ON PERFECT MATCHINGS IN UNIFORM HYPERGRAPHS WITH LARGE MINIMUM VERTEX DEGREE

HIỆP HÀN, YURY PERSON, AND MATHIAS SCHACHT

ABSTRACT. We study sufficient ℓ -degree $(1 \leq \ell < k)$ conditions for the appearance of perfect and nearly perfect matchings in k-uniform hypergraphs. In particular, we obtain a minimum vertex degree condition $(\ell = 1)$ for 3-uniform hypergraphs, which is approximately tight, by showing that every 3-uniform hypergraph on n vertices with minimum vertex degree at least $(5/9 + o(1)) \binom{n}{2}$ contains a perfect matching.

1. NOTATIONS AND RESULTS

Our notation follows [2]. We refer to the set $\{1, 2, \ldots, n\}$ with $n \in \mathbb{N}$ by [n]. For a set M and an integer k, we denote by $\binom{M}{k} = \{A \subseteq M : |A| = k\}$ the set of all k-element subsets of M and we denote by $(M)_k = \{(v_1, v_2, \ldots, v_k) : \{v_1, \ldots, v_k\} \in \binom{M}{k}\}$ the set of all ordered k-tuples of M. We often write $v_1v_2 \ldots v_k \in \binom{M}{k}$ instead of $\{v_1, v_2, \ldots, v_k\} \in \binom{M}{k}$. Throughout this paper \mathcal{H} denotes a k-uniform hypergraph, that is a pair $\mathcal{H} = (V(\mathcal{H}), E(\mathcal{H}))$ with vertex set $V(\mathcal{H})$ and an edge set $E(\mathcal{H}) \subseteq \binom{V(\mathcal{H})}{k}$. Often we write V instead of $V(\mathcal{H})$ and identify \mathcal{H} with its edge set, i.e., $\mathcal{H} \subseteq \binom{V}{k}$. A k-uniform hypergraph is called k-partite if there is a partition of the vertex set V into k sets $V = V_1 \cup \ldots \cup V_k$ such that every edge intersects every V_i in exactly one vertex.

For a k-uniform hypergraph \mathcal{H} and a set $T = \{v_1, \ldots, v_\ell\} \in \binom{V(\mathcal{H})}{\ell}$ let $\deg(T) = \deg(v_1 \ldots v_\ell)$ denote the number of edges containing $v_1 \ldots v_\ell$ and let $\delta_\ell(\mathcal{H})$ be the minimum ℓ -degree of \mathcal{H} , i.e., the minimum of $\deg(v_1 \ldots v_\ell)$ over all ℓ -element sets of vertices in \mathcal{H} . Moreover, by a matching of \mathcal{H} we mean a subset $M \subseteq \mathcal{H}$ of pairwise disjoint edges of \mathcal{H} and a perfect matching is a matching covering all vertices of \mathcal{H} . Of course, such a matching can only exist, if n = |V| is a multiple of k, which we indicate by $n \in k\mathbb{Z}$.

Definition 1. For all integers $k > \ell \ge 1$ and $n \in k\mathbb{Z}$ let $t(k, \ell, n)$ denote the minimum t such that every k-uniform hypergraph \mathcal{H} on n vertices satisfying $\delta_{\ell}(\mathcal{H}) \ge t$ contains a perfect matching.

For k = 2, in case of graphs, it is easily seen that t(2, 1, n) = n/2. Indeed, the complete bipartite graph $K_{n/2+1,n/2-1}$ serves as lower bound and the upper bound is an obvious consequence of Dirac's theorem on the existence of Hamilton cycles.

For $k \ge 3$, $\ell = k - 1$ and $n \in k\mathbb{Z}$ the number t(k, k - 1, n) was investigated by Kühn and Osthus [5] and Rödl et al. [12, 10, 9]. In particular, Rödl, Ruciński, and

The first author was supported by DFG within the research training group "Methods for Discrete Structures".

The second author was supported by GIF grant no. I-889-182.6/2005.

Szemerédi[10] determined t(k,k-1,n) for arbitrary $k\geq 3$ and sufficiently large n and showed

$$t(k, k-1, n) = n/2 - k + c_{k,n}, \qquad (1)$$

where $c_{k,n} \in \{3/2, 2, 5/2, 3\}$ depending on the parities of n and k. Another notable phenomenon is that nearly perfect matchings, i.e., matchings covering all but a constant number, say rk (for $r \ge k-2$), of the vertices, already appear at minimum (k-1)-degree n/k - r (see [12]). Furthermore, for $k \ge 4$ and $\lceil k/2 \rceil \le \ell \le k-1$, Pikhurko [8] showed

$$\frac{1}{2} \binom{n}{k-\ell} - O(n^{k-\ell-1}) \le t(k,\ell,n) \le \frac{1}{2} \binom{n}{k-\ell} + O(n^{k-\ell-1/2}\sqrt{\log n}).$$
(2)

Observe from (1) and (2) that $t(k, \ell, n)$ is roughly $\binom{n}{k-\ell}/2$ for $\lceil k/2 \rceil \le \ell \le k-1$. However, the approach in [8] breaks down for $1 \le \ell < k/2$ and for this regime no sharp bounds are known so far. For example, for $\ell = 1$ it was asked by Kühn and Osthus [5] to determine t(k, 1, n). The best known upper bound we are aware of is due to Daykin and Häggkvist [3], who showed $t(k, 1, n) \le \frac{k-1}{k} \binom{n-1}{k-1} + 1/k$.

In the first part of this paper we will provide general upper bounds on the minimum ℓ -degree which ensure the existence of perfect and nearly perfect matchings in k-uniform hypergraphs. First, we show an upper bound for the existence of nearly perfect matchings in k-uniform, k-partite hypergraphs. Here the minimum ℓ -degree $\delta_{\ell}(\mathcal{H})$ of a k-uniform, k-partite hypergraph with vertex partition $V_1 \cup \ldots \cup V_k$ is min deg $(v_{i_1}, \ldots, v_{i_\ell})$, where the minimum runs over all index sets $\{i_1, \ldots, i_\ell\} \in {[k] \choose \ell}$ and all ℓ -sets of vertices $v_{i_j} \in V_{i_j}$ for $j = 1, \ldots, \ell$.

Theorem 2. Let \mathcal{H} be a k-uniform, k-partite hypergraph with partition classes V_1, \ldots, V_k each of size $|V_i| = n$ and suppose the minimum ℓ -degree of \mathcal{H} is

$$\delta_{\ell}(\mathcal{H}) > \frac{k-\ell}{k} n^{k-\ell} + k n^{k-\ell-1}.$$

Then \mathcal{H} contains a matching covering all but $(\ell - 1)k$ vertices. In particular, for $\ell = 1$ the matching is perfect.

Using this we obtain the following bound for the existence of (nearly) perfect matchings for general k-uniform hypergraphs.

Theorem 3. For all integers k > l > 0 there is an n_0 such that for all $n > n_0$ the following holds: Suppose \mathcal{H} is a k-uniform hypergraph on $n > n_0$ vertices, $n \in k\mathbb{Z}$ with minimum l-degree

$$\delta_{\ell}(\mathcal{H}) \ge \frac{k-\ell}{k} \binom{n}{k-\ell} + k^{k+1} (\ln n)^{1/2} n^{k-\ell-1/2},$$

then \mathcal{H} contains a matching covering all but $(\ell - 1)k$ vertices. In particular, for $\ell = 1$ the matching is perfect.

For $\ell = 1$ slightly better bounds, compared to Theorems 2 and 3, were obtained by Daykin and Häggkvist [3]. Those authors showed that the minimum degree condition $\delta_1(\mathcal{H}) > \frac{k-1}{k}(n^{k-1}-1)$ yields perfect matchings in the partite case and $\delta_1(\mathcal{H}) > \frac{k-1}{k}(\binom{n-1}{k-1}-1)$ yields perfect matchings in the general case.

Theorem 3 together with the absorbing technique, developed by Rödl, Ruciński, and Szemerédi, yields the following theorem about the existence of perfect matchings in k-uniform hypergraphs.

Theorem 4. For all $\gamma > 0$ and all integers $k > \ell > 0$ there is a n_0 such that for all $n > n_0$, $n \in k\mathbb{Z}$ the following holds: Suppose \mathcal{H} is a k-uniform hypergraph on $n > n_0$ vertices with minimum degree

$$\delta_{\ell}(\mathcal{H}) \ge \left(\max\left\{\frac{1}{2}, \frac{k-\ell}{k}\right\} + \gamma \right) \binom{n}{k-\ell}$$

then \mathcal{H} contains a perfect matching.

