition 2.7
also implies that V ′′i is (3φ, 3)-linked and (φ, 6)-linked.

Let v ∈ J1 ∪ · · · ∪ Jd ∪R. By Proposition 3.4, there exists i ∈ [d] such that

∣∣{u ∈ V ′′i : u and v are (ε2, 1)-linked}
∣∣ ≥ 3

2
ε2n− |R|

d
− |Ji| ≥ 9φn. (17)

Therefore, we can construct a partition (that may contain empty parts) {W1, . . . ,Wd} of
J1 ∪ · · · ∪ Jd ∪R such that for every i ∈ [d] and every w ∈ Wi, |Lε2,1(w) ∩ V ′′i | ≥ 9φn.

Since V ′′i is (9φ, 2)-linked, (17) and Proposition 2.7 imply that, for every w ∈ Wi, V
′′
i +w

is (3φ, 3)-linked and also (φ, 6)-linked. Therefore, for every two distinct vertices w1, w2 ∈ Wi,
since |V ′′i | ≥ 3φn, Proposition 2.7 implies that w1 and w2 are (φ, 6)-linked. Hence, if Vi :=
V ′′i ∪Wi for every i ∈ [d], then M := {V1, . . . , Vd} is a (ψ, φ, 6)-linked partition of V .

Definition 3.6. Let G be an n-vertex graph. Define S := {S1, . . . , Sm} be a family of
subsets of V (G). For a > 0, let C(S, a) be the graph with vertex set S where the following
holds

SiSj ∈ E(C) ⇐⇒ |{v ∈ Si : |N(v) ∩ Sj| ≥ an}| ≥ an and

|{v ∈ Sj : |N(v) ∩ Si| ≥ an}| ≥ an. (18)
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Proposition 3.7. Let 0 < γ < a < 1 and d ∈ N. Let G = (V,E) be a graph on n vertices
such that α(G) ≤ γn, S = {S1, . . . , Sd} a collection of disjoint subsets of V , and W ⊆ V
such that |W | < (a − γ)n the following holds. If P is a (S, S ′)-path in C(S, a), then there
exists a set of vertex disjoint triangles Y in G[V (S) \W ] such that:

• |Y| = |E(P )|, |V (Y) ∩ S| = 1, |V (Y) ∩ S ′| = 2 and

• |V (Y) ∩ S ′′| ∈ {0, 3} for every S ′′ ∈ S − S − S ′.

Proof. Let S = S1, . . . , S` = S ′ be P . We will iteratively construct vertex disjoint triangles
v1e1, . . . , v`−1e`−1, so that vi ∈ Si \W and ei ∈ E(G[Si+1 \W ]). We always select vi so that
d(vi, Si+1) ≥ an, which is possible by the definition of C(S, a). Selecting ei is then possible
because α(G) ≤ γn < an− |W |.

The following lemma relies heavily on Definitions 2.4, 2.8, 2.9 and 3.6.

Lemma 3.8. For any k and assuming (12), then if G = (V,E) is a graph on n vertices
such that δ(G) ≥ (1/2 + ε)n, M = {V1, . . . , Vd} is a (ψ, φ, k)-linked partition of V and A
is an (M, φ, η)-absorber such that |A| ≤ σn, then there exists N an (M, φ, η)-absorbable
collection with respect to A such that:

(a) for every I ∈ Fφ(M) and j ∈ [3], |X(I, j)| = bηnc,

(b) the graph C(N , β) is connected,

(c) for every v ∈ V , there exists I ∈ Fφ(M) and j ∈ [3] such that d(v,X(I, j)) ≥ βn, and

(d) for every I ∈ Fφ(M), X(I, 1)X(I, 2)X(I, 3) is a triangle in C(N , β).

Proof. Chose τ so that σ � τ � φ, and define V ′i := Vi \ A for every i ∈ [d]. For every
i, i′ ∈ [d], let

U(i,i′) := {v ∈ V ′i : d(v, Vi′) ≥ τn}.

Note that if Vi and V ′i are adjacent in C(M, τ), then, by the definition of C(M, τ) and the
fact that |A| ≤ σn, we have that |U(i,i′)|, |U(i′,i)| ≥ τn− |A| ≥ τn/2.

We first establish the following three simple claims.

Claim 3.9. For every i ∈ [d], tφ(M, i) ≥ 1.

Proof. Assume that tφ(M, i) = 0. Then the number of triangles containing vertices of Vi is
less than d2φn3, but there are at least

(∑
v∈Vi e(G[N(v)])

)
/3 ≥ ψn · εn2 · 1/3 such triangles,

a contradiction.

Claim 3.10. If I ∈ Fφ(M) where {i, i′, i′′} = I, then |U(i,i′)| ≥ τn/2.
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Proof. Note that if νI(i) ≥ 2, then it could be that i = i′. Since I ∈ Fφ(M), there are at least
φn2 edges with one end in Vi and the other end in Vi′ , therefore, since dG(v, Vi′) ≤ |Vi′ | ≤ n,
for every v ∈ U(i,i′),

|U(i,i′)| ≥ eG(U(i,i′), Vi′)/n

=
(
eG(Vi, Vi′)− e(Vi \ U(i,i′), Vi′)

)
/n ≥

(
φn2 − τn · (|Vi| − |U(i,i′)|)

)
/n ≥ τn/2.

Claim 3.11. The graph C(M, τ) is connected.

Proof. We can assume d ≥ 2, so let C1, C2 be an arbitrary partition ofM and let Ui :=
⋃
Ci

for i ∈ [2]. Without loss of generality we can assume that |U1| ≤ |U2|, so |U1| ≤ n/2. We will
show that there is an edge in C(M, τ) between the sets C1, C2, which will prove the claim. We
can assume that V1 ∈ C1. For every v ∈ V1, we have |NG(v) ∩ (V \ U1)| ≥ δ(G)− |U1| ≥ εn,
so

eG(V1, U2) ≥ |V1| · εn.

