ON PERFECT MATCHINGS IN UNIFORM HYPERGRAPHS WITH LARGE MINIMUM VERTEX DEGREE

HIỆP HÀN, YURY PERSON, AND MATHIAS SCHACHT

Abstract

We study sufficient ℓ-degree $(1 \leq \ell<k)$ conditions for the appearance of perfect and nearly perfect matchings in k-uniform hypergraphs. In particular, we obtain a minimum vertex degree condition $(\ell=1)$ for 3 -uniform hypergraphs, which is approximately tight, by showing that every 3 -uniform hypergraph on n vertices with minimum vertex degree at least $(5 / 9+o(1))\binom{n}{2}$ contains a perfect matching.

1. Notations and Results

Our notation follows [2]. We refer to the set $\{1,2, \ldots, n\}$ with $n \in \mathbb{N}$ by [n]. For a set M and an integer k, we denote by $\binom{M}{k}=\{A \subseteq M:|A|=k\}$ the set of all k-element subsets of M and we denote by $(M)_{k}=\left\{\left(v_{1}, v_{2}, \ldots, v_{k}\right):\left\{v_{1}, \ldots, v_{k}\right\} \in\right.$ $\left.\binom{M}{k}\right\}$ the set of all ordered k-tuples of M. We often write $v_{1} v_{2} \ldots v_{k} \in\binom{M}{k}$ instead of $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \in\binom{M}{k}$. Throughout this paper \mathcal{H} denotes a k-uniform hypergraph, that is a pair $\mathcal{H}=(V(\mathcal{H}), E(\mathcal{H}))$ with vertex set $V(\mathcal{H})$ and an edge set $E(\mathcal{H}) \subseteq\binom{V(\mathcal{H})}{k}$. Often we write V instead of $V(\mathcal{H})$ and identify \mathcal{H} with its edge set, i.e., $\mathcal{H} \subseteq\binom{V}{k}$. A k-uniform hypergraph is called k-partite if there is a partition of the vertex set V into k sets $V=V_{1} \dot{\cup} \ldots \dot{\cup} V_{k}$ such that every edge intersects every V_{i} in exactly one vertex.

For a k-uniform hypergraph \mathcal{H} and a set $T=\left\{v_{1}, \ldots, v_{\ell}\right\} \in\binom{V(\mathcal{H})}{\ell}$ let $\operatorname{deg}(T)=$ $\operatorname{deg}\left(v_{1} \ldots v_{\ell}\right)$ denote the number of edges containing $v_{1} \ldots v_{\ell}$ and let $\delta_{\ell}(\mathcal{H})$ be the minimum ℓ-degree of \mathcal{H}, i.e., the minimum of $\operatorname{deg}\left(v_{1} \ldots v_{\ell}\right)$ over all ℓ-element sets of vertices in \mathcal{H}. Moreover, by a matching of \mathcal{H} we mean a subset $M \subseteq \mathcal{H}$ of pairwise disjoint edges of \mathcal{H} and a perfect matching is a matching covering all vertices of \mathcal{H}. Of course, such a matching can only exist, if $n=|V|$ is a multiple of k, which we indicate by $n \in k \mathbb{Z}$.
Definition 1. For all integers $k>\ell \geq 1$ and $n \in k \mathbb{Z}$ let $t(k, \ell, n)$ denote the minimum t such that every k-uniform hypergraph \mathcal{H} on n vertices satisfying $\delta_{\ell}(\mathcal{H}) \geq$ t contains a perfect matching.

For $k=2$, in case of graphs, it is easily seen that $t(2,1, n)=n / 2$. Indeed, the complete bipartite graph $K_{n / 2+1, n / 2-1}$ serves as lower bound and the upper bound is an obvious consequence of Dirac's theorem on the existence of Hamilton cycles.

For $k \geq 3, \ell=k-1$ and $n \in k \mathbb{Z}$ the number $t(k, k-1, n)$ was investigated by Kühn and Osthus [5] and Rödl et al. [12, 10, 9]. In particular, Rödl, Ruciński, and

[^0]Szemerédi [10] determined $t(k, k-1, n)$ for arbitrary $k \geq 3$ and sufficiently large n and showed

$$
\begin{equation*}
t(k, k-1, n)=n / 2-k+c_{k, n} \tag{1}
\end{equation*}
$$

where $c_{k, n} \in\{3 / 2,2,5 / 2,3\}$ depending on the parities of n and k. Another notable phenomenon is that nearly perfect matchings, i.e., matchings covering all but a constant number, say $r k$ (for $r \geq k-2$), of the vertices, already appear at minimum $(k-1)$-degree $n / k-r$ (see [12]). Furthermore, for $k \geq 4$ and $\lceil k / 2\rceil \leq \ell \leq k-1$, Pikhurko [8] showed

$$
\begin{equation*}
\frac{1}{2}\binom{n}{k-\ell}-O\left(n^{k-\ell-1}\right) \leq t(k, \ell, n) \leq \frac{1}{2}\binom{n}{k-\ell}+O\left(n^{k-\ell-1 / 2} \sqrt{\log n}\right) \tag{2}
\end{equation*}
$$

Observe from (1) and (2) that $t(k, \ell, n)$ is roughly $\binom{n}{k-\ell} / 2$ for $\lceil k / 2\rceil \leq \ell \leq k-1$. However, the approach in [8] breaks down for $1 \leq \ell<k / 2$ and for this regime no sharp bounds are known so far. For example, for $\ell=1$ it was asked by Kühn and Osthus [5] to determine $t(k, 1, n)$. The best known upper bound we are aware of is due to Daykin and Häggkvist [3], who showed $t(k, 1, n) \leq \frac{k-1}{k}\binom{n-1}{k-1}+1 / k$.