In other words the theorem says

$$t(k,\ell,n) \le \left(\max\left\{\frac{1}{2},\frac{(k-\ell)}{k}\right\} + o(1) \right) \binom{n}{k-\ell}$$

for any $k > \ell > 0$. For $\ell \ge k/2$ the maximum is 1/2 and this bound, which is best possible up to the error term o(1), was already shown by Pikhurko [8]. For $\ell < k/2$, however, there is a gap between currently known upper and lower bound, since the best lower bounds follow from well known constructions (see, e.g., [3, 5, 8, 10]).

Fact 5. For all k > 0 and all $n \in k\mathbb{Z}$ there are k-uniform hypergraphs \mathcal{H}_1 and \mathcal{H}_2 on n vertices with minimum ℓ -degrees $(0 < \ell < k)$

$$\delta_{\ell}(\mathcal{H}_1) = \binom{n-\ell}{k-\ell} - \binom{\frac{(k-1)n}{k} - \ell + 1}{k-\ell} = \left(1 - \left(\frac{k-1}{k}\right)^{k-\ell} - o(1)\right) \binom{n}{k-\ell}$$
$$\delta_{\ell}(\mathcal{H}_2) = \frac{1}{2}\binom{n}{k-\ell} + O(n^{k-\ell-1})$$

which do not contain a perfect matching.

Proof. In \mathcal{H}_1 we split the vertex set into sets A and B of size $|A| = \frac{n}{k} - 1$ and $|B| = \frac{(k-1)}{k}n + 1$ and take as edges of \mathcal{H}_1 all those k-tuples intersecting A in at least one vertex. It is easily seen that $\delta_{\ell}(\mathcal{H}_1) = \binom{n-\ell}{k-\ell} - \binom{(k-1)n/k-\ell+1}{k-\ell}$. However, since every edge of a matching covers at least one vertex in A and $|A| = \frac{n}{k} - 1$ there cannot exist a perfect matching.

For the second hypergraph \mathcal{H}_2 we split the vertex set into sets A and B such that |A| is the maximal odd integer which does not exceed n/2. Further we take all edges intersecting A in a even number of vertices. Then, due to parity, \mathcal{H}_2 does not contain a perfect matching and the minimum ℓ -degree is $\frac{1}{2} \binom{n}{k-\ell} + O(n^{k-\ell-1})$. \Box

We believe that for small ℓ (compared to k) the lower bound given by \mathcal{H}_1 in Fact 5 is the right one. Indeed, the main result of this paper, justifies this for the case k = 3 and $\ell = 1$. Note that in this case $\delta_{\ell}(\mathcal{H}_1) = (5/9 - o(1))\binom{n}{2}$.

Theorem 6 (Main result). For all $\gamma > 0$ there is an n_0 such that for all $n > n_0$, $n \in 3\mathbb{Z}$ the following holds: Suppose \mathcal{H} is a 3-uniform hypergraph on n vertices with

$$\delta_1(\mathcal{H}) \ge \left(\frac{5}{9} + \gamma\right) \binom{n}{2}.$$

Then \mathcal{H} contains a perfect matching.

In view of Fact 5, Theorem 6 is, up to the error term $\gamma \binom{n}{2}$, best possible and this answers the question of Kühn and Osthus [5] asymptotically in the case k = 3. Combining Theorem 6 with some previous results we give a classification of the existence of perfect and nearly perfect matchings in 3-uniform hypergraphs in terms of both minimum degrees δ_1 and δ_2 in Section 5.

Organisation. In Section 2 we introduce a few auxiliary results. In particular, we prove the Absorbing Lemma (Lemma 10). Section 3 contains the proofs of the upper bounds for k-uniform hypergraphs, i.e., Theorem 2, Theorem 3, and Theorem 4. Section 4 contains the proof of our main result, Theorem 6, and in Section 5 we study the interplay of δ_1 and δ_2 in view of perfect and nearly perfect matchings in 3-uniform hypergraphs. We close with a few open problems in Section 6.

2. Preliminary Results

2.1. **Partitioning uniform hypergraphs.** In this section we show, by a simple probabilistic argument, that there exists a partition of the vertex set of a hypergraph which distributes the vertex degrees fairly (similar results appeared in [5, 8]). We start with a folklore observation.

Proposition 7. Let \mathcal{H} be a k-uniform hypergraph on n vertices. Then there is a decomposition of the edge set of \mathcal{H} into kn^{k-1} pairwise edge disjoint matchings.

Proof. Consider the auxiliary graph G on the vertex set $E(\mathcal{H})$ in which $A, B \in E(\mathcal{H})$ are connected if and only if A and B have nonempty intersection. Then the maximum degree of G is at most $k\binom{n-1}{k-1}$. Thus G has a proper colouring using $k\binom{n}{k-1}$ colours. And since the colour classes correspond to pairwise edge disjoint matchings we obtain the proposition.

Next, let $V = V_1 \cup V_2 \cup \ldots \cup V_k$ be an equipartition of the vertex set of a k-uniform hypergraph \mathcal{H} , i.e., $|V_i| = |V_j|$ for all $i, j \in [k]$. For a set $T \subset V$ we say T is crossing (with respect to V_1, \ldots, V_k) if for all $i \in [k]$ we have $|T \cap V_i| \leq 1$. For a crossing ℓ -set $T = \{v_1, \ldots, v_\ell\}$ let deg' $(T) = |\{E \in \mathcal{H} \colon T \subset E \text{ and } E \text{ is crossing}\}|$ denote its k-partite degree.

Lemma 8. For all $k > \ell \ge 1$ there is a n_0 such that for all $n > n_0$, $n \in k\mathbb{Z}$ and every k-uniform hypergraph \mathcal{H} on n vertices there is an equipartition of $V(\mathcal{H}) = V_1 \cup \ldots \cup V_k$ satisfying

$$\deg'(T) \ge \frac{(k-\ell)!}{k^{k-\ell}} \deg(T) - 2(k\ln n)^{1/2} n^{k-\ell-1/2}$$

for each crossing ℓ -set $T \in \binom{V}{\ell}$.

A similar lemma appeared in [8, Corollary 2], for completeness we include a short elementary proof.

Proof. First set $m = k - \ell$ and let $V = U_1 \cup \ldots \cup U_k$ be a random partition of V, where each vertex appears in vertex class U_j $(j = 1, \ldots, k)$ independently with probability 1/k. For a fixed ℓ -set $T = \{v_1, \ldots, v_\ell\}$ let $\mathcal{L} = \mathcal{L}(T)$ denote the link hypergraph of T which consists of the vertex set $V(\mathcal{H})$ and the edge set $\mathcal{L} = \{E \in \binom{V}{m}: E \cup T \in \mathcal{H}\}$. Then \mathcal{L} is an m-uniform hypergraph with $\deg(v_1, \ldots, v_\ell)$ edges. Using Proposition 7 we decompose the edge set of \mathcal{L} into at most $i_0 \leq mn^{m-1}$ nonempty pairwise edge disjoint matchings which we denote by M_1, \ldots, M_{i_0} .

For every $i \in [i_0]$, every edge $E \in M_i$, and every index set $J \in {\binom{[k]}{m}}$, we say E survived (in the partition $\bigcup_{j \in J} U_j$), if $|E \cap U_j| = 1$ for all $j \in J$. Since the partition U_1, \ldots, U_k was chosen randomly we have for fixed $J \in {\binom{[k]}{m}}$

$$\mathbb{P}\left[E \text{ survived}\right] = \frac{m!}{k^m}.$$

Thus, for $X_{i,J} = X_{i,J}(T) = |\{E \in M_i : E \text{ survived}\}|$ we have

$$\mu_{i,J} = \mu_{i,J}(T) = \mathbb{E}[X_{i,J}] = \frac{m!}{k^m} |M_i|.$$

Now call a matching M_i bad (with respect to the chosen partition U_1, \ldots, U_k) if there exists a set $J \in {[k] \choose m}$ such that

$$X_{i,J} \le \left(1 - \left(\frac{(4k-2)\ln n}{\mu_{i,J}}\right)^{1/2}\right) \mu_{i,J}$$

and call T a bad set (with respect to U_1, \ldots, U_k) if there is at least one bad $M_i = M_i(T)$. Otherwise call T a good set. For a fixed M_i the events "E survived" with $E \in M_i$ are jointly independent, hence we can apply Chernoff's inequality (see, e.g., [1]) and we obtain

$$\mathbb{P}[M_i \text{ is bad}] \le {k \choose m} \exp(-(2k-1)\ln n) = {k \choose m} n^{-2k+1}$$

Summing over all matchings M_i and recalling $i_0 \leq mn^{m-1}$ and $m \leq k-1$ yields

$$\mathbb{P}$$
 [there is at least one bad M_i] $\leq i_0 {k \choose m} n^{-2k+1} \leq n^{-k}$

and summing over all ℓ -sets T we obtain

$$\mathbb{P}$$
 [there is at least one bad T] $\leq n^{\ell} n^{-k} \leq n^{-1}$.