Hence, there exists some Vi /∈ C2, say V2, such that eG(V1, V2) ≥ |V1| · εn/d. For i ∈ [2], let
xi be the number of vertices in v ∈ Vi such that |NG(v)∩ V3−i| ≥ τn. We have the following
inequality,

xi · |V3−i|+ (|Vi| − xi) · τn ≥ |V1| · εn/d.

Since ψn ≤ |V1|, |V2| ≤ n and ψε/d ≥ ψ2ε ≥ 2τ , we have

xi ≥
|V1| · εn/d− |Vi| · τn

|V3−i| − τn
≥ (ψε/d− τ)n2

n
≥ τn,

which means that V1 and V2 are adjacent in C(M, τ).

Now we proceed to prove Lemma 3.8. For every i ∈ [d], let the collection Ui contain the
sets N(v) ∩ V ′i for every v ∈ V (G) and U(i,i′) for every i′ ∈ [d]. Note that |Ui| = n + d and
that every set U ∈ Ui is is a subset of V ′i .

We will use the following probabilitic argument to contruct the desired (M, φ, η)-absorbable
collection N . Let m := bηnc and select a set Zi ⊆ V ′i of size tφ(M, i) ·m uniformly at ran-
dom. Then uniformly at random select a partition of Zi into tφ(M, i) parts each of size m
over all such partitions. Note that any such partition corresponds to an (M, φ, η)-absorbable
collection, since for every I ∈ Fφ(M) and j ∈ [3], we can uniquely assign X(I, j) to one of
the tφ(M, k(I, j)) parts of Zk(I,j). Assume there exists such a fixed assigned for every such
collection. For any I ∈ Fφ(M), j ∈ [3] and U ∈ Uk(I,j), the random variable |U ∩X(I, j)| is
hypergeometrically distributed 1 and

E|U ∩X(I, j)| = m

|V ′k(I,j)|
· |U | ≥ 0.9 · η · |U |.

1That is, if we have a bin with |Vk(I,j)| balls and exactly |U | of them are red, then the probability that
there are exactly t red balls after drawing m balls without replacement from the bin is P(|U ∩X(I, j)| = t).
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For any I ∈ Fφ, j ∈ [3], and any U ∈ Uk(I,j), when |U | < βn the following probabilty
estimate is trivially true and when |U | ≥ βn it is implied by the Chernoff bound for the
hypergeometric distribution:

P(|U ∩X(I, j)| < E|U ∩X(I, j)| − βn) ≤ exp(−β2/3 · E|U ∩X(I, j)|) ≤ exp(−β3n/3).

Hence, by the union bound, w.h.p.

|U ∩X(I, j)| ≥ E|U ∩X(I, j)| − βn

for each of the n+d sets U ∈ Uk(I,j) simultaneously. Finally, this with the union bound again
imply that there exists an (M, φ, η)-absorbable collection N such that, for every I ∈ Fφ and
j ∈ [3],

|U ∩X(I, j)| ≥ 0.9 · η · |U | − βn for every U ∈ Uk(I,j).

Rewriting this, we have that, for every i′ ∈ [d], I ∈ Fφ and j ∈ [3],

d(v,X(I, j)) ≥ 0.9 · η · d(v, V ′k(I,j))− βn for every v ∈ V , (19)

and
|U(k(I,j),i′) ∩X(I, j)| ≥ 0.9 · η · |U(k(I,j),i′)| − βn. (20)

For any I, I ′ ∈ Fφ(M) and j, j′ ∈ [3], (19) and (20) imply that

if k(I, j) 6= k(I ′, j′) and Vk(I,j)Vk(I′,j′) ∈ E(C(M, τ), then

X(I, j)X(I ′, j′) ∈ E(C(N , β)).
(21)

Also note that Claim 3.9 implies that,

for every i ∈ [d], there exists I ∈ Fφ(M) and j ∈ [3] such that X(I, j) ⊆ Vi. (22)

Combining (21) and (22), we have that for any I, I ′ ∈ Fφ(M) and j, j′ ∈ [3], if k(I, j) 6=
k(I ′, j′) and there is a path from Vk(I,j) to Vk(I′,j′) in C(M, τ), then there is a path from
X(I, j) to X(I ′, j′) in C(N , β). This, (22) and Claim 3.11 imply that when d ≥ 2, the graph
C(N , β) is connected. Also, for all d ≥ 1, (21) and Claim 3.10, imply thatX(I, 1)X(I, 2)X(I, 3)
is a triangle in C(N , β) for every I ∈ Fφ(M). Therefore, (d) holds. This and Claim 3.9,
imply that C(N , β) is isomorphic to K3 when d = 1, so (b) holds for all d ≥ 1. Since (a)
is true by construction, only (c) remains to be proved. To see that (c) holds, note that for
every v ∈ V , there exists i ∈ [d] such that d(v, V ′i ) ≥ ((1/2 + ε)n− |A|)/d ≥ φn. Since (22)
implies that there exist I ∈ Fφ(M) and j ∈ [3] such that X(I, j) ⊆ Vi, (19) implies that
d(v,X(I, j)) ≥ βn.