In the first part of this paper we will provide general upper bounds on the minimum ℓ-degree which ensure the existence of perfect and nearly perfect matchings in k-uniform hypergraphs. First, we show an upper bound for the existence of nearly perfect matchings in k-uniform, k-partite hypergraphs. Here the minimum ℓ-degree $\delta_{\ell}(\mathcal{H})$ of a k-uniform, k-partite hypergraph with vertex partition $V_{1} \dot{\cup} \ldots \dot{U} V_{k}$ is min $\operatorname{deg}\left(v_{i_{1}}, \ldots, v_{i_{\ell}}\right)$, where the minimum runs over all index sets $\left\{i_{1}, \ldots, i_{\ell}\right\} \in\binom{[k]}{\ell}$ and all ℓ-sets of vertices $v_{i_{j}} \in V_{i_{j}}$ for $j=1, \ldots, \ell$.
Theorem 2. Let \mathcal{H} be a k-uniform, k-partite hypergraph with partition classes V_{1}, \ldots, V_{k} each of size $\left|V_{i}\right|=n$ and suppose the minimum ℓ-degree of \mathcal{H} is

$$
\delta_{\ell}(\mathcal{H})>\frac{k-\ell}{k} n^{k-\ell}+k n^{k-\ell-1}
$$

Then \mathcal{H} contains a matching covering all but $(\ell-1) k$ vertices. In particular, for $\ell=1$ the matching is perfect.

Using this we obtain the following bound for the existence of (nearly) perfect matchings for general k-uniform hypergraphs.

Theorem 3. For all integers $k>\ell>0$ there is an n_{0} such that for all $n>n_{0}$ the following holds: Suppose \mathcal{H} is a k-uniform hypergraph on $n>n_{0}$ vertices, $n \in k \mathbb{Z}$ with minimum ℓ-degree

$$
\delta_{\ell}(\mathcal{H}) \geq \frac{k-\ell}{k}\binom{n}{k-\ell}+k^{k+1}(\ln n)^{1 / 2} n^{k-\ell-1 / 2},
$$

then \mathcal{H} contains a matching covering all but $(\ell-1) k$ vertices. In particular, for $\ell=1$ the matching is perfect.

For $\ell=1$ slightly better bounds, compared to Theorems 2 and 3 , were obtained by Daykin and Häggkvist [3]. Those authors showed that the minimum degree condition $\delta_{1}(\mathcal{H})>\frac{k-1}{k}\left(n^{k-1}-1\right)$ yields perfect matchings in the partite case and $\delta_{1}(\mathcal{H})>\frac{k-1}{k}\left(\binom{n-1}{k-1}-1\right)$ yields perfect matchings in the general case.

Theorem 3 together with the absorbing technique, developed by Rödl, Ruciński, and Szemerédi, yields the following theorem about the existence of perfect matchings in k-uniform hypergraphs.

Theorem 4. For all $\gamma>0$ and all integers $k>\ell>0$ there is a n_{0} such that for all $n>n_{0}, n \in k \mathbb{Z}$ the following holds: Suppose \mathcal{H} is a k-uniform hypergraph on $n>n_{0}$ vertices with minimum degree

$$
\delta_{\ell}(\mathcal{H}) \geq\left(\max \left\{\frac{1}{2}, \frac{k-\ell}{k}\right\}+\gamma\right)\binom{n}{k-\ell}
$$

then \mathcal{H} contains a perfect matching.
In other words the theorem says

$$
t(k, \ell, n) \leq\left(\max \left\{\frac{1}{2}, \frac{(k-\ell)}{k}\right\}+o(1)\right)\binom{n}{k-\ell}
$$

for any $k>\ell>0$. For $\ell \geq k / 2$ the maximum is $1 / 2$ and this bound, which is best possible up to the error term $o(1)$, was already shown by Pikhurko [8]. For $\ell<k / 2$, however, there is a gap between currently known upper and lower bound, since the best lower bounds follow from well known constructions (see, e.g., [3, 5, 8, 10]).

Fact 5. For all $k>0$ and all $n \in k \mathbb{Z}$ there are k-uniform hypergraphs \mathcal{H}_{1} and \mathcal{H}_{2} on n vertices with minimum ℓ-degrees $(0<\ell<k)$

$$
\begin{aligned}
& \delta_{\ell}\left(\mathcal{H}_{1}\right)=\binom{n-\ell}{k-\ell}-\binom{\frac{(k-1) n}{k}-\ell+1}{k-\ell}=\left(1-\left(\frac{k-1}{k}\right)^{k-\ell}-o(1)\right)\binom{n}{k-\ell} \\
& \delta_{\ell}\left(\mathcal{H}_{2}\right)=\frac{1}{2}\binom{n}{k-\ell}+O\left(n^{k-\ell-1}\right)
\end{aligned}
$$

which do not contain a perfect matching.
Proof. In \mathcal{H}_{1} we split the vertex set into sets A and B of size $|A|=\frac{n}{k}-1$ and $|B|=\frac{(k-1)}{k} n+1$ and take as edges of \mathcal{H}_{1} all those k-tuples intersecting A in at least one vertex. It is easily seen that $\delta_{\ell}\left(\mathcal{H}_{1}\right)=\binom{n-\ell}{k-\ell}-\binom{(k-1) n / k-\ell+1}{k-\ell}$. However, since every edge of a matching covers at least one vertex in A and $|A|=\frac{n}{k}-1$ there cannot exist a perfect matching.

For the second hypergraph \mathcal{H}_{2} we split the vertex set into sets A and B such that $|A|$ is the maximal odd integer which does not exceed $n / 2$. Further we take all edges intersecting A in a even number of vertices. Then, due to parity, \mathcal{H}_{2} does not contain a perfect matching and the minimum ℓ-degree is $\frac{1}{2}\binom{n}{k-\ell}+O\left(n^{k-\ell-1}\right)$.

We believe that for small ℓ (compared to k) the lower bound given by \mathcal{H}_{1} in Fact 5 is the right one. Indeed, the main result of this paper, justifies this for the case $k=3$ and $\ell=1$. Note that in this case $\delta_{\ell}\left(\mathcal{H}_{1}\right)=(5 / 9-o(1))\binom{n}{2}$.