Moreover, Chernoff's inequality yields

$$\mathbb{P}\left[\exists k_0 \in [k]: |U_{k_0}| > n/k + n^{1/2} (\ln n)^{1/4}/k\right] \le k \exp(-(\ln n)^{1/2}/(3k)) = o(1).$$

Thus, with positive probability there is a partition U_1, \ldots, U_k such that all ℓ -sets T are good and such that

$$|U_j| \le n/k + n^{1/2} (\ln n)^{1/4}/k$$
 for every $j \in [k]$.

Consequently, by redistributing at most $n^{1/2}(\ln n)^{1/4}$ vertices of the partition U_1, \ldots, U_k we obtain an equipartition partition $V = V_1 \dot{\cup} \ldots \dot{\cup} V_k$ with

$$|V_j| = n/k$$
 and $|U_j \setminus V_j| \le n^{1/2} (\ln n)^{1/4}/k$ for every $j \in [k]$.

To verify that the partition V_1, \ldots, V_k satisfies the claim of the lemma note that for a crossing ℓ set T and the *m*-set $J = \{j \in [k]: T \cap V_j = \emptyset\}$ we have

$$\deg'(T) \ge \sum_{i \in [i_0]} \left(1 - \left(\frac{(4k-2)\ln n}{\mu_{i,J}(T)} \right)^{1/2} \right) \mu_{i,J}(T) - m \frac{n^{1/2}(\ln n)^{1/4}}{k} n^{m-1}$$
$$\ge \sum_{i \in [i_0]} \mu_{i,J}(T) - ((4k-2)\ln n)^{1/2} \sum_{i \in [i_0]} (\mu_{i,J}(T))^{1/2} - (\ln n)^{1/4} n^{m-1/2}$$
$$= \frac{m!}{k^m} \deg(T) - ((4k-2)\ln n)^{1/2} \sum_{i \in [i_0]} (\mu_{i,J}(T))^{1/2} - (\ln n)^{1/4} n^{m-1/2}.$$

The Cauchy-Schwarz inequality then gives

$$\sum_{i \in [i_0]} (\mu_{i,J}(T))^{1/2} \le \left(i_0 \sum_{i \in [i_0]} \mu_{i,J}(T) \right)^{1/2} \le \left(mn^{m-1} \binom{n}{m} \right)^{1/2} \le n^{m-1/2}.$$

This implies that for the partition V_1, \ldots, V_k every crossing ℓ -set T satisfies

$$\deg'(T) \ge \frac{m!}{k^m} \deg(T) - ((4k-2)^{1/2} + (\ln n)^{-1/4})(\ln n)^{1/2} n^{m-1/2}$$
$$\ge \frac{m!}{k^m} \deg(T) - 2(k\ln n)^{1/2} n^{m-1/2} ,$$

which proves the lemma.

2.2. Absorbing Lemma. In this section we prove an *absorbing lemma*, Lemma 10. The idea was introduced by Rödl, Ruciński, and Szemerédi, e.g., in [11] (see also [10]). The Lemma asserts the existence of a small and powerful matching in a hypergraph with high minimum degree which, by "absorbing" vertices, creates a perfect matching provided a nearly perfect matching was founded.

First consider the following simple proposition

Proposition 9. Let \mathcal{H} be a k-uniform hypergraph on n vertices. For all $x \in [0,1]$ and all integers $m \leq \ell$ we have, if

$$\delta_{\ell}(\mathcal{H}) \ge x \binom{n}{k-\ell}, \quad then \quad \delta_m(\mathcal{H}) \ge x \binom{n}{k-m} - O(n^{k-m-1}),$$

where the constant in the error term only depends on k, ℓ , and m.

Proof. Consider a arbitrary *m*-set $T = \{v_1, \ldots, v_m\} \in {V(\mathcal{H}) \choose m}$. Then the condition on $\delta_{\ell}(\mathcal{H})$ implies that T is contained in at least

$$\binom{k-m}{\ell-m}^{-1} \sum_{v_{m+1},\dots,v_{\ell} \in \binom{V \setminus T}{\ell-m}} \deg(v_1,\dots,v_{\ell}) \geq \binom{k-m}{\ell-m}^{-1} \binom{n-m}{\ell-m} x \binom{n}{k-\ell} \\ \geq x \binom{n}{k-m} - O(n^{k-m-1})$$

edges, and the proposition follows.

Lemma 10 (Absorbing lemma). For all $\gamma > 0$ and integers $k > \ell > 0$ there is an n_0 such that for all $n > n_0$ the following holds: Suppose \mathcal{H} is a k-uniform hypergraph on n vertices with minimum ℓ -degree $\delta_{\ell}(\mathcal{H}) \ge (1/2 + 2\gamma) \binom{n}{k-\ell}$, then there exists a matching M in \mathcal{H} of size $|M| \le \gamma^k n/k$ such that for every set $W \subset V \setminus V(M)$ of size at most $\gamma^{2k}n \ge |W| \in k\mathbb{Z}$ there exists a matching covering exactly the vertices in $V(M) \cup W$.

Proof. Let \mathcal{H} be a k-uniform hypergraph with $\delta_{\ell}(\mathcal{H}) \geq (1/2 + 2\gamma) \binom{n}{k-\ell}$. From Proposition 9 we know $\delta_1(\mathcal{H}) \geq (\frac{1}{2} + \gamma) \binom{n}{k-1}$ (for all large n) and it suffices to prove the lemma for $\ell = 1$.

Throughout the proof we assume (without loss of generality) that $\gamma \leq 1/10$ and let n_0 be chosen sufficiently large. Further set m = k(k-1) and call a set $A \in \binom{V}{m}$ of size m an **absorbing** m-set for $T = \{v_1, \ldots, v_k\} \in \binom{V}{k}$ if A spans a matching of size k-1 and $A \cup T$ spans a matching of size k, i.e., $\mathcal{H}[A]$ and $\mathcal{H}[A \cup T]$ both contain a perfect matching.

Claim 11. For every $T = \{v_1, \ldots, v_k\} \in {\binom{V}{k}}$ there are at least $\gamma^{k-1} {\binom{n}{k-1}}^k/2$ absorbing m-sets for T.

Proof. Let $T = \{v_1, \ldots, v_k\}$ be fixed. Since n_0 was chosen large enough there are at most $(k-1)\binom{n}{k-2} \leq \gamma\binom{n}{k-1}$ edges which contain v_1 and v_j for some $j \in \{2, \ldots, k\}$. Due to the minimum degree of \mathcal{H} there are at least $\binom{n}{k-1}/2$ edges containing v_1 but none of the vertices v_2, \ldots, v_k . We fix one such edge $\{v_1, u_2, \ldots, u_k\}$ and set $U_1 = \{u_2, \ldots, u_k\}$. For each $i = 2, 3, \ldots, k$ and each pair u_i, v_i suppose we succeed to choose a set U_i such that U_i is disjoint to $W_{i-1} = \bigcup_{j \in [i-1]} U_j \cup T$ and both $U_i \cup \{u_i\}$ and $U_i \cup \{v_i\}$ are edges in \mathcal{H} . Then, for a fixed $i = 2, \ldots, k$ we call such a choice U_i good, motivated by $W_k = \bigcup_{i \in [k]} U_i$ being an absorbing m-set for T.

Note that in each step $2 \leq i \leq k$ there are $k + (i-1)(k-1) \leq k^2$ vertices in W_{i-1} , thus the number of edges intersecting u_i (or w_i respectively) and at least one other vertex in W_{i-1} is at most $k^2 \binom{n}{k-2}$. So the restriction on the minimum degree implies that for each $i \in \{2, \ldots, k\}$ there are at least $2\gamma \binom{n}{k-1} - 2k^2 \binom{n}{k-2} \geq \gamma \binom{n}{k-1}$ choices for U_i and in total we obtain $\gamma^{k-1} \binom{n}{k-1}^k/2$ absorbing *m*-sets for *T*. \Box

Continuing the proof of the Lemma 10, let $\mathcal{L}(T)$ denote the family of all those *m*-sets absorbing *T*. From Claim 11 we know $|\mathcal{L}(T)| \ge \gamma^{k-1} {n \choose k-1}^k/2$.