Proof of Lemma 3.1. Assume (12) holds. Lemma 3.5 implies that there exists a (ψ, φ, 6)-
linked partition M of V . Lemma 2.10 implies that there exists A ⊆ V such that |A| ≤ σn
and A is an (M, φ, η)-absorber. Lemma 3.8 then implies that there exists a collection N of
disjoint subsets of V \ A such that N is (M, φ, η)-absorbable with respect to A and that
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properties (a), (b), (c) and (d) of Lemma 3.8 hold. Let N := V (N ), i.e. N :=
⋃
{X(I, j) :

I ∈ Fφ, j ∈ [3]}. Let U := A ∪N and W ⊆ V \ U such that |W | ≤ ζn and |W | is divisible
by 3. We have that |U | ≤ σn+ 3d3ηn ≤ 2σn and we will show that there is a triangle factor
of G[W ∪ U ] which will complete the proof.

For every w ∈ W , by Lemma 3.8(c), there exists some I ∈ Fφ and j ∈ [3], such that
d(w,X(I, j)) ≥ βn > γn + 2|W |. Therefore, since α(G) ≤ γn, for every w ∈ W , we can
assign some edge ew ∈ E(G[N(w) ∩ X(I, j)]) to w so that W := {wew : w ∈ W} is a
collection of vertex disjoint triangles.

The idea of the remainder of the proof is the following. We iteratively construct another
small collection Y of vertex disjoint triangles in G[N \ V (W)]. For convenience, we will
use Y to represent the triangles that have been constructed so far in this iterative process.
In particular, at the beginning of this process Y = ∅. For every I ∈ F and j ∈ [3], we
define X ′(I, j) := X(I, j) \ V (W ∪Y). We also define N ′ := {X ′(I, j) : I ∈ Fφ, j ∈ [3]} and
N ′ := V (N ′) =

⋃
N ′. After this process is completed and we have finished constructed Y , we

will have that, for every I ∈ Fφ, |X ′(I, 1)| = |X ′(I, 2)| = |X ′(I, 3)|. Note that then because A
is an (M, φ, η)-absorber, and Lemma 3.8(a) implies that |X ′(I, 1)| = |X ′(I, 2)| = |X ′(I, 3)| ≤
ηn, the collection N ′ is (M, φ, η)-absorbable with respect to A, so there exists a triangle
factor Z of G[A∪N ′]. Therefore,W∪Y∪Z is a triangle factor of G[W ∪A∪N ] = G[W ∪U ],
which completes the proof.

We will now describe the two stage process for constructing Y . Our goal in the first stage
is for the following to hold for every I ∈ Fφ:

|X ′(I, 1) ∪X ′(I, 2) ∪X ′(I, 3)| ≡ 0 (mod 3). (23)

At any step of the first stage of the algorithm, we call a triple I ∈ Fφ, bad if it does not
satisfy (23). Pick a bad I ∈ Fφ such that |X ′(I, 1) ∪ X ′(I, 2) ∪ X ′(I, 3)| ≡ 1 (mod 3) if
possible. Note that |N ′| is always divisible by three, because and |N ′| = |N | − 2|W | − 3|Y|
and |W | and |N | are both divisible by 3. Therefore, there exists another bad triple I ′ ∈ Fφ−I.
By Lemma 3.8(b) there exists a path P from X(I, 1) to X(I ′, 1) in the graph C(N , β). Hence,
by Proposition 3.7, we can add a collection of at most |P | − 1 vertex disjoint triangles to Y ,
so that after this step, at least one of I or I ′ is no longer bad and every triple in Fφ that
was good before this step remains good after this step is completed. Note that we finish the
first phase in at most |N | steps, so |Y| ≤ |N |(|N | − 1) ≤ (3 · d3)2 after the first phase.

In each step of the second and final stage of the algorithm, we pick some I ∈ Fφ such that
|X ′(I, 1)| = |X ′(I, 2)| = |X ′(I, 3)| does not hold and add triangles contained in G[X(I, 1) ∪
X(I, 2) ∪ X(I, 3)] to Y until |X ′(I, 1)| = |X ′(I, 2)| = |X ′(I, 3)| holds. We continue in
this manner until we have the desired collection Y . We will now describe this process for
a fixed I ∈ Fφ. Before each triangle is constructed, we relabel {j1, j2, j3} = [3] so that
|X ′(I, j1)| ≤ |X ′(I, j2)| ≤ |X ′(I, j3)| and let

c(I) := (|X ′(I, j2)| − |X ′(I, j1)|) + (|X ′(I, j3)| − |X ′(I, j1)|) .

We also fix Φ := c(I) before any triangle are constructed. Because |Y| ≤ 9 · d6 at the start
of the second stage of the algorithm, |W| = |W |, and every triangle in Y ∪W has at most 2
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vertices in X(I, j) for any j ∈ [3], we have that

Φ ≤ 2 · 2(9 · d6 + |W |) < 2ζn.

Note that because I satisfies (23), we can conclude that Φ ≡ c(I) ≡ 0 (mod 3) throughout
this process.

We now add a triangle to Y with one vertex in X(I, j2) and two vertices in X(I, j3) until
c(I) = 0, which implies |X ′(I, 1)| = |X ′(I, 2)| = |X ′(I, 3)| (recall that we relabel {j1, j2, j3} =
[3] before each triangle is constructed). By Lemma 3.8(d), X(I, 1)X(I, 2)X(I, 3) is a triangle
in C(N , β). Therefore, there exists v ∈ X ′(I, j2) such that d(v,X ′(I, j3)) > γn = α(G) and,
hence, a triangle with one vertex in X ′(I, j2) and two vertices in X ′(I, j3), provided

|V (Y ∪W) ∩X(I, j2)|, |V (Y ∪W) ∩X(I, j3)| < (β − γ)n. (24)

Assuming (24) always holds, this process will terminate after constructing at most 2 · Φ/3
triangles, because c(I) decreases by 3 after each triangle is added to Y unless |X ′(I, j1)| =
|X ′(I, j2)|, and when |X ′(I, j1)| = |X ′(I, j2)|, c(I) does not change, but c(I) decreases by 3
when the following triangle is added to Y . Therefore, V (Y ∪W) intersects any set in N in
at most 2(2 · Φ/3 + 9 · d6 + |W |) < (β − γ)n vertices. Hence, (24) always holds and we can
find the required triangles between X ′(I, j2) and X ′(I, j3).