Theorem 6 (Main result). For all $\gamma>0$ there is an n_{0} such that for all $n>n_{0}$, $n \in 3 \mathbb{Z}$ the following holds: Suppose \mathcal{H} is a 3-uniform hypergraph on n vertices with

$$
\delta_{1}(\mathcal{H}) \geq\left(\frac{5}{9}+\gamma\right)\binom{n}{2}
$$

Then \mathcal{H} contains a perfect matching.
In view of Fact 5, Theorem 6 is, up to the error term $\gamma\binom{n}{2}$, best possible and this answers the question of Kühn and Osthus [5] asymptotically in the case $k=3$. Combining Theorem 6 with some previous results we give a classification of the existence of perfect and nearly perfect matchings in 3-uniform hypergraphs in terms of both minimum degrees δ_{1} and δ_{2} in Section 5.

Organisation. In Section 2 we introduce a few auxiliary results. In particular, we prove the Absorbing Lemma (Lemma 10). Section 3 contains the proofs of the upper bounds for k-uniform hypergraphs, i.e., Theorem 2, Theorem 3, and Theorem 4. Section 4 contains the proof of our main result, Theorem 6, and in Section 5 we study the interplay of δ_{1} and δ_{2} in view of perfect and nearly perfect matchings in 3 -uniform hypergraphs. We close with a few open problems in Section 6.

2. Preliminary Results

2.1. Partitioning uniform hypergraphs. In this section we show, by a simple probabilistic argument, that there exists a partition of the vertex set of a hypergraph which distributes the vertex degrees fairly (similar results appeared in [5, 8]). We start with a folklore observation.

Proposition 7. Let \mathcal{H} be a k-uniform hypergraph on n vertices. Then there is a decomposition of the edge set of \mathcal{H} into $k n^{k-1}$ pairwise edge disjoint matchings.

Proof. Consider the auxiliary graph G on the vertex set $E(\mathcal{H})$ in which $A, B \in$ $E(\mathcal{H})$ are connected if and only if A and B have nonempty intersection. Then the maximum degree of G is at most $k\binom{n-1}{k-1}$. Thus G has a proper colouring using $k\binom{n}{k-1}$ colours. And since the colour classes correspond to pairwise edge disjoint matchings we obtain the proposition.

Next, let $V=V_{1} \dot{\cup} V_{2} \dot{\cup} \ldots \dot{U} V_{k}$ be an equipartition of the vertex set of a k-uniform hypergraph \mathcal{H}, i.e., $\left|V_{i}\right|=\left|V_{j}\right|$ for all $i, j \in[k]$. For a set $T \subset V$ we say T is crossing (with respect to V_{1}, \ldots, V_{k}) if for all $i \in[k]$ we have $\left|T \cap V_{i}\right| \leq 1$. For a crossing ℓ-set $T=\left\{v_{1}, \ldots, v_{\ell}\right\}$ let $\operatorname{deg}^{\prime}(T)=\mid\{E \in \mathcal{H}: T \subset E$ and E is crossing $\} \mid$ denote its k-partite degree.
Lemma 8. For all $k>\ell \geq 1$ there is a n_{0} such that for all $n>n_{0}, n \in k \mathbb{Z}$ and every k-uniform hypergraph \mathcal{H} on n vertices there is an equipartition of $V(\mathcal{H})=$ $V_{1} \dot{\cup} \ldots \dot{U} V_{k}$ satisfying

$$
\operatorname{deg}^{\prime}(T) \geq \frac{(k-\ell)!}{k^{k-\ell}} \operatorname{deg}(T)-2(k \ln n)^{1 / 2} n^{k-\ell-1 / 2}
$$

for each crossing ℓ-set $T \in\binom{V}{\ell}$.
A similar lemma appeared in [8, Corollary 2], for completeness we include a short elementary proof.

Proof. First set $m=k-\ell$ and let $V=U_{1} \dot{\cup} \ldots \dot{U} U_{k}$ be a random partition of V, where each vertex appears in vertex class $U_{j}(j=1, \ldots, k)$ independently with probability $1 / k$. For a fixed ℓ-set $T=\left\{v_{1}, \ldots, v_{\ell}\right\}$ let $\mathcal{L}=\mathcal{L}(T)$ denote the link hypergraph of T which consists of the vertex set $V(\mathcal{H})$ and the edge set $\mathcal{L}=\{E \in$ $\left.\binom{V}{m}: E \cup T \in \mathcal{H}\right\}$. Then \mathcal{L} is an m-uniform hypergraph with $\operatorname{deg}\left(v_{1}, \ldots, v_{\ell}\right)$ edges. Using Proposition 7 we decompose the edge set of \mathcal{L} into at most $i_{0} \leq m n^{m-1}$ nonempty pairwise edge disjoint matchings which we denote by $M_{1}, \ldots, M_{i_{0}}$.

For every $i \in\left[i_{0}\right]$, every edge $E \in M_{i}$, and every index set $J \in\binom{[k]}{m}$, we say E survived (in the partition $\bigcup_{j \in J} U_{j}$), if $\left|E \cap U_{j}\right|=1$ for all $j \in J$. Since the partition U_{1}, \ldots, U_{k} was chosen randomly we have for fixed $J \in\binom{[k]}{m}$

$$
\mathbb{P}[E \text { survived }]=\frac{m!}{k^{m}}
$$

Thus, for $X_{i, J}=X_{i, J}(T)=\mid\left\{E \in M_{i}: E\right.$ survived $\} \mid$ we have

$$
\mu_{i, J}=\mu_{i, J}(T)=\mathbb{E}\left[X_{i, J}\right]=\frac{m!}{k^{m}}\left|M_{i}\right|
$$

Now call a matching M_{i} bad (with respect to the chosen partition U_{1}, \ldots, U_{k}) if there exists a set $J \in\binom{[k]}{m}$ such that

$$
X_{i, J} \leq\left(1-\left(\frac{(4 k-2) \ln n)}{\mu_{i, J}}\right)^{1 / 2}\right) \mu_{i, J}
$$

and call T a bad set (with respect to U_{1}, \ldots, U_{k}) if there is at least one bad $M_{i}=$ $M_{i}(T)$. Otherwise call T a good set. For a fixed M_{i} the events " E survived" with $E \in M_{i}$ are jointly independent, hence we can apply Chernoff's inequality (see, e.g., [1]) and we obtain

$$
\mathbb{P}\left[M_{i} \text { is bad }\right] \leq\binom{ k}{m} \exp (-(2 k-1) \ln n)=\binom{k}{m} n^{-2 k+1}
$$