Now, choose a family \mathcal{F} of *m*-sets by selecting each of the $\binom{n}{m}$ possible *m*-sets independently with probability

$$p = \gamma^k n / \Delta \quad \text{with} \quad \Delta = 2 \binom{n}{k-1}^k \ge 2n \binom{n}{m-1} \ge 2m \binom{n}{m}.$$
 (3)

Then, by Chernoff's bound (see, e.g., [1]), with probability 1 - o(1), as $n \to \infty$ the family \mathcal{F} fulfills the following properties:

$$|\mathcal{F}| \le \gamma^k n/m \tag{4}$$

and

$$|\mathcal{L}(T) \cap \mathcal{F}| \ge \gamma^{2k-1} n/5 \quad \forall T \in \binom{V}{k}.$$
 (5)

Furthermore, using (3) we can bound the expected number of intersecting *m*-sets by

$$\binom{n}{m} \times m \times \binom{n}{m-1} \times p^2 \leq \gamma^{2k} n/4.$$

Thus, using Markov's bound, we derive that with probability at least 3/4

 \mathcal{F} contains at most $\gamma^{2k} n$ intersecting pairs. (6)

Hence, with positive probability the family \mathcal{F} has all the properties stated in (4), (5) and (6). By deleting all the intersecting and non-absorbing *m*-sets in such a family \mathcal{F} we get a subfamily \mathcal{F}' consisting of pairwise disjoint absorbing *m*-sets which, due to $\gamma \leq 1/10$, satisfies

$$|\mathcal{L}(T) \cap \mathcal{F}'| \ge \gamma^{2k-1} n/5 - \gamma^{2k} n \ge \gamma^{2k} n \quad \forall T \in \binom{V}{m}$$

So, since \mathcal{F}' consists of pairwise disjoint absorbing *m*-sets, $\mathcal{H}[V(\mathcal{F}')]$ contains a perfect matching *M* of size at most $\gamma^k n/k$. Further, for any subset $W \subset V \setminus V(M)$ of size $\gamma^{2k}n \geq |W| \in k\mathbb{Z}$ we can partition *W* into at most $\gamma^{2k}n/k$ sets of size *k* and successively absorb them using a different absorbing *m*-set each time. Thus there exists a matching covering exactly the vertices in $V(\mathcal{F}') \cup W$.

As a consequence we obtain the following.

Corollary 12. For all $\gamma > 0$ and $k > \ell \ge 1$ there is an n_0 such that for all $n_0 \le n \in k\mathbb{Z}$ the following holds: If \mathcal{H} is a k-uniform hypergraph on n vertices with minimum ℓ -degree $\delta_{\ell}(\mathcal{H}) \ge (1/2 + 2\gamma) \binom{n}{k-\ell}$ and for any set $U \subset V$ of size $|U| \le \gamma^k n$ the remaining hypergraph $\mathcal{H}[V \setminus U]$ has a matching covering all but at most $\gamma^{2k}n$ vertices. Then \mathcal{H} has a perfect matching.

Proof. Let γ , k, and ℓ be given. Then, applying Lemma 10 yields n_0 . Now let \mathcal{H} be a k-uniform hypergraph on $n \geq n_0$ vertices with minimum ℓ -degree $\delta_{\ell}(\mathcal{H}) \geq (1/2+2\gamma)\binom{n}{k-\ell}$. Then using Lemma 10 we can remove a matching M of size $\gamma^k n/k$ from \mathcal{H} . Then, according to the assumption, the remaining hypergraph $\mathcal{H}[V \setminus V(M)]$ contains a matching M' such that, W, the set of the uncovered vertices has size at most $\gamma^{2k}n \geq |W| \in k\mathbb{Z}$. But due to Lemma 10 there is a matching covering exactly those vertices in $V(M) \cup W$, which together with M' forms a perfect matching of \mathcal{H} .

3. General upper bounds for k-uniform hypergraphs

In this section we prove Theorems 2, 3, and 4. For this we verify general upper bounds on the minimum ℓ -degree, which guarantee the existence of a perfect matching and nearly perfect matching in a k-uniform hypergraphs \mathcal{H} .

Let \mathcal{H} be a k-uniform, k-partite hypergraph on the partition classes V_0, \ldots, V_{k-1} and M a matching in \mathcal{H} . For an edge $E \in \mathcal{H}$ we denote the unique vertex in $E \cap V_i$ by $v_i(E)$ and for notational convenience below we consider all additions in $\mathbb{Z}/k\mathbb{Z}$. Further let $T_i = (v_i, v_{i+1}, \ldots, v_{i+\ell-1})$ with $i \in \mathbb{Z}/k\mathbb{Z}$ and $v_j \in V_j$ for all $j \in \{i, \ldots, i+\ell-1\}$ and let $\mathcal{E} = (E_0, E_1, \ldots, E_{k-\ell-1}) \in [M]_{k-\ell}$ be a $(k-\ell)$ -tuple of matching edges. We say T_i and \mathcal{E} are **adjacent** if $\{v_i, \ldots, v_{i+\ell-1}, v_{i+\ell}(E_0), \ldots, v_{i+k-1}(E_{k-\ell-1})\} \in \mathcal{H}$. The set $N(T_i, (E_0, \ldots, E_{k-\ell-1})) = \{v_{i+\ell}(E_0), \ldots, v_{i+k-1}(E_{k-\ell-1})\}$ is called the **neighbour** of T with respect to \mathcal{E} and by $\deg(T_i, [M]_{k-\ell})$ we denote the number of $(k - \ell)$ -tuples $\mathcal{E} \in [M]_{k-\ell}$ the tuple T_i is adjacent to.

Proof of Theorem 2. For the proof keep in mind that all additions are considered in $\mathbb{Z}/k\mathbb{Z}$. Take M to be a largest matching in \mathcal{H} . By adding arbitrary k-tuples if necessary, without loss of generality we may assume $|M| = n - \ell$. Then there are ℓk unmatched vertices which we divide into k pairwise disjoint sets T_0, \ldots, T_{k-1} with $T_i = \{v_i, v_{i+1} \ldots, v_{i+\ell-1}\}$ where $v_j \in V_j$.

For an arbitrary edge $E \in \mathcal{H}$ say E is M-non-crossing if there is an $F \in M$ such that $|E \cap F| \geq 2$. Then, for a fixed $i = 1, 2, \ldots, k-1$, the number of M-non-crossing edges E with $T_i \subset E$ and $T_j \cap E = \emptyset$ for all $j \neq i$ is at most $kn^{k-\ell-1}$. Hence, the restriction on the minimum ℓ -degree implies

$$\deg(T_i, [M]_{k-\ell}) \ge \delta_\ell(\mathcal{H}) - kn^{k-\ell-1} > \frac{k-\ell}{k}n^{k-\ell}$$

And since this is true for each $T_i, i \in \{0, ..., k-1\}$ the total degree is

$$\deg(T_0 \dots T_{k-1}, [M]_{k-\ell}) := \sum_{i \in \{0, \dots, k-1\}} \deg(T_i, [M]_{k-\ell}) > (k-\ell)n^{k-\ell}.$$

Then, by averaging, we conclude that there must be a $(k - \ell)$ -tuple of matching edges $(E_0, \ldots, E_{k-\ell-1})$ which is adjacent to at least $(k - \ell + 1)$ tuples T_i . And without loss of generality let those T_i be $T_0, \ldots, T_{k-\ell}$. From the definition note

that $N(T_i, (E_0, \ldots, E_{k-\ell-1})) = \{v_{i+\ell}(E_0), \ldots, v_{i+k-1}(E_{k-\ell-1})\}$, the neighbours of those T_i with respect to $(E_0, \ldots, E_{k-\ell-1})$, are pairwise disjoint. And since each pair T_i and $N(T_i, (E_0, \ldots, E_{k-\ell-1}))$ form an edge in \mathcal{H} the $(k-\ell+1)$ tuples T_i and their neighbours $N(T_i, (E_0, \ldots, E_{k-\ell-1}))$ form a matching of size $(k-\ell+1)$ in \mathcal{H} . Replacing $E_0, \ldots, E_{k-\ell-1}$ by this matching we obtain a larger matching. \Box

Proof of Theorem 3. Let n_0 be as asserted by Lemma 8 for given k and ℓ . Next let \mathcal{H} be a k-uniform hypergraph on $n > n_0$ vertices, $n \in k\mathbb{Z}$, with minimum ℓ -degree

$$\delta_{\ell}(\mathcal{H}) \ge \frac{k-\ell}{k} \binom{n}{k-\ell} + k^{k+1} (\ln n)^{1/2} n^{k-\ell-1/2}.$$

According to Lemma 8 there is a partition of $V = V(\mathcal{H})$ into k partition classes $V = V_0 \dot{\cup} \dots \dot{\cup} V_{k-1}$ such that $|V_i| = |V_j| = n/k =: m$ for all i, j and every crossing ℓ -set T satisfies

$$\deg'(T) \ge \frac{(k-\ell)!}{k^{k-\ell}} \delta_{\ell}(\mathcal{H}) - 2(k\ln n)^{1/2} n^{k-\ell-1/2}.$$

Using $(m)_{k-\ell} \ge m^{k-\ell} - m^{k-\ell-1} \sum_{i \in [k-\ell]} i$ a simple calculation yields

$$\deg'(T) \ge \frac{k-\ell}{k}m^{k-\ell} + km^{k-\ell-1}$$

for all crossing ℓ -sets T. By Theorem 2 this ensures a matching covering all but $(\ell - 1)k$ vertices.