3.3 Proof of Lemma 3.2

Proof of Lemma 3.2. Set γ < ε/36. Let T be a maximum family of disjoint triangles in G,
and M be a maximum matching in G[V \ V (T )]. Denote V the set of remaining vertices
and let v = |V|, i.e. v = |G \ V (T ∪M)|. Denote t := |T | and m := |M|, then we have
n = 3t+ 2m+ v, v ≤ α(G) ≤ γn and t ≥ (δ(G)− α(G))/3 ≥ n/6 by greedy construction.

Claim 3.3. m < 8/ε.

Proof. For a contradiction, assume εm ≥ 8. Note that for every vertex u ∈ V (M), its degree
in G[V \ V (T )] is at most v+m, otherwise u is adjacent to both ends of a matching edge in
M, contradicting the maximality of T . Thus

d(u, V (T )) ≥
(

1

2
+ ε

)
n− v −m =

(
1

2
+ ε

)
(3t+ 2m+ v)− v −m

≥
(

3

2
+ 3ε

)
t+ εm− v

2
≥
(

3

2
+ ε

)
t,

(25)

where the last inequality follows from the fact that v ≤ γn and t ≥ n/6. Thus e(V (M), V (T )) ≥
(3
2

+ ε)t · 2m = (3 + 2ε)tm.
Let T ′ be the collection of triangles in T , each sending at least 3m+ 9 edges to M and

write t′ = |T ′|. Note that each triangle T ∈ T can send at most 6m edges to M, thus

e(V (M), V (T )) ≤ t′ · 6m+ (t− t′)(3m+ 8) = (3m+ 8)t+ (3m− 8)t′.
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Together with (25) we have that

t′ ≥ 2εm− 8

3m− 8
· t ≥ εm

3m− 8
· t ≥ ε

3
· t ≥ εn

18
. (26)

Note that for every T ∈ T ′, there is at least one vertex sT ∈ V (T ) that sends at least
(3m + 9)/3 = m + 3 edges to M. Hence, sT forms a triangle with at least 3 edges in M.
Let S := {sT : T ∈ T ′} and R := V (T ′) \ S.

By the definition of T ′, we have e(V (M), V (T ′)) ≥ (3m + 9)t′. Thus there exists u ∈
V (M) such that

d(u, V (T ′)) ≥ e(V (M), V (T ′))
2m

≥ (3m+ 9)t′

2m
≥ 3t′

2
.

With (26) we have that d(u, V (R)) ≥ d(u, V (T ′))− |S| ≥ t′/2 ≥ (εn)/36 > γn.
Since α(G) ≤ γn, there is at least one edge y1y2 ∈ NR(u). Let T be the triangle uy1y2

and let T1, T2 ∈ T such that yi ∈ Ti for i ∈ [2]. Since, for i ∈ [2], sTi forms a triangle with at
least three edges inM, we can pick distinct edges in e1, e2 ∈M such that neither contains u
and sTiei is a triangle for i ∈ [2]. If T1 6= T2, then T −T1−T2 +T + sT1e1 + sT2e2 contradicts
the maximality of T , and if T1 = T2, then T − T1 + T + sT1e1 contradicts the maximality of
T .

Claim 3.4. v ≤ 1.

Proof. Suppose to the contrary that there exists two vertices x, y ∈ V (V). V (V) is an
independent set, hence v ≤ γn, and, by Claim 3.3, m < 8/ε, therefore

e({x, y}, V (T )) ≥ 2(δ(G)−m) ≥ (1 + ε)n > 3t+ εn.

Denote T ′′ := {T ∈ T : e({x, y}, T ) ≥ 4}. It follows that t′′ := |T ′′| ≥ εn/3 > γn. Fix
a triangle T = abc ∈ T ′′. If d(x, V (T )) = 3 and d(y, V (T )) = 1, say ya ∈ E(G), then
we get a triangle xbc and an edge ya, contradicting to the maximality of M. Thus we
may assume that d(x, V (T )) = d(y, V (T )) = 2. Note that if x is adjacent to {a, b} and
y is adjacent to {a, c}, then we get the triangle xab and an edge yc, contradicting to the
maximality of M. Hence, both x and y are adjacent to the same two vertices in T . Let
S := N(x) ∩ N(y) ∩ V (T ′′), and R := V (T ′′) \ S. Since |R| = t′′ > γn, there exist two
triangles abc, a′b′c′ ∈ T ′′ such that cc′ ∈ E(G[R]). Now we can take xab, ya′b′ and cc′, again
contradicting to the maximality of M.

The number of vertices not covered in T is then 2m+ v < 16/ε+ 1.
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4 Proof of Theorem 1.3

We prove Theorem 1.3 in roughly the same way as we proved Theorem 1.2. That is, we prove
an absorbing lemma (Lemma 4.1) and an almost tiling lemma (Lemma 4.4) and then we use
them both to obtain the desired result. We omit the details of proving Theorem 1.3, given
Lemma 4.1 and Lemma 4.4, since they are identical to the analogous proof of Theorem 1.2.

Notation. For disjoint vertices x, y, z, we will let x, xy and xyz represent the sets {x},
{x, y} and {x, y, z} respectively. It should be clear from context whether we mean for x to
represent the vertex x or the singleton set {x}. For any U ⊆ V , we will let U = V \ U ,
‖U‖ :=

∑
e∈(U

2)
w(e) ·3 and for W ⊆ U we will let ‖U,W‖ :=

∑
e∈E(U,W )w(e) ·3. For disjoint

vertices x, y and z we call xyz a heavy triangle if ‖xyz‖ > 9t. We multiply by three here
purely for notational convenience.