Summing over all matchings M_{i} and recalling $i_{0} \leq m n^{m-1}$ and $m \leq k-1$ yields

$$
\mathbb{P}\left[\text { there is at least one bad } M_{i}\right] \leq i_{0}\binom{k}{m} n^{-2 k+1} \leq n^{-k}
$$

and summing over all ℓ-sets T we obtain

$$
\mathbb{P}[\text { there is at least one bad } T] \leq n^{\ell} n^{-k} \leq n^{-1}
$$

Moreover, Chernoff's inequality yields

$$
\mathbb{P}\left[\exists k_{0} \in[k]:\left|U_{k_{0}}\right|>n / k+n^{1 / 2}(\ln n)^{1 / 4} / k\right] \leq k \exp \left(-(\ln n)^{1 / 2} /(3 k)\right)=o(1)
$$

Thus, with positive probability there is a partition U_{1}, \ldots, U_{k} such that all ℓ-sets T are good and such that

$$
\left|U_{j}\right| \leq n / k+n^{1 / 2}(\ln n)^{1 / 4} / k \text { for every } j \in[k]
$$

Consequently, by redistributing at most $n^{1 / 2}(\ln n)^{1 / 4}$ vertices of the partition U_{1}, \ldots, U_{k} we obtain an equipartition partition $V=V_{1} \dot{\cup} \ldots \dot{U} V_{k}$ with

$$
\left|V_{j}\right|=n / k \quad \text { and } \quad\left|U_{j} \backslash V_{j}\right| \leq n^{1 / 2}(\ln n)^{1 / 4} / k \text { for every } j \in[k]
$$

To verify that the partition V_{1}, \ldots, V_{k} satisfies the claim of the lemma note that for a crossing ℓ set T and the m-set $J=\left\{j \in[k]: T \cap V_{j}=\emptyset\right\}$ we have

$$
\begin{aligned}
\operatorname{deg}^{\prime}(T) & \geq \sum_{i \in\left[i_{0}\right]}\left(1-\left(\frac{(4 k-2) \ln n)}{\mu_{i, J}(T)}\right)^{1 / 2}\right) \mu_{i, J}(T)-m \frac{n^{1 / 2}(\ln n)^{1 / 4}}{k} n^{m-1} \\
& \geq \sum_{i \in\left[i_{0}\right]} \mu_{i, J}(T)-((4 k-2) \ln n)^{1 / 2} \sum_{i \in\left[i_{0}\right]}\left(\mu_{i, J}(T)\right)^{1 / 2}-(\ln n)^{1 / 4} n^{m-1 / 2} \\
& =\frac{m!}{k^{m}} \operatorname{deg}(T)-((4 k-2) \ln n)^{1 / 2} \sum_{i \in\left[i_{0}\right]}\left(\mu_{i, J}(T)\right)^{1 / 2}-(\ln n)^{1 / 4} n^{m-1 / 2} .
\end{aligned}
$$

The Cauchy-Schwarz inequality then gives

$$
\sum_{i \in\left[i_{0}\right]}\left(\mu_{i, J}(T)\right)^{1 / 2} \leq\left(i_{0} \sum_{i \in\left[i_{0}\right]} \mu_{i, J}(T)\right)^{1 / 2} \leq\left(m n^{m-1}\binom{n}{m}\right)^{1 / 2} \leq n^{m-1 / 2}
$$

This implies that for the partition V_{1}, \ldots, V_{k} every crossing ℓ-set T satisfies

$$
\begin{aligned}
\operatorname{deg}^{\prime}(T) & \geq \frac{m!}{k^{m}} \operatorname{deg}(T)-\left((4 k-2)^{1 / 2}+(\ln n)^{-1 / 4}\right)(\ln n)^{1 / 2} n^{m-1 / 2} \\
& \geq \frac{m!}{k^{m}} \operatorname{deg}(T)-2(k \ln n)^{1 / 2} n^{m-1 / 2}
\end{aligned}
$$

which proves the lemma.
2.2. Absorbing Lemma. In this section we prove an absorbing lemma, Lemma 10. The idea was introduced by Rödl, Ruciński, and Szemerédi, e.g., in [11] (see also [10]). The Lemma asserts the existence of a small and powerful matching in a hypergraph with high minimum degree which, by "absorbing" vertices, creates a perfect matching provided a nearly perfect matching was founded.

First consider the following simple proposition
Proposition 9. Let \mathcal{H} be a k-uniform hypergraph on n vertices. For all $x \in[0,1]$ and all integers $m \leq \ell$ we have, if

$$
\delta_{\ell}(\mathcal{H}) \geq x\binom{n}{k-\ell}, \quad \text { then } \quad \delta_{m}(\mathcal{H}) \geq x\binom{n}{k-m}-O\left(n^{k-m-1}\right)
$$

where the constant in the error term only depends on k, ℓ, and m.
Proof. Consider a arbitrary m-set $T=\left\{v_{1}, \ldots, v_{m}\right\} \in\binom{V(\mathcal{H})}{m}$. Then the condition on $\delta_{\ell}(\mathcal{H})$ implies that T is contained in at least

$$
\begin{aligned}
\binom{k-m}{\ell-m}^{-1} \sum_{v_{m+1}, \ldots, v_{\ell} \in\left(\begin{array}{c}
V \backslash T \\
\ell-m \\
\hline
\end{array}\right.} \operatorname{deg}\left(v_{1}, \ldots, v_{\ell}\right) & \geq\binom{ k-m}{\ell-m}^{-1}\binom{n-m}{\ell-m} x\binom{n}{k-\ell} \\
& \geq x\binom{n}{k-m}-O\left(n^{k-m-1}\right)
\end{aligned}
$$

edges, and the proposition follows.
Lemma 10 (Absorbing lemma). For all $\gamma>0$ and integers $k>\ell>0$ there is an n_{0} such that for all $n>n_{0}$ the following holds: Suppose \mathcal{H} is a k-uniform hypergraph on n vertices with minimum ℓ-degree $\delta_{\ell}(\mathcal{H}) \geq(1 / 2+2 \gamma)\binom{n}{k-\ell}$, then there exists a matching M in \mathcal{H} of size $|M| \leq \gamma^{k} n / k$ such that for every set $W \subset V \backslash V(M)$ of size at most $\gamma^{2 k} n \geq|W| \in k \mathbb{Z}$ there exists a matching covering exactly the vertices in $V(M) \cup W$.