Proof of Theorem 4. Let $\gamma > 0$ and integers $k > \ell > 0$ be given. Applying Corollary 12 with $\gamma_1 = \gamma/(4k)$ and k, ℓ we obtain n'_0 . Applying Theorem 3 with the same k and ℓ we obtain n''_0 . Set $n_0 = \max\{n'_0, 2n''_0, 4k^{4k}/\gamma^2\}$ and let \mathcal{H} be a k-uniform hypergraph on $k\mathbb{Z} \ni n > n_0$ vertices with minimum ℓ -degree

$$\delta_{\ell}(\mathcal{H}) \ge \left(\max\left\{\frac{1}{2}, \frac{k-\ell}{k}\right\} + \gamma\right) \binom{n}{k-\ell}.$$

We want to apply Corollary 12 and pick a set U of size $|U| \leq \gamma_1^k n$. Then the remaining graph $\mathcal{H}_U = \mathcal{H}[V \setminus U]$ has minimum degree

$$\delta_{\ell}(\mathcal{H}_U) \ge \delta_{\ell}(\mathcal{H}) - \gamma_1^k n \binom{n}{k-\ell-1} \ge \left(\max\left\{\frac{1}{2}, \frac{k-\ell}{k}\right\} + \frac{\gamma}{2} \right) \binom{n}{k-\ell}$$

According to Theorem 3 there is a matching in \mathcal{H}_U covering all but $(\ell - 1)k \leq \gamma_1^{2k}n$ vertices. Thus, by Corollary 12, \mathcal{H} contains a perfect matching.

Note that according to Fact 5 for $\ell \geq k/2$ the Theorem 4 is best possible up to the constant γ .

4. Asymptotic bound for 3-uniform hypergraphs

In this section we prove Theorem 6. The major part is devoted to proving the existence of a matching covering (1-o(1))n vertices in a 3-uniform hypergraph with sufficiently high minimum degree. Together with Corollary 12 it will immediately imply Theorem 6.

4.1. Auxiliary results.

Definition 13. Let M be a matching in a 3-uniform hypergraph \mathcal{H} . For a vertex $v \in V(\mathcal{H})$ we define the link graph of v with respect to the edges $E_1E_2 \ldots E_k \in \binom{M}{k}$ to be the graph $L_v(E_1 \ldots E_k)$ with the vertex set $\bigcup_{i \in [k]} E_i$ and the edge set

 $\{ab: \exists i, j \in [k], i \neq j \text{ such that } a \in E_i, b \in E_j \text{ and } vab \in \mathcal{H}\}.$

Observe that for a large matching M covering all but o(n) vertices of the hypergraph \mathcal{H} we have $e(L_v(M)) \approx \deg(v)$. We will study the link graphs $L_v(M)$ of the vertices $v \in V(\mathcal{H}) \setminus V(M)$ with respect to a largest matching M in \mathcal{H} . Our goal is to derive a contradiction by showing that either M can be enlarged or \mathcal{H} must have a rigid structure, which will violate the minimum degree condition of \mathcal{H} .

The following statements will be useful for the analysis of the link graph.

Fact 14. Let B be a bipartite graph on six vertices with the partition classes $E = \{e_1, e_2, e_3\}$ and $F = \{f_1, f_2, f_3\}$. Then the following holds:

- (1) if $e(B) \ge 7$ then B contains a perfect matching,
- (2) if e(B) = 6 then either B contains a perfect matching or is isomorphic to B_{033} (see Figure 1),
- (3) if e(B) = 5 then either B contains a perfect matching or B is isomorphic to a graph in $\{B_{023}, B_{113}\}$ (see Figure 1).

Proof. Suppose $\deg(e_1) \leq \deg(e_2) \leq \deg(e_3)$. Then from $e(B) \geq 7$ we infer $\deg(e_1) \geq 1, \deg(e_2) \geq 2$ and $\deg(e_3) \geq 3$, thus B contains a perfect matching.

For e(B) = 5 we consider two cases: $\deg(e_1) = 0$ and $\deg(e_1) = 1$. In the first case we have $\deg(e_2) = 2$ and $\deg(e_3) = 3$ and B is isomorphic to B_{023} . If $\deg(e_1) = 1$ then again we distinguish two cases. If $\deg(e_2) = 2$ then $\deg(e_3) = 2$ and B is either isomorphic to B_{023} or contains a perfect matching. Else $\deg(v_2) = 1$ and $\deg(v_3) = 3$ and in this case either B is isomorphic to B_{113} or contains a perfect matching.

Finally we consider e(B) = 6. Observe that adding one edge to B_{113} we obtain a graph with a perfect matching since one vertex class has the degree sequence 1, 2, 3. Adding an edge to B_{023} we see that the resulting graph contains a perfect matching unless it is isomorphic to B_{033} .

FIGURE 1. The critical graphs: the only balanced bipartite graphs on six vertices and six or five edges without a perfect matching.

We will also need the following result from extremal graph theory which follows from the work of Goodman in [4] (see also [7, 6]).

Theorem 15. For all $\varepsilon' > 0$ there is a $c = c(\varepsilon') > 0$ and $n_0 = n_0(\varepsilon')$ such that for all $n \ge n_0$ the following holds. Suppose G is a graph on n vertices which contains at least $(1/2 + \varepsilon') \binom{n}{2}$ edges. Then G contains cn^3 triangles.

The following theorem asserts the existence of a matching covering all but o(n) vertices.

Theorem 16. For all $\gamma > 0$ there is a n_0 such that for all $n > n_0$ the following holds. Suppose \mathcal{H} is a 3-uniform hypergraph on n vertices with minimum degree $\delta(\mathcal{H}) \geq (5/9 + 4\gamma) \binom{n}{2}$ then \mathcal{H} contains a matching leaving strictly less than γn vertices unmatched.

Proof. For a given γ define $\varepsilon = \gamma/150$. Applying Theorem 15 with $\varepsilon' = \min\{\gamma^2, \varepsilon\}$ we obtain c and n'_0 . Then choose $n_0 = \max\{2^{110}/\varepsilon^5, 2^{50}/c\varepsilon^4, n'_0/\varepsilon\}$.

Next let M be a matching of maximum size in \mathcal{H} and suppose $|M| = \lfloor (1-\gamma)n/3 \rfloor$. (Otherwise we can simply add arbitrary 3-tuples to M to guarantee equality, since we will show that M is not a maximum matching.) Let $X = V(\mathcal{H}) \setminus V(M)$ be the set of the uncovered vertices. Then from the restriction on the minimum degree we infer that the number of edges in the link graph of every vertex $v \in X$ with respect to M is

$$e(L_v(M)) \ge \deg_{\mathcal{H}}(v) - 3|M| - |X|(n-|X|) > \left(\frac{5}{9} + \gamma\right) \binom{n}{2}.$$
(7)

To derive a contradiction to (7) it is sufficient to show that there is a vertex $v \in X$ such that the pairs $EF \in \binom{M}{2}$ satisfying $e(L_v(EF)) \ge 6$ contribute at most $30\varepsilon n^2$ edges to $L_v(M)$ in total, since then we would obtain

$$e(L_v(M)) \le 5\binom{|M|}{2} + 30\varepsilon n^2 < \left(\frac{5}{9} + \gamma\right)\binom{n}{2}.$$
(8)

We first prove the following fact.

Fact 17. There are no $v_1v_2v_3 \in {X \choose 3}$ and $EF \in {M \choose 2}$ such that

- $L_{v_1}(EF) = L_{v_2}(EF) = L_{v_3}(EF)$ and
- $L_{v_1}(EF)$ contains a perfect matching,

Proof. Let $E = \{a, u, x\}$, $F = \{b, w, y\}$ and let the perfect matching in $L_{v_1}(EF)$ consist of the edges ab, uw and xy. Since these edges belong to the link graph of all $v_i, 1 \leq i \leq 3$, we have that $v_1ab, v_2uw, v_3xy \in \mathcal{H}$. Thus, one can replace E and F by these three edges to obtain a larger matching with contradiction to M being the maximum matching. \Box

Fact 18. Let $Y_1 \subset X$ consist of those vertices $v \in X$ for which there are at least εn^2 pairs $EF \in \binom{M}{2}$ such that $L_v(EF)$ contains a perfect matching. Then $|Y_1| \leq \varepsilon n$.