To prove the absorbing lemma, we will consider the very simply partitionM := {V1} of V ,
i.e. V1 := V . We show that there are at least φn3 heavy triangles in G, i.e. tφ(M, {1, 1, 1}) =
1 and that the entire vertex set V1 := V is (φ, 1)-linked. Applying Lemma 2.10 will essentially
complete the proof of the absorbing lemma.

Lemma 4.1 (Absorbing Lemma). For any t ∈ (0, 1) let 0 < ζ � σ � ε < 1 and n0 such
that the following holds. For any n ≥ n0 that is divisible by 3, graph (V,E) = G = Kn and
w : E → [0, 1] such that δw(G) ≥

(
1+2t
3

+ ε
)
n, there exists U ⊂ V such that |U | ≤ σn and

for any W ⊆ V \ U such that |W | is at most ζn and divisible by 3, there exists a perfect
tiling of G[U ∪W ] with heavy triangles.

Proof. Let σ � φ� ε. The following two claims make up the bulk of the proof.

Claim 4.2. There are at least 1
4
n3 ordered triples (x, y, z) ∈ V 3 such that xyz is a heavy

triangle.

Proof. Pick any x ∈ V . For any y ∈ V − x, let V ′ = V − x− y and

Zy := {z ∈ V ′ : xyz is heavy triangle}.

By δw(G) ≥
(
1+2t
3

+ ε
)
n,

(2+4t)|V ′| < ‖xy, V ′‖ ≤ 6·|Zy|+(9t−‖xy‖)|V ′\Zy| = (6− 9t+ ‖xy‖) |Zy|+(9t−‖xy‖)|V ′|,

so, since |Zy| ≥ 0 and ‖xy‖ ≤ 3,

|Zy| >
‖xy‖ − 5t+ 2

6− 9t+ ‖xy‖
|V ′| ≥ ‖xy‖ − 5t+ 2

9(1− t)
|V ′|.

Therefore, there are at least∑
y∈V−x

|Zy| >
∑
y∈V−x

‖xy‖ − (5t− 2)

9(1− t)
· |V ′| > 1 + 2t− (5t− 2)

9(1− t)
· (n− 2)2 =

1

3
(n− 2)2

pairs (y, z) such that xyz is a heavy triangle, and this completes the proof.
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Claim 4.3. For every pair of distinct vertices x and y there are at least 2φ2n ordered pairs
(z, w) ∈ (V − x− y)2 such that xyz and xyw are both heavy triangles.

Proof. Assume the contrary. For 0 ≤ c ≤ 6, let

Zc := {z ∈ V − x− y : ‖z, xy‖ > c}.

For any z ∈ V we will say w ∈ V − xyz works with z if both xzw and yzw are heavy
triangles.

First note that if z ∈ V − x − y is such that ‖x, z‖, ‖y, z‖ > 3t, then any vertex w ∈
V − x− y − z such that ‖w, xyz‖ ≥ 3 + 6t works with z.

If z ∈ Z3+3t, then, because ‖xyz, V \ xyz‖ > (3 + 6t + 9ε)n− 2‖xyz‖, there are at least
2φn vertices w such that ‖w, xyz‖ > 3+6t. By the previous observation, every such w works
with z. Therefore, we can now assume that |Z3+3t| < φn.

Since ‖xy, V \ xy‖ ≥ (2 + 4t + 6ε)n − 2‖xy‖, we have |Z2+4t| ≥ 2φn. Therefore, if for
every vertex in z ∈ Z2+4t there are φn vertices that work with z, then we are done. Assume
that this is not the case, and let z ∈ Z2+4t such that there are fewer than φn vertices work
with z. Let G∗ be the graph obtained from G by removing the vertices in Z3+3t and the
vertices that work with z from G. Note that we removed at most 2φn vertices, so G∗ has
the following properties:

(a) Z3+3t = ∅, (b) no vertices work with z, and (c) δw(G∗) ≥
(

1 + 2t

3
+
ε

2

)
n. (27)

Assume without loss of generality, that ‖xz‖ ≥ ‖yz‖.

Let V ′ := V (G∗) \ xyz, Y := {w ∈ V ′ : yzw is a heavy triangle} and X := V ′ \ Y .

By (27)(c), there exists w ∈ V ′ such that ‖w, xyz‖ ≥ 3 + 6t. If ‖xz‖ ≥ ‖yz‖ > 3t, then,
because ‖xw‖, ‖yw‖ ≤ 3, both ‖xzw‖ and ‖yzw‖ are heavy triangles, contradicting (27)(b).
Hence ‖yz‖ ≤ 3t, which implies that if we let t := 1 − t and c := (‖yz‖ − 3t) + t =
‖yz‖ − (3− 4t), then c ≤ t. Because z ∈ Z2+4t = Z6−4t, it must be that

‖xz‖ > 3− c, (28)

so c > 0. Combining the upper and lower bounds on c gives

t ≥ c > 0. (29)

Note that
w ∈ Y if and only if ‖w, yz‖ ≥ 6t+ t− c = 5t+ 1− c. (30)

Therefore, we have that

‖yz, V ′‖ < 3|Y |+ ‖z, Y ‖+ (5t+ 1− c)|X| = ‖z, Y ‖+ (5t− 3 + c)|Y |+ (5t+ 1− c)|V ′|, (31)
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and, by (27)(c),

‖yz, V ′‖ ≥ (2 + 4t)|V ′| =
(
t+ c

)
|V ′|+ (5t+ 1− c)|V ′|. (32)

If w ∈ X, then (30) implies ‖w, xyz‖ < 5t+ 4− c. If w ∈ Y and ‖w, xyz‖ ≥ 9t+ c, then
(28) implies that

‖xzw‖ ≥ ‖w, xyz‖ − ‖wy‖+ ‖xz‖ > (9t+ c)− 3 + (3− c) = 9t,

which contradicts (27)(b). Combining this with (27)(c), implies

(3 + 6t)|V ′| < ‖xyz, V ′‖ < (5t+ 4− c)|X|+ (9t+ c)|Y | = (5t+ 4− c)|V ′| − (4t− 2c)|Y |.