Proof. Let \mathcal{H} be a k-uniform hypergraph with $\delta_{\ell}(\mathcal{H}) \geq(1 / 2+2 \gamma)\binom{n}{k-\ell}$. From Proposition 9 we know $\delta_{1}(\mathcal{H}) \geq\left(\frac{1}{2}+\gamma\right)\binom{n}{k-1}$ (for all large n) and it suffices to prove the lemma for $\ell=1$.

Throughout the proof we assume (without loss of generality) that $\gamma \leq 1 / 10$ and let n_{0} be chosen sufficiently large. Further set $m=k(k-1)$ and call a set $A \in\binom{V}{m}$ of size m an absorbing m-set for $T=\left\{v_{1}, \ldots, v_{k}\right\} \in\binom{V}{k}$ if A spans a matching of size $k-1$ and $A \cup T$ spans a matching of size k, i.e., $\mathcal{H}[A]$ and $\mathcal{H}[A \cup T]$ both contain a perfect matching.
Claim 11. For every $T=\left\{v_{1}, \ldots, v_{k}\right\} \in\binom{V}{k}$ there are at least $\gamma^{k-1}\binom{n}{k-1}^{k} / 2$ absorbing m-sets for T.

Proof. Let $T=\left\{v_{1}, \ldots, v_{k}\right\}$ be fixed. Since n_{0} was chosen large enough there are at $\operatorname{most}(k-1)\binom{n}{k-2} \leq \gamma\binom{n}{k-1}$ edges which contain v_{1} and v_{j} for some $j \in\{2, \ldots, k\}$. Due to the minimum degree of \mathcal{H} there are at least $\binom{n}{k-1} / 2$ edges containing v_{1} but none of the vertices v_{2}, \ldots, v_{k}. We fix one such edge $\left\{v_{1}, u_{2}, \ldots, u_{k}\right\}$ and set $U_{1}=\left\{u_{2}, \ldots, u_{k}\right\}$. For each $i=2,3, \ldots, k$ and each pair u_{i}, v_{i} suppose we succeed to choose a set U_{i} such that U_{i} is disjoint to $W_{i-1}=\bigcup_{j \in[i-1]} U_{j} \cup T$ and both $U_{i} \cup\left\{u_{i}\right\}$ and $U_{i} \cup\left\{v_{i}\right\}$ are edges in \mathcal{H}. Then, for a fixed $i=2, \ldots, k$ we call such a choice U_{i} good, motivated by $W_{k}=\bigcup_{i \in[k]} U_{i}$ being an absorbing m-set for T.

Note that in each step $2 \leq i \leq k$ there are $k+(i-1)(k-1) \leq k^{2}$ vertices in W_{i-1}, thus the number of edges intersecting u_{i} (or w_{i} respectively) and at least one other vertex in W_{i-1} is at most $k^{2}\binom{n}{k-2}$. So the restriction on the minimum degree implies that for each $i \in\{2, \ldots, k\}$ there are at least $2 \gamma\binom{n}{k-1}-2 k^{2}\binom{n}{k-2} \geq \gamma\binom{n}{k-1}$ choices for U_{i} and in total we obtain $\gamma^{k-1}\binom{n}{k-1}^{k} / 2$ absorbing m-sets for T.

Continuing the proof of the Lemma 10, let $\mathcal{L}(T)$ denote the family of all those m-sets absorbing T. From Claim 11 we know $|\mathcal{L}(T)| \geq \gamma^{k-1}\binom{n}{k-1}^{k} / 2$.

Now, choose a family \mathcal{F} of m-sets by selecting each of the $\binom{n}{m}$ possible m-sets independently with probability

$$
\begin{equation*}
p=\gamma^{k} n / \Delta \quad \text { with } \quad \Delta=2\binom{n}{k-1}^{k} \geq 2 n\binom{n}{m-1} \geq 2 m\binom{n}{m} . \tag{3}
\end{equation*}
$$

Then, by Chernoff's bound (see, e.g., [1]), with probability $1-o(1)$, as $n \rightarrow \infty$ the family \mathcal{F} fulfills the following properties:

$$
\begin{equation*}
|\mathcal{F}| \leq \gamma^{k} n / m \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
|\mathcal{L}(T) \cap \mathcal{F}| \geq \gamma^{2 k-1} n / 5 \quad \forall T \in\binom{V}{k} \tag{5}
\end{equation*}
$$

Furthermore, using (3) we can bound the expected number of intersecting m-sets by

$$
\binom{n}{m} \times m \times\binom{ n}{m-1} \times p^{2} \leq \gamma^{2 k} n / 4
$$

Thus, using Markov's bound, we derive that with probability at least 3/4

$$
\begin{equation*}
\mathcal{F} \text { contains at most } \gamma^{2 k} n \text { intersecting pairs. } \tag{6}
\end{equation*}
$$

Hence, with positive probability the family \mathcal{F} has all the properties stated in (4), (5) and (6). By deleting all the intersecting and non-absorbing m-sets in such a family \mathcal{F} we get a subfamily \mathcal{F}^{\prime} consisting of pairwise disjoint absorbing m-sets which, due to $\gamma \leq 1 / 10$, satisfies

$$
\left|\mathcal{L}(T) \cap \mathcal{F}^{\prime}\right| \geq \gamma^{2 k-1} n / 5-\gamma^{2 k} n \geq \gamma^{2 k} n \quad \forall T \in\binom{V}{m}
$$

So, since \mathcal{F}^{\prime} consists of pairwise disjoint absorbing m-sets, $\mathcal{H}\left[V\left(\mathcal{F}^{\prime}\right)\right]$ contains a perfect matching M of size at most $\gamma^{k} n / k$. Further, for any subset $W \subset V \backslash V(M)$ of size $\gamma^{2 k} n \geq|W| \in k \mathbb{Z}$ we can partition W into at most $\gamma^{2 k} n / k$ sets of size k and successively absorb them using a different absorbing m-set each time. Thus there exists a matching covering exactly the vertices in $V\left(\mathcal{F}^{\prime}\right) \cup W$.