Proof. Consider the auxiliary bipartite graph G_1 with vertex classes Y_1 and $\binom{M}{2}$ and $\{v, EF\}$ being an edge if and only if $L_v(EF)$ contains a perfect matching. Then G_1 has at least $|Y_1| \varepsilon n^2$ edges and if $|Y_1|$ exceeds εn , by averaging, there is a pair $EF \in \binom{M}{2}$ such that $\deg_{G_1}(EF) \ge \varepsilon^2 n$. Since the number of bipartite graphs on six vertices having a perfect matching is at most 2^9 we conclude from the choice of n_0 that there are $\varepsilon^2 n/2^9 \ge 3$ vertices $v_1, v_2, v_3 \in Y_1$ such that $L_{v_1}(EF) = L_{v_2}(EF) = L_{v_3}(EF)$ and $L_{v_1}(EF)$ containing a perfect matching. This yields a contradiction to Fact 17.

Now remove Y_1 from X to obtain the set $X_1 \subset X$ of size $|X_1| \geq \gamma n/2$. Note that from Fact 14 each vertex $v \in X_1$ satisfies the following: for all but εn^2 pairs

 $EF \in \binom{M}{2}$ the link graph $L_v(EF)$ either contains at most four edges or is isomorphic to a graph in $\{B_{113}, B_{023}, B_{033}\}$.

- Next we introduce some further notations. For a vertex $v \in X$ let

 - $\mathcal{A}(v) = \{EF \in \binom{M}{2} : L_v(EF) \simeq B_{113}\},\$ $R(v) = \{E \in M: \text{ there are } \varepsilon n \text{ elements } F \in M \text{ with } EF \in \mathcal{A}(v)\}.\$ $\mathcal{B}(v) = \{EF \in \binom{M}{2} : L_v(EF) \simeq B \in \{B_{023}, B_{033}\}\}.\$

The remaining part of the proof is now devoted to showing

$$|\mathcal{B}(v)| \le 2\varepsilon n^2 \tag{9}$$

for some vertex $v \in X_1$. This with Fact 18 would imply

$$e(L_{v}(M)) \leq 5|\mathcal{A}(v)| + 6|\mathcal{B}(v)| + 9\varepsilon n^{2} + 4\left(\binom{|M|}{2} - |\mathcal{A}(v)| - |\mathcal{B}(v)|\right)$$
$$\leq 5\binom{|M|}{2} + 21\varepsilon n^{2}$$

thus (8) follows, and by contradiction, we obtain the theorem.

To this end we first argue that there are only few pairs in $\mathcal{B}(v)$ with both elements located in R(v).

Fact 19. There are no $v_1 \ldots v_5 \in \binom{X_1}{5}$ and $(E, F, G, H) \in (M)_4$ such that

- (1) $L_{v_i}(EFGH) = L_{v_j}(EFGH)$ for all $i, j \in [5]$,
- (2) $\{E, F\}, \{G, H\} \in \mathcal{A}(v_1), and \{F, G\} \in \mathcal{B}(v_1).$

Proof. It is sufficient to show that there is a matching of size five in $L_{v_i}(EFGH)$. With the five vertices $v_1 \dots v_5$ this yields a matching of size five in \mathcal{H} and using this as replacement of EFGH yields a contradiction to the maximality of M.

To this end note first that since $L_{v_1}(EF) \simeq B_{113}$ there is a vertex of degree three in each E and F which we denote by $e_1 \in E$ and $f_1 \in F$. The same holds for G and H and we denote the respective vertices by $g_1 \in G$ and $h_1 \in H$. Note that for a graph $B \in \{B_{023}, B_{033}\}$, B contains two vertices of degree at least two in each partition class. Consequently, since $L_{v_i}(FG) \simeq B \in \{B_{023}, B_{033}\}$ there is a vertex $f_2 \in F, f_2 \neq f_1$ which has at least two neighbours in G. Thus we can pick the edge f_2g_2 in $L_{v_1}(FG)$ such that $g_2 \neq g_1$. In the graph $L_{v_1}(EF)$ (and $L_{v_1}(GH)$, resp.), by using the vertices f_1, e_1 (and g_1, h_1 , resp.), we now find a matching of size two which does not cover the vertex f_2 and g_2 . This together yields a matching of size five in $L_{v_i}(EFGH)$.

Fact 20. Let $Y_2 \subset X_1$ consist of those vertices $v \in X_1$ such that there are at least εn^2 pairs $FG \in {\binom{R(v)}{2}}$ with $FG \in \mathcal{B}(v)$. Then $|Y_2| \leq \varepsilon n$.

Proof. Consider the auxiliary bipartite graph G_2 with vertex classes Y_2 and $(M)_4$ with $\{v, (E, F, G, H)\}$ being an edge if and only if $EF, GH \in \mathcal{A}(v)$ and $FG \in \mathcal{B}(v)$. Note that for each pair $FG \in \binom{R(v)}{2}$ with $FG \in \mathcal{B}(v)$, by definition of R(v) there are at least $\varepsilon n(\varepsilon n-1) > (\varepsilon n)^2/2$ pairs $(E,H) \in (M)_2$ such that $\{v, (E,F,G,H)\} \in$ $E(G_2)$. Hence, v has at least $\varepsilon n^2(\varepsilon n)^2/2$ neighbours and G_2 contains at least $|Y_2|\varepsilon^3 n^4/2$ edges.

Suppose $|Y_2| > \varepsilon n$ then, by averaging, there is a $EFGH \in (M)_4$ which has at least $\varepsilon^4 n$ neighbours in G_2 . Since the number of graphs on twelve vertices does not exceed 2⁶⁶ from the choices of n_0 we obtain $\varepsilon^4 n/2^{66} \ge 5$ vertices $v_1 \dots v_5 \in \binom{Y_1}{5}$ such that $L_{v_i}(EFGH) = L_{v_i}(EFGH)$ for all $i, j \in [5]$. This contradicts Fact 19. Next let $X_2 = X_1 \setminus Y_2$ and $S(v) = M \setminus R(v)$ for $v \in X_2$. Note that $|S(v)| > \varepsilon n$ otherwise from the previous fact we have at most

$$\binom{|S(v)|}{2} + |R(v)||S(v)| + \varepsilon n^2 \le 2\varepsilon n^2 \tag{10}$$

pairs in $\mathcal{B}(v)$ which by (9) yields the theorem. Now we argue that there are only few pairs of $\mathcal{B}(v)$ containing one element from R(v) and the other from S(v).

Fact 21. There are no $v_1 \ldots v_6 \in {\binom{X_2}{6}}$ and $(E, F, G, H, I) \in (M)_5$ such that (1) $L_{v_i}(EFGHI) = L_{v_j}(EFGHI)$ for all $i, j \in [5]$,

(2) $\{E, F\}, \{H, I\} \in \mathcal{A}(v_1) \text{ and } \{F, G\}, \{G, H\} \in \mathcal{B}(v_1).$

Proof. Again it is sufficient to prove that one can find a matching of size six in $L_{v_1}(EFGHI)$. To this end first denote the vertices with degree three in $L_{v_1}(EF)$ by $e_1 \in E$, $f_1 \in F$ (and in $L_{v_1}(HI)$ by $h_1 \in H, i_1 \in I$, resp.). Since $FG \in \mathcal{B}(v_1)$ there are two vertices in G having two neighbours in F. The same holds for $GH \in \mathcal{B}(v_1)$. Thus there are $g_1, g_2 \in G, g_1 \neq g_2$ such that g_1 has two neighbours in F and g_2 has two neighbours in H. Using them we can pick two matching edges in $L_{v_1}(FGH)$ which avoid f_1 and h_1 . Now the vertices e_1, f_1 (and h_1, i_1 , resp.) can be extended to a matching of size two in $L_{v_1}(EF)$ (and $L_{v_1}(HI)$, resp.) which leaves the chosen neighbours of g_1 (and g_2 , resp.) uncovered. Together this yields a matching of size six.

Fact 22. Let $Y_3 \subset X_2$ consist of all those vertices $v \in X_2$ such that there are at least εn^2 pairs $(E, F) \in R(v) \times S(v)$ which satisfy $EF \in \mathcal{B}(v)$. Then $|Y_3| \leq \varepsilon n$.