Then combining this with the obvious bound ‖z, Y ‖ ≤ 3|Y |, (31) and (32), implies

t− c
4t− 2c

>
|Y |
|V ′|

>
t+ c

5t+ c
which implies c2 − 6tc+ t

2
> 0.

With (29), we have that
0 ≤ c < t(3− 2

√
2) < t/2. (33)

Again using the fact that ‖xyz, w‖ < 9t + c for every vertex w ∈ Y , but this time also
using (27)(a), we have that

(3 + 3t)|X|+ ‖z,X‖+ (9t+ c)|Y | ≥ ‖xyz, V ′‖ > (2 + 4t)|V ′|+ ‖z,X‖+ ‖z, Y ‖

so
0 > ‖z, Y ‖ − t|X|+ (5t− 3− c)|Y | = ‖z, Y ‖ − t|V ′|+ (6t− 3− c)|Y |.

By (31) and (32), ‖z, Y ‖ − (t+ c)|V ′|+ (5t− 3 + c)|Y | > 0, so c|V ′|+ (t− 2c)|Y | < 0. This
contradicts (33).

Now we can quickly prove Lemma 4.1. Recall definitions 2.5, 2.8 and 2.9. Claim 4.2
implies that V is (1, φ, 1)-linked, so if we let V1 := V and M = {V1}, then M is a (1, φ, 1)-
linked partition of V . Claim 4.3 implies that tφ(M, {1, 1, 1}) = 1 and Fφ(M) = {{1, 1, 1}}.
Now we can apply Lemma 2.10 toM. Let U and ζ be A and η from Lemma 2.10, respectively.
The set U is the desired set, since when W ⊆ V \ U is such that |W | is at most ζn and
divisible by 3, any parition of W into three parts each of size |W |/3 is (M, φ, η)-absorbable
with respect to A.

Lemma 4.4 (Triangle Covering Lemma). For any ε > 0 there exists n0 such that for any
n ≥ n0, if (V,E) = G = Kn and w : E → [0, 1] such that δw(G) ≥

(
1+2t
3

+ ε
)
n then there is

a heavy triangle tiling on all but at most 6 vertices.

Proof. Let R be a collection of vertex disjoint heavy triangles in G, let U := V (R), W :=
V \ U , and ρ :=

∑
T∈R ‖T‖. Let M ⊆ E(G[U ]) be a matching such that for every e ∈ M ,

‖e‖ > 3t, and let I := W \ (
⋃
M). Assume that R and M are picked to maximize the triple

(|R|, |M |, ρ) lexicographically.
Clearly |W | = 2|M |+ |I|, so the following two claims complete the proof.
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Claim 4.5. |M | ≤ 2.

Proof. Suppose there exist three distinct edges e1, e2, e3 ∈M . By the maximality of |R|, for
i ∈ {1, 2, 3} and any x ∈ W − ei, ‖ei, x‖ < 6t. Therefore, ‖e1, e2, e3,W‖ ≤ 6t|W |, so

‖e1 ∪ e2 ∪ e3, U‖ > 6 · 3δw(G)− 6t|W | > 6 · (1 + 2t)|U | = (18 + 36t)|R|,

so there exist T ∈ R such that ‖e1∪e2∪e3, T‖ > 18+36t. Without loss of generality assume
that ‖e1, T‖ ≥ ‖e2, T‖ ≥ ‖e3, T‖.

Since 18 ≥ ‖e1, T‖ > 6 + 12t, ‖e2, T‖ > 18t. Now, label {t1, t2, t3} := V (T ) so that
‖e1, t1‖ ≥ ‖e1, t2‖ ≥ ‖e1, t3‖. Since 6 ≥ ‖e1, t1‖ > 2 + 4t, we have that ‖e1, t2‖ > 6t, and
both e1t1 and e1t2 are heavy triangles. Because ‖e2, T‖ > 18t, there exists i ∈ {1, 2, 3} such
that ‖e2, ti‖ > 6t which implies e2ti is a heavy triangle. Let j ∈ {1, 2} − i. Since e1tj and
e2ti are disjoint heavy triangle, we have violated the maximality of |R|.

Claim 4.6. |I| ≤ 2.

Proof. Suppose there are disjoint vertices x1, x2, x3 ∈ I. By the maximality of |R|, ‖xi, e‖ <
6t for every e ∈ M and i ∈ [3]. Furthermore, by the maximality of |M |, ‖xi, y‖ ≤ 3t for
every y ∈ I − xi. Therefore, ‖x1x2x2,W‖ ≤ 3t|W | and

‖x1x2x3, U‖ > 3 · 3δw(G)− 3t|W | > 3 · (1 + 2t)|U | = (9 + 18t)|R|,

so there exists T ∈ R such that ‖x1x2x3, T‖ > 9 + 18t. Without loss of generality assume
that ‖x1, T‖ ≥ ‖x2, T‖ ≥ ‖x3, T‖.