As a consequence we obtain the following.
Corollary 12. For all $\gamma>0$ and $k>\ell \geq 1$ there is an n_{0} such that for all $n_{0} \leq n \in k \mathbb{Z}$ the following holds: If \mathcal{H} is a k-uniform hypergraph on n vertices with minimum ℓ-degree $\delta_{\ell}(\mathcal{H}) \geq(1 / 2+2 \gamma)\binom{n}{k-\ell}$ and for any set $U \subset V$ of size $|U| \leq \gamma^{k} n$ the remaining hypergraph $\mathcal{H}[V \backslash U]$ has a matching covering all but at most $\gamma^{2 k} n$ vertices. Then \mathcal{H} has a perfect matching.

Proof. Let γ, k, and ℓ be given. Then, applying Lemma 10 yields n_{0}. Now let \mathcal{H} be a k-uniform hypergraph on $n \geq n_{0}$ vertices with minimum ℓ-degree $\delta_{\ell}(\mathcal{H}) \geq$ $(1 / 2+2 \gamma)\binom{n}{k-\ell}$. Then using Lemma 10 we can remove a matching M of size $\gamma^{k} n / k$ from \mathcal{H}. Then, according to the assumption, the remaining hypergraph $\mathcal{H}[V \backslash V(M)]$ contains a matching M^{\prime} such that, W, the set of the uncovered vertices has size at most $\gamma^{2 k} n \geq|W| \in k \mathbb{Z}$. But due to Lemma 10 there is a matching covering exactly those vertices in $V(M) \cup W$, which together with M^{\prime} forms a perfect matching of \mathcal{H}.

3. GENERAL UPPER BOUNDS FOR k-UNIFORM HYPERGRAPHS

In this section we prove Theorems 2, 3, and 4. For this we verify general upper bounds on the minimum ℓ-degree, which guarantee the existence of a perfect matching and nearly perfect matching in a k-uniform hypergraphs \mathcal{H}.

Let \mathcal{H} be a k-uniform, k-partite hypergraph on the partition classes $V_{0}, \ldots V_{k-1}$ and M a matching in \mathcal{H}. For an edge $E \in \mathcal{H}$ we denote the unique vertex in $E \cap V_{i}$ by $v_{i}(E)$ and for notational convenience below we consider all additions in $\mathbb{Z} / k \mathbb{Z}$. Further let $T_{i}=\left(v_{i}, v_{i+1}, \ldots, v_{i+\ell-1}\right)$ with $i \in \mathbb{Z} / k \mathbb{Z}$ and $v_{j} \in V_{j}$ for all $j \in\{i, \ldots, i+\ell-$ $1\}$ and let $\mathcal{E}=\left(E_{0}, E_{1}, \ldots, E_{k-\ell-1}\right) \in[M]_{k-\ell}$ be a $(k-\ell)$-tuple of matching edges. We say T_{i} and \mathcal{E} are adjacent if $\left\{v_{i}, \ldots, v_{i+\ell-1}, v_{i+\ell}\left(E_{0}\right), \ldots, v_{i+k-1}\left(E_{k-\ell-1}\right)\right\} \in$ \mathcal{H}. The set $N\left(T_{i},\left(E_{0}, \ldots, E_{k-\ell-1}\right)\right)=\left\{v_{i+\ell}\left(E_{0}\right), \ldots, v_{i+k-1}\left(E_{k-\ell-1}\right)\right\}$ is called the neighbour of T with respect to \mathcal{E} and by $\operatorname{deg}\left(T_{i},[M]_{k-\ell}\right)$ we denote the number of ($k-\ell$)-tuples $\mathcal{E} \in[M]_{k-\ell}$ the tuple T_{i} is adjacent to.

Proof of Theorem 2. For the proof keep in mind that all additions are considered in $\mathbb{Z} / k \mathbb{Z}$. Take M to be a largest matching in \mathcal{H}. By adding arbitrary k-tuples if necessary, without loss of generality we may assume $|M|=n-\ell$. Then there are ℓk unmatched vertices which we divide into k pairwise disjoint sets T_{0}, \ldots, T_{k-1} with $T_{i}=\left\{v_{i}, v_{i+1} \ldots, v_{i+\ell-1}\right\}$ where $v_{j} \in V_{j}$.

For an arbitrary edge $E \in \mathcal{H}$ say E is M-non-crossing if there is an $F \in M$ such that $|E \cap F| \geq 2$. Then, for a fixed $i=1,2, \ldots, k-1$, the number of M-non-crossing edges E with $T_{i} \subset E$ and $T_{j} \cap E=\emptyset$ for all $j \neq i$ is at most $k n^{k-\ell-1}$. Hence, the restriction on the minimum ℓ-degree implies

$$
\operatorname{deg}\left(T_{i},[M]_{k-\ell}\right) \geq \delta_{\ell}(\mathcal{H})-k n^{k-\ell-1}>\frac{k-\ell}{k} n^{k-\ell}
$$

And since this is true for each $T_{i}, i \in\{0, \ldots, k-1\}$ the total degree is

$$
\operatorname{deg}\left(T_{0} \ldots T_{k-1},[M]_{k-\ell}\right):=\sum_{i \in\{0, \ldots, k-1\}} \operatorname{deg}\left(T_{i},[M]_{k-\ell}\right)>(k-\ell) n^{k-\ell}
$$