Proof. For a vertex $v \in Y_3$ and a $G \in S(v)$ let x_G denote the number of those $F \in R(v)$ such that $FG \in \mathcal{B}(v)$. Then there are $x_G(x_G-1)$ choices $(F,H) \in (R(v))_2$ such that $FG, HG \in \mathcal{B}(v)$. And since $F, H \in R(v)$ we have at least $\varepsilon n(\varepsilon n - 1)$ choices $(E, I) \in (M)_2$ such that $EF, HI \in \mathcal{A}(v)$. Thus G gives rise to at least $x_G^2(\varepsilon n)^2/2$ sets $(E, F, H, I) \in (M)_4$ satisfying $EF, HI \in \mathcal{A}(v)$ and $FG, GH \in \mathcal{B}(v)$. Recall that $s = |S(v)| > \varepsilon n$ according to (10) and that $\sum_{G \in S(v)} x_G \ge \varepsilon n^2$ since $v \in Y_3$. From Jensen's inequality and s < n/3 we obtain:

$$\frac{(\varepsilon n)^2}{2} \sum_{G \in S(v)} x_G^2 \ge \frac{(\varepsilon n)^2}{2} s \left(\sum \frac{1}{s} x_G\right)^2 \ge \varepsilon^4 n^5.$$
(11)

Thus a vertex $v \in Y_3$ gives rise to at least $\varepsilon^4 n^5$ ordered tuples $(E, F, G, H, I) \in (M)_5$ which satisfy $EF, HI \in \mathcal{A}(v)$ and $FG, GH \in \mathcal{B}(v)$. We consider the auxiliary bipartite graph G_3 with vertex classes Y_3 and $(M)_5$ and $\{v, (E, F, G, H, I)\}$ being an edge if and only if (E, F, G, H, I) satisfies $EF, HI \in \mathcal{A}(v)$ and $FG, GH \in \mathcal{B}(v)$. If $|Y_3|$ exceeds εn then G_3 contains at least $\varepsilon^5 n^6$ edges. Then by averaging and the choice of n_0 we find $v_1 \dots v_6$ which with EFGHI meet the conditions in Fact 21. This yields a contradiction.

Let $X_3 = X_2 \setminus Y_3$ and note that $|X_3| \ge \gamma n/4$. Now before deriving the contradiction, we show that the density of $\mathcal{B}(v)$ in S(v) is at most $1/2 + \varepsilon$.

Fact 23. There are no $v_1 \dots v_4$ and $EFG \in \binom{M}{3}$ such that

(1) $L_{v_1}(EFG) = L_{v_2}(EFG) = L_{v_3}(EFG),$ (2) $EF, FG, GE \in \mathcal{B}(v_1).$ Proof. Similar to the previous arguments we are looking for a matching of size four in the graph $L_{v_1}(EFG)$. To this end denote the isolated vertex in $L_{v_1}(EF)$ by x_1 , the one in $L_{v_1}(FG)$ by x_2 and the one in $L_{v_1}(GE)$ by x_3 . Then there are $1 \leq i, j \leq 3$ such that x_i and x_j belong to different edges and without loss of generality let $x_1 \in E$ and $x_2 \in F$. Since in the link graph $L_{v_1}(EF)$ the vertex x_1 is not adjacent to any vertex of F there must be a vertex $e_2 \in E$ which has degree three, hence is adjacent to x_2 . Take e_2x_2 as the first matching edge. In the link graph $L_{v_1}(GE)$ there is a vertex $g_1 \in G$ of degree at least two. This we use to match a vertex $e_1 \neq e_2$ in E. Note that e_2 could equal x_1 . Lastly in the link graph $L_{v_1}(FG)$ the remaining vertices $f_1 \neq x_2 \neq f_2$ have degree at least two, hence they can be used to create a matching of size two in $L_{v_1}(FG)$ which avoids the vertex g_1 . Together this yields a matching of size four.

Fact 24. Let $Y_4 \subset X_3$ contain all those vertices $v \in X_3$ such that there are at least $\left(\frac{1}{2} + \varepsilon\right) \binom{S(v)}{2}$ pairs $EF \in \binom{S(v)}{2}$ such that $EF \in \mathcal{B}(v)$. Then $|Y_4| \leq \varepsilon n$.

Proof. Consider $\mathcal{B}(v) \cap {S(v) \choose 2}$ as edges on the vertex set S(v). Further note that $|S(v)| \geq \varepsilon n \geq n_0$ and $\varepsilon \geq \varepsilon'$. Applying Theorem 15 we obtain at least $c(\varepsilon n)^3$ triangles in S(v), i.e., $EFG \in {S(v) \choose 3}$ such that $EF, FG, GE \in \mathcal{B}(v)$. As before consider the auxiliary bipartite graph G_4 on the partition classes Y_4

As before consider the auxiliary bipartite graph G_4 on the partition classes Y_4 and $\binom{M}{3}$ with the edges $\{v, EFG\}$ if and only if $EFG \in \binom{S(v)}{3}$ and $EF, FG, GE \in \mathcal{B}(v)$. In case $|Y_4| > \varepsilon n$ we find by averaging a set $EFG \in \binom{M}{3}$ which, in G_4 , is connected to at least $c\varepsilon^4 n$ vertices from Y_4 . And since n was chosen in such a way that $c\varepsilon^4 n/2^{40} > 3$ there are $v_1v_2v_3 \in \binom{Y_4}{3}$ whose link graphs agree on EFG, i.e., $L_{v_1}(EFG) = L_{v_2}(EFG) = L_{v_3}(EFG)$. But by Fact 23 this yields a contradiction. \Box

From Facts 18, 20, 22, 24 and the choice $\varepsilon = \gamma/150$ we infer that $X \setminus \bigcup_{i \in [4]} Y_i$ is non-empty. For a vertex $v \in X \setminus \bigcup_{i \in [4]} Y_i$ the following properties hold by the definitions of the sets Y_1, \ldots, Y_4 .

- (1) There are at most εn^2 pairs $EF \in \binom{M}{2}$ such that $L_v(EF)$ contains a perfect matching. So their contribution to $e(L_v(M))$ is at most $9\varepsilon n^2$. (Recalling Fact 14 we note that if $L_v(EF)$ does not contain a perfect matching then $L_v(EF)$ either contains at most four edges or is isomorphic to B_{113}, B_{023} or B_{033} .)
- (2) There are at most εn^2 pairs $EF \in \binom{R(v)}{2}$ such that $EF \in \mathcal{B}(v)$, contributing at most $6\varepsilon n^2$ edges to $L_v(M)$. Each of the remaining pairs have a contribution of at most 5.
- (3) There are at most εn^2 pairs $EF \in R(v) \times S(v)$ such that $EF \in \mathcal{B}(v)$ which yields a contribution of at most $6\varepsilon n^2$. Note that by definition of S(v) all but $\varepsilon n|S(v)|$ of the remaining pairs from $R(v) \times S(v)$ contribute at most 4 edges to $L_v(M)$.
- (4) There are at most $(\frac{1}{2} + \varepsilon) {\binom{|S(v)|}{2}}$ pairs $EF \in {\binom{S(v)}{2}}$ such that $EF \in \mathcal{B}(v)$ which yields a contribution of at most $6(1/2 + \varepsilon) {\binom{|S(v)|}{2}}$. For all but at most $\varepsilon n|S(v)|$ of the remaining pairs from ${\binom{S(v)}{2}}$ we have $e(L_v(EF)) \leq 4$.

Now let r = |R(v)| and s = |S(v)|. Counting the edges in the link graph of v with respect to $M = R(v) \dot{\cup} S(v)$ we obtain from the (1)-(4) and from $s \leq |M| < n/3$

$$e(L_{v}(M)) \leq 9\varepsilon n^{2} + \left[6\varepsilon n^{2} + 5\binom{r}{2}\right] + \left[6\varepsilon n^{2} + 5\varepsilon ns + 4rs\right] \\ + \left[6\left(\frac{1}{2} + \varepsilon\right)\binom{s}{2} + 4\left(\frac{1}{2} - \varepsilon\right)\binom{s}{2} + 5\varepsilon ns\right] \\ \leq 5\binom{r}{2} + 5\binom{s}{2} + 4rs + 30\varepsilon n^{2} \\ < 5\binom{|M|}{2} + 30\varepsilon n^{2} < \left(\frac{5}{9} + \gamma\right)\binom{n}{2}$$

with contradiction to (7).

As an immediate consequence we obtain Theorem 6.