Note that 9 ≥ ‖x1, T‖ > 3 + 6t which implies ‖x2, T‖ > 9t and ‖x2, t1‖ > 3t for some
t1 ∈ T . Therefore, by the maximality of |M |, to complete the proof we only need to show
that x1t2t3 is a heavy triangle where {t2, t3} = V (T ) − t1. For the rest of the proof we will
focus on x1 so, for notation simplicity, let us define x := x1.

Now suppose xt2t3 is not a heavy triangle, i.e.

‖xt2‖+ ‖xt3‖+ ‖t2t3‖ ≤ 9t. (34)

Note that for any labeling {i, j, k} = {1, 2, 3} since ‖xtk‖ ≤ 3, we have ‖x, titj‖ > 6t, so xtitj
is a heavy triangle when ‖titj‖ ≥ 3t. Therefore, ‖t2t3‖ < 3t, and, furthermore, because t1t2t3
is a heavy triangle, we have that ‖t1t2‖ + ‖t1t3‖ > 6t. Assume without loss of generality,
that ‖t1t2‖ ≥ ‖t1t3‖, so ‖t1t2‖ > 3t. This implies that xt1t2 is a heavy triangle, and, by the
maximality of ρ,

‖xt1‖+ ‖xt2‖ ≤ ‖t1t3‖+ ‖t2t3‖. (35)

Furthermore, since ‖xt1‖ + ‖xt2‖ > 6t and ‖t2t3‖ < 3t, this implies ‖t1t3‖ > 3t. Therefore,
xt1t3 is a heavy triangle, and, again by the maximality of ρ,

‖xt1‖+ ‖xt3‖ ≤ ‖t1t2‖+ ‖t2t3‖. (36)

By (34), ‖t2t3‖ ≤ 9t− (‖xt2‖+ ‖xt3‖). Combining this with (35) and (36), we get that

2‖xt1‖+ ‖xt2‖+ ‖xt3‖ ≤ ‖t1t2‖+ ‖t1t3‖+ 18t− 2(‖xt2‖+ ‖xt3‖).
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Hence,
‖xt2‖+ ‖xt3‖+ 2‖x, T‖ ≤ ‖t1t2‖+ ‖t1t3‖+ 18t.

This is a contradiction, because

‖xt2‖+ ‖xt3‖+ 2‖x, T‖ > 6t+ 2(3 + 6t) = 6 + 18t and ‖t1t3‖+ ‖t1t2‖+ 18t ≤ 6 + 18t.

5 Concluding Remarks

In this paper we answered Question 1.1 for k = 3, and it remains open for k ≥ 4. We now give
constructions which show that the minimum degree necessary for Questions 1.1 is at least
(k−2

k
+o(1))n for every k ≥ 4. In the following constructions, we call an n vertex triangle-free

graph with independence number o(n) and minimum degree o(n) an Erdős graph.
For the case k = 2` + 1, consider the complete (` + 1)-partite graph with one part V0

of size n/k − 1, another part V1 of size 2n/k + 1 and the remaining parts V2, . . . , V` each of
size 2n/k. To complete the construction, for i = 0, . . . , `, put a copy of an Erdős graph on
the set Vi. This graph does not have a Kk-tiling, because each Kk has at most 2 vertices in
V1 and a Kk-tiling can have at most n/k copies of Kk. The minimum degree of this graph
is (k−2

k
+ o(1))n and it has sublinear independence number. Note that this construction has

the additional property of being Kk+2-free. For the case k = 2`, start with the complete
`-partite graph with parts V1, . . . , V` where V1 has size 2n/k + 1, V2 has size 2n/k − 1 and
the remaining parts each have size 2n/k, and place an Erdős graph on each of the parts
V1, . . . , V`. This again gives a graph with no Kk-factor, sublinear independence number and
minimum degree (k−2

k
+ o(1))n. Note that, in this case, the graph is Kk+1-free.

Another question, motivated by the fact that all of our examples which show that the
minimum degree condition in Theorem 1.2 is asymptotically sharp contain very large cliques,
is the following.

Question 5.1. Let G be an n-vertex Kr-free graph with α(G) = o(n) for some constant
r ≥ 4. What is the minimum degree condition on G that guarantees a triangle tiling in G?

For the case r = 4, we use a modified version of the Bollobás-Erdős graph [5] to construct
a lower bound. For every large even n, the Bollobás-Erdős graph is an n-vertex K4-free
graph with independence number o(n). The vertex set is the disjoint union of two sets
V1 and V2 of the same order such that the graphs G[V1] and G[V2] are triangle-free and
d(vi, V3−i) ≥ (1/4 − o(1))n for every vi ∈ Vi. To construct our example, we start with the
Bollobás–Erdős graph on 4/3n+2 vertices, and then remove a random subset of size n/3+2
from one of the two parts. Note that the two parts now have sizes n/3 − 1 and 2n/3 + 1.
With high-probability, this gives a K4-free graph with minimum degree (1/6 − o(1))n that
does not have a triangle factor. We call this construction the modified Bollobás-Erdős graph
on n vertices.
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For the case r = 5, we can use the example above with k = 3, i.e. just the parts V0
and V1, to show that we need δ(G) ≥ (1/3 + o(1))n. It might be true that instead of K5,
forbidding any larger clique does not affect the bound on the minimum degree.

Question 5.2. Let G be an n-vertex Kr-free graph with α(G) = o(n) for some constant
r ≥ 5. Is δ(G) ≥ (1/3 + o(1))n sufficient for the existence of a triangle tiling?

Noga Alon commented that if one is only looking for n/3 − 1 vertex disjoint triangles,
instead of a triangle factor, then maybe the minimum degree condition (1/3 + o(1))n is
sufficient (with no condition on the clique number).

One can also consider a more general question.