Then, by averaging, we conclude that there must be a $(k-\ell)$-tuple of matching edges $\left(E_{0}, \ldots, E_{k-\ell-1}\right)$ which is adjacent to at least $(k-\ell+1)$ tuples T_{i}. And without loss of generality let those T_{i} be $T_{0}, \ldots, T_{k-\ell}$. From the definition note
that $N\left(T_{i},\left(E_{0}, \ldots, E_{k-\ell-1}\right)\right)=\left\{v_{i+\ell}\left(E_{0}\right), \ldots, v_{i+k-1}\left(E_{k-\ell-1}\right)\right\}$, the neighbours of those T_{i} with respect to $\left(E_{0}, \ldots, E_{k-\ell-1}\right)$, are pairwise disjoint. And since each pair T_{i} and $N\left(T_{i},\left(E_{0}, \ldots, E_{k-\ell-1}\right)\right)$ form an edge in \mathcal{H} the $(k-\ell+1)$ tuples T_{i} and their neighbours $N\left(T_{i},\left(E_{0}, \ldots, E_{k-\ell-1}\right)\right)$ form a matching of size $(k-\ell+1)$ in \mathcal{H}. Replacing $E_{0}, \ldots, E_{k-\ell-1}$ by this matching we obtain a larger matching.

Proof of Theorem 3. Let n_{0} be as asserted by Lemma 8 for given k and ℓ. Next let \mathcal{H} be a k-uniform hypergraph on $n>n_{0}$ vertices, $n \in k \mathbb{Z}$, with minimum ℓ-degree

$$
\delta_{\ell}(\mathcal{H}) \geq \frac{k-\ell}{k}\binom{n}{k-\ell}+k^{k+1}(\ln n)^{1 / 2} n^{k-\ell-1 / 2}
$$

According to Lemma 8 there is a partition of $V=V(\mathcal{H})$ into k partition classes $V=V_{0} \dot{U} \ldots \dot{U} V_{k-1}$ such that $\left|V_{i}\right|=\left|V_{j}\right|=n / k=: m$ for all i, j and every crossing ℓ-set T satisfies

$$
\operatorname{deg}^{\prime}(T) \geq \frac{(k-\ell)!}{k^{k-\ell}} \delta_{\ell}(\mathcal{H})-2(k \ln n)^{1 / 2} n^{k-\ell-1 / 2}
$$

Using $(m)_{k-\ell} \geq m^{k-\ell}-m^{k-\ell-1} \sum_{i \in[k-\ell]} i$ a simple calculation yields

$$
\operatorname{deg}^{\prime}(T) \geq \frac{k-\ell}{k} m^{k-\ell}+k m^{k-\ell-1}
$$

for all crossing ℓ-sets T. By Theorem 2 this ensures a matching covering all but $(\ell-1) k$ vertices.

Proof of Theorem 4. Let $\gamma>0$ and integers $k>\ell>0$ be given. Applying Corollary 12 with $\gamma_{1}=\gamma /(4 k)$ and k, ℓ we obtain n_{0}^{\prime}. Applying Theorem 3 with the same k and ℓ we obtain $n_{0}^{\prime \prime}$. Set $n_{0}=\max \left\{n_{0}^{\prime}, 2 n_{0}^{\prime \prime}, 4 k^{4 k} / \gamma^{2}\right\}$ and let \mathcal{H} be a k-uniform hypergraph on $k \mathbb{Z} \ni n>n_{0}$ vertices with minimum ℓ-degree

$$
\delta_{\ell}(\mathcal{H}) \geq\left(\max \left\{\frac{1}{2}, \frac{k-\ell}{k}\right\}+\gamma\right)\binom{n}{k-\ell}
$$

We want to apply Corollary 12 and pick a set U of size $|U| \leq \gamma_{1}^{k} n$. Then the remaining graph $\mathcal{H}_{U}=\mathcal{H}[V \backslash U]$ has minimum degree

$$
\delta_{\ell}\left(\mathcal{H}_{U}\right) \geq \delta_{\ell}(\mathcal{H})-\gamma_{1}^{k} n\binom{n}{k-\ell-1} \geq\left(\max \left\{\frac{1}{2}, \frac{k-\ell}{k}\right\}+\frac{\gamma}{2}\right)\binom{n}{k-\ell}
$$

According to Theorem 3 there is a matching in \mathcal{H}_{U} covering all but $(\ell-1) k \leq \gamma_{1}^{2 k} n$ vertices. Thus, by Corollary $12, \mathcal{H}$ contains a perfect matching.

Note that according to Fact 5 for $\ell \geq k / 2$ the Theorem 4 is best possible up to the constant γ.

4. ASYMPTotic bound for 3-uniform hypergraphs

In this section we prove Theorem 6. The major part is devoted to proving the existence of a matching covering $(1-o(1)) n$ vertices in a 3 -uniform hypergraph with sufficiently high minimum degree. Together with Corollary 12 it will immediately imply Theorem 6.

4.1. Auxiliary results.

Definition 13. Let M be a matching in a 3-uniform hypergraph \mathcal{H}. For a vertex $v \in V(\mathcal{H})$ we define the link graph of v with respect to the edges $E_{1} E_{2} \ldots E_{k} \in\binom{M}{k}$ to be the graph $L_{v}\left(E_{1} \ldots E_{k}\right)$ with the vertex set $\bigcup_{i \in[k]} E_{i}$ and the edge set

$$
\left\{a b: \exists i, j \in[k], i \neq j \text { such that } a \in E_{i}, b \in E_{j} \text { and } v a b \in \mathcal{H}\right\}
$$

Observe that for a large matching M covering all but $o(n)$ vertices of the hypergraph \mathcal{H} we have $e\left(L_{v}(M)\right) \approx \operatorname{deg}(v)$. We will study the link graphs $L_{v}(M)$ of the vertices $v \in V(\mathcal{H}) \backslash V(M)$ with respect to a largest matching M in \mathcal{H}. Our goal is to derive a contradiction by showing that either M can be enlarged or \mathcal{H} must have a rigid structure, which will violate the minimum degree condition of \mathcal{H}.