Proof of Theorem 6. Let $\gamma > 0$ be given. Set $\gamma_1 = \gamma/4$ and $\gamma_2 = \gamma_1^6$. Applying Corollary 12 with k = 3, $\ell = 1$ and $2\gamma_1$ yields n'_0 and applying Theorem 16 with γ_2 yields n''_0 . We choose $n_0 = \max\{n'_0, 2n''_0\}$. Now let $n > n_0$, $n \in 3\mathbb{Z}$ and suppose \mathcal{H} is a 3-uniform hypergraph on n vertices with $\delta(\mathcal{H}) \ge (5/9 + \gamma)\binom{n}{2}$. Then, trivially, \mathcal{H} has minimum degree $\delta(\mathcal{H}) \ge (1/2 + 2\gamma_1)\binom{n}{2}$ and we would like to apply Corollary 12. To this end note that for all subsets $U \subset V(\mathcal{H})$ of size at most $\gamma_1^3 n$ the remaining hypergraph $\mathcal{H}_U = \mathcal{H}[V \setminus U]$ still has minimum degree

$$\delta(\mathcal{H}_U) \ge \left(\frac{5}{9} + \frac{\gamma}{2}\right) \binom{n}{2} \ge \left(\frac{5}{9} + 4\gamma_2\right) \binom{n'}{2}$$

where $n' = |V(\mathcal{H})| - |U|$. Thus, due to Theorem 16 there is a matching in \mathcal{H}_U covering all but $\gamma_2 n' \leq \gamma_1^6 n$ vertices. So, we can to apply Corollary 12 and obtain a perfect matching in \mathcal{H} .

5. Perfect and nearly perfect matchings with several minimum degrees

In the sequel we are interested in the interplay between several minimum degree parameters of k-uniform hypergraphs. Our aim is to give an asymptotic characterisation of the existence of a perfect matching and a nearly perfect matching in terms of several minimum degrees. Recall that a nearly perfect matching in a hypergraph on n vertices is a matching covering all but a constant number of vertices. Here, we mainly focus on the asymptotic behaviour of k-uniform hypergraphs.

To be more precise let $k \ge 2$ be fixed integers, $n \in k\mathbb{Z}$ and $\gamma, x_1, \ldots, x_{k-1} > 0$ be arbitrary positive reals, then we define the subset $\mathfrak{H}_{k,n}(\gamma, x_1, \ldots, x_{k-1})$ of k-uniform hypergraphs \mathcal{H} on n vertices to be

$$\mathfrak{H}_{k,n}(\gamma, x_1 \dots, x_{k-1}) = \left\{ \mathcal{H} \colon \delta_i(\mathcal{H}) \ge (x_i + \gamma) \binom{n}{k-i} \text{ for } i = 1, 2, \dots, k-1 \right\}.$$

Due to Proposition 9 we have

$$\delta_i(\mathcal{H}) \ge x \binom{n}{k-i} \text{ implies } \delta_{i-1}(\mathcal{H}) \ge x \binom{n}{k-i-1} - O(n^{k-i-2}), \qquad (12)$$

thus, we may assume $x_i \ge x_{i+1}$ for $i = 1, \ldots, k-2$.

We say (x_1, \ldots, x_{k-1}) asymptotically forces a perfect matching if for all $\gamma > 0$ there is an n_0 such that for all $n > n_0, n \in k\mathbb{Z}$ every $\mathcal{H} \in \mathfrak{H}_{k,n}(\gamma, x_1, \ldots, x_{k-1})$

contains a perfect matching. Similarly, we say (x_1, \ldots, x_k) asymptotically forces a nearly perfect matching if there is a constant C such that for all $\gamma > 0$ there is an n_0 such that for all $n > n_0, n \in k\mathbb{Z}$ every $\mathcal{H} \in \mathfrak{H}_{k,n}(\gamma, x_1, \ldots, x_{k-1})$ contains a matching covering all but C vertices and there is an $\mathcal{H} \in \mathfrak{H}_{k,n}(\gamma, x_1, \ldots, x_{k-1})$ which does not contain a perfect matching.

For arbitrary integers $k \geq 2$ we are interested in the functions

$$s_k: D_{k-1} \to \{0, 1, 2\}$$

on the domain $D_{k-1} = \{(x_1, \ldots, x_{k-1}) \in [0, 1]^k \colon x_i \ge x_2 \ge \ldots x_k\}$ which are defined by

$$s_k(x_1, \dots, x_{k-1}) = \begin{cases} 2 & (x_1, \dots, x_k) \text{ asymptotically forces a perfect matching} \\ 1 & (x_1, \dots, x_k) \text{ asymptotically forces a nearly perfect matching} \\ 0 & \text{otherwise.} \end{cases}$$

First note that $s_k(x_1, \ldots, x_{k-1})$ is monotone increasing in each x_i . And for k = 3 our results determine $s_3(x_1, x_2)$ completely. We know $s_3(5/9, 0) = 2$ by Theorem 6, $s_3(1/2, 1/3) = 2$ by Theorem 3 combined with the Absorbing Lemma, Lemma 10. By Theorem 3 we know $s_3(1/3, 1/3) = 1$ and combined with the lower bounds and the monotonicity we know $s_3(x_1, x_2)$ for all $x_1 \ge x_2$ (see Figure 2). Fact 5 gives examples for $s_3(1/2, 1/2)$ and $s_3(5/9, 1/3)$.

FIGURE 2. The function $s_3(x_1, x_2)$.

6. Open Problems

In Theorem 6 we determined the asymptotic value of t(3,1,n). However, we believe that the error term $\gamma\binom{n}{2}$ in Theorem 6 can be reduced.

For $\ell < k/2$ and k > 3 the asymptotic value of $t(k, \ell, n)$ is still not known and the known upper and lower bound are far apart. It would be interesting to close this gap.

Further, we have shown that for $\ell > k/2$ there is a significant difference between perfect and nearly perfect matchings in terms of minimum ℓ -degrees (compare Theorem 3 and Theorem 4). This phenomenon, however, cannot happen if $\ell = 1$ (due to the Absorbing Lemma, Lemma 10) and, more generally, it cannot happen if $((k-1)/k)^{k-\ell} < 1/2$ (see $\delta_{\ell}(\mathcal{H}_1)$ in Fact 5) and it would be nice to know for which $\ell = \ell(k)$ the minimum ℓ -degree for nearly perfect matchings and perfect matchings have the same asymptotics.

More generally, the task of determining the function $s_k(x_1, \ldots, x_{k-1})$ for all k and all x_i remains open.

References

- N. Alon and J. H. Spencer, *The probabilistic method*, second ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience [John Wiley & Sons], New York, 2000, With an appendix on the life and work of Paul Erdős. 2.1, 2.2
- B. Bollobás, Modern graph theory, Graduate Texts in Mathematics, vol. 184, Springer-Verlag, New York, 1998. 1
- D. E. Daykin and R. Häggkvist, Degrees giving independent edges in a hypergraph, Bull. Austral. Math. Soc. 23 (1981), no. 1, 103–109. 1, 1, 1
- A. W. Goodman, On sets of acquaintances and strangers at any party, Amer. Math. Monthly 66 (1959), 778–783.
- D. Kühn and D. Osthus, Matchings in hypergraphs of large minimum degree, J. Graph Theory 51 (2006), no. 4, 269–280. 1, 1, 1, 1, 2.1
- J. W. Moon and L. Moser, On a problem of Turán, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 283–286.
- E. A. Nordhaus and B. M. Stewart, *Triangles in an ordinary graph*, Canad. J. Math. 15 (1963), 33–41.
- O. Pikhurko, Perfect matchings and K³₄-tilings in hypergraphs of large codegree, Graphs Combin. 24 (2008), no. 4, 391–404. 1, 1, 1, 2.1, 2.1
- V. Rödl, A. Ruciński, M. Schacht, and E. Szemerédi, A note on perfect matchings in uniform hypergraphs with large minimum collective degree, Comment. Math. Univ. Carolin. 49 (2008), no. 4, 633–636. 1
- 10. V. Rödl, A. Ruciński, and E. Szemerédi, Perfect matchings in large uniform hypergraphs with large minimum collective degree, submitted. 1, 1, 2.2
- <u>—</u>, Dirac's theorem for 3-uniform hypergraphs, Combin. Probab. Comput. 15 (2006), no. 1–2, 229–251. 2.2
- 12. _____, Perfect matchings in uniform hypergraphs with large minimum degree, European J. Combin. 27 (2006), no. 8, 1333–1349. 1, 1

INSTITUT FÜR INFORMATIK, HUMBOLDT-UNIVERSITÄT ZU BERLIN, UNTER DEN LINDEN 6, D-10099 BERLIN, GERMANY

E-mail address: {hhan | person | schacht}@informatik.hu-berlin.de