Question 5.3. Let r, k be such that r > k, let G be an n-vertex Kr-free graph with α(G) =
o(n). What is the minimum degree condition on G that guarantees a triangle tiling in G?

When k is even and r = k + 1, the example above shows that the minimum degree
must be at least (k−2

k
+ o(1))n. Note that this minimum degree condition agrees with the

minimum degree condition in Question 5.2. When k = 2` + 1 and r = k + 1, we can
modify the construction above by replacing the parts V0 and V1 with the modified Bollobás-
Erdős graph on 3n/k vertices. The minimum degree of this graph is

(
k−2
k
− 1

2k
− o(1)

)
n =(

2k−5
2k
− o(1)

)
n.

It should also be noted that when α(G) is at most a constant, the fact that G has a
Kk tiling on all but at most a constant number of vertices is a direct consequence of Ram-
sey’s Theorem. Furthermore, when we add the condition δ(G) ≥ (1/2 + ε)n, a counting
argument and Ramsey’s Theorem show that there are Ω(nk−1) copies of Kk−1 in the inter-
section of the neighborhoods of any two distinct vertices, so the absorbing method gives a
Kk-factor.

Acknowledgements. We would like to thank Hong Liu and Andrew Treglown for inter-
esting discussions at the beginning of this project and Noga Alon and Mathias Schacht for
helpful comments.

Appendix (by Christian Reiher and Mathias Schacht):

Clique factors in locally dense graphs

Balogh, Molla, and Sharifzadeh study sufficient minimum degree conditions for Kk-factors
in graphs with sublinear independence number. In particular, for Kk-factors the minimum
degree condition for n-vertex graphs is of the form ckn where ck → 1 as k →∞.

In this appendix we note that if we require positive density on all linear sized subsets,
instead of just one edge, then for n-vertex graphs the minimum degree condition

δ(G) ≥ (1/2 + o(1))n

suffices forKk-factors for any k ≥ 3. More formally, we say a graphG = (V,E) is (%, d)-dense,
if for every U ⊆ V the number eG(U) of edges of G induced on U is at least d

(|U |
2

)
− %|V |2.
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In the proof of Theorem A.1 below we shall utilise the well-known fact, that for any k, d,
and ξ > 0, there exists % > 0 such that every sufficiently large (%, d)-dense graph G = (V,E)

contains at least (d(k
2) − ξ)|V |k labeled cliques Kk.

Theorem A.1. For every integer k ≥ 3, ε > 0, and d > 0 there exist % > 0 and m0 such
that for every integer m ≥ m0 the following holds: If G = (V,E) is a (%, d)-dense graph on
|V | = n = km vertices with δ(G) ≥ (1/2 + ε)n, then G contains a Kk-factor.

Proof (Sketch). The proof is based on the absorption method of Rödl, Ruciński, and Sze-
merédi introduced in [26]. We will fix some auxiliary constants d′, d′′, and η in such a way
that the following hierarchy is imposed

1
k
, d, ε� d′ � d′′ � η � % .

It is easy to see that those constants can be chosen in such a way that in any sufficiently
large (%, d)-dense graph G = (V,E) one can remove the vertex sets of copies of Kk’s in a
greedy manner until only η|V | vertices are left. In other words, this observation reduces the
proof of Theorem A.1 to the problem to ensure the abundant existence of suitable absorbers
in G. Here we may use the minimum degree condition, which allows us to apply the (%, d)-
denseness condition within the joint neighbourhoods of any pair of vertices. This will allow
us to find absorbers, which are very similar to those appearing in [14].

Given distinct vertices v1, . . . , vk ∈ V we observe that the subgraph G[N(v1)] induced on
the neighbourhood of v1 is still (4%, d)-dense and, hence, there exist d′nk−1 cliques Kk−1 that
extends v1 to a Kk. Let u2, . . . , uk be such a clique disjoint from v1, . . . , vk. For j = 2, . . . , k
we consider the joint neighbourhood N(vj, uj) = N(vj) ∩ N(uj). Owing to the minimum
degree condition we have |N(vj, uj)| ≥ 2εn. Therefore, G[N(vj, uj)] is ( %

4ε2
, d)-dense and,

hence, there are Ω(nk−1) cliques Kk−1 in the joint neighbourhood of uj and vj.
Summarising, we have shown that for any given distinct vertices v1, . . . , vk ∈ V there

exist d′′nk(k−1) collections of disjoint cliques K1, K2, . . . , Kk of order k − 1 with V (K1) =
{u2, . . . , uk} such that v1 +K1, v2 +K2, . . . , vk +Kk and u2 +K2, . . . , uk +Kk form copies
of Kk in G. In particular, u2 +K2, . . . , uk +Kk form a Kk-factor on

V (K1) ∪ V (K2) ∪ · · · ∪ V (Kk)

and v1 +K1, v2 +K2, . . . , vk +Kk form a Kk-factor on

V (K1) ∪ V (K2) ∪ · · · ∪ V (Kk) ∪ {v1, . . . , vk} .
In other words, such a collection K1, K2, . . . , Kk forms an absorber for the given vertices
v1, . . . , vk and for any given v1, . . . , vk there are at least d′′nk(k−1) such absorbers. The
theorem then follows by a standard application of the absorption method and we omit the
details.

The degree condition of Theorem A.1 is approximately best possible, as the example
following Theorem 1.2 shows. It seems plausible that constructions of this kind (two cliques
of order roughly n/2 that share up to k − 2 vertices) lead to optimal lower bounds for the
minimum degree condition. Therefore, we put forward the following question.

Question A.2. Is it true that δ(G) ≥ n/2 +O(1) suffices in Theorem A.1?
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395–404.

[12] Fischer E., Variants of the Hajnal–Szemerédi theorem, J. Graph Theory, 31 (1999),
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