The following statements will be useful for the analysis of the link graph.
Fact 14. Let B be a bipartite graph on six vertices with the partition classes $E=$ $\left\{e_{1}, e_{2}, e_{3}\right\}$ and $F=\left\{f_{1}, f_{2}, f_{3}\right\}$. Then the following holds:
(1) if $e(B) \geq 7$ then B contains a perfect matching,
(2) if $e(B)=6$ then either B contains a perfect matching or is isomorphic to B_{033} (see Figure 1),
(3) if $e(B)=5$ then either B contains a perfect matching or B is isomorphic to a graph in $\left\{B_{023}, B_{113}\right\}$ (see Figure 1).
Proof. Suppose $\operatorname{deg}\left(e_{1}\right) \leq \operatorname{deg}\left(e_{2}\right) \leq \operatorname{deg}\left(e_{3}\right)$. Then from $e(B) \geq 7$ we infer $\operatorname{deg}\left(e_{1}\right) \geq 1, \operatorname{deg}\left(e_{2}\right) \geq 2$ and $\operatorname{deg}\left(e_{3}\right) \geq 3$, thus B contains a perfect matching.

For $e(B)=5$ we consider two cases: $\operatorname{deg}\left(e_{1}\right)=0$ and $\operatorname{deg}\left(e_{1}\right)=1$. In the first case we have $\operatorname{deg}\left(e_{2}\right)=2$ and $\operatorname{deg}\left(e_{3}\right)=3$ and B is isomorphic to B_{023}. If $\operatorname{deg}\left(e_{1}\right)=1$ then again we distinguish two cases. If $\operatorname{deg}\left(e_{2}\right)=2$ then $\operatorname{deg}\left(e_{3}\right)=2$ and B is either isomorphic to B_{023} or contains a perfect matching. Else $\operatorname{deg}\left(v_{2}\right)=1$ and $\operatorname{deg}\left(v_{3}\right)=3$ and in this case either B is isomorphic to B_{113} or contains a perfect matching.

Finally we consider $e(B)=6$. Observe that adding one edge to B_{113} we obtain a graph with a perfect matching since one vertex class has the degree sequence $1,2,3$. Adding an edge to B_{023} we see that the resulting graph contains a perfect matching unless it is isomorphic to B_{033}.

Figure 1. The critical graphs: the only balanced bipartite graphs on six vertices and six or five edges without a perfect matching.

We will also need the following result from extremal graph theory which follows from the work of Goodman in [4] (see also [7, 6]).
Theorem 15. For all $\varepsilon^{\prime}>0$ there is a $c=c\left(\varepsilon^{\prime}\right)>0$ and $n_{0}=n_{0}\left(\varepsilon^{\prime}\right)$ such that for all $n \geq n_{0}$ the following holds. Suppose G is a graph on n vertices which contains at least $\left(1 / 2+\varepsilon^{\prime}\right)\binom{n}{2}$ edges. Then G contains cn^{3} triangles.

The following theorem asserts the existence of a matching covering all but $o(n)$ vertices.

Theorem 16. For all $\gamma>0$ there is a n_{0} such that for all $n>n_{0}$ the following holds. Suppose \mathcal{H} is a 3-uniform hypergraph on n vertices with minimum degree $\delta(\mathcal{H}) \geq(5 / 9+4 \gamma)\binom{n}{2}$ then \mathcal{H} contains a matching leaving strictly less than γn vertices unmatched.

Proof. For a given γ define $\varepsilon=\gamma / 150$. Applying Theorem 15 with $\varepsilon^{\prime}=\min \left\{\gamma^{2}, \varepsilon\right\}$ we obtain c and n_{0}^{\prime}. Then choose $n_{0}=\max \left\{2^{110} / \varepsilon^{5}, 2^{50} / c \varepsilon^{4}, n_{0}^{\prime} / \varepsilon\right\}$.

Next let M be a matching of maximum size in \mathcal{H} and suppose $|M|=\lfloor(1-\gamma) n / 3\rfloor$. (Otherwise we can simply add arbitrary 3 -tuples to M to guarantee equality, since we will show that M is not a maximum matching.) Let $X=V(\mathcal{H}) \backslash V(M)$ be the set of the uncovered vertices. Then from the restriction on the minimum degree we infer that the number of edges in the link graph of every vertex $v \in X$ with respect to M is

$$
\begin{equation*}
e\left(L_{v}(M)\right) \geq \operatorname{deg}_{\mathcal{H}}(v)-3|M|-|X|(n-|X|)>\left(\frac{5}{9}+\gamma\right)\binom{n}{2} . \tag{7}
\end{equation*}
$$

To derive a contradiction to (7) it is sufficient to show that there is a vertex $v \in X$ such that the pairs $E F \in\binom{M}{2}$ satisfying $e\left(L_{v}(E F)\right) \geq 6$ contribute at most $30 \varepsilon n^{2}$ edges to $L_{v}(M)$ in total, since then we would obtain

$$
\begin{equation*}
e\left(L_{v}(M)\right) \leq 5\binom{|M|}{2}+30 \varepsilon n^{2}<\left(\frac{5}{9}+\gamma\right)\binom{n}{2} \tag{8}
\end{equation*}
$$

We first prove the following fact.
Fact 17. There are no $v_{1} v_{2} v_{3} \in\binom{X}{3}$ and $E F \in\binom{M}{2}$ such that

- $L_{v_{1}}(E F)=L_{v_{2}}(E F)=L_{v_{3}}(E F)$ and
- $L_{v_{1}}(E F)$ contains a perfect matching,

Proof. Let $E=\{a, u, x\}, F=\{b, w, y\}$ and let the perfect matching in $L_{v_{1}}(E F)$ consist of the edges $a b, u w$ and $x y$. Since these edges belong to the link graph of all $v_{i}, 1 \leq i \leq 3$, we have that $v_{1} a b, v_{2} u w, v_{3} x y \in \mathcal{H}$. Thus, one can replace E and F by these three edges to obtain a larger matching with contradiction to M being the maximum matching.

Fact 18. Let $Y_{1} \subset X$ consist of those vertices $v \in X$ for which there are at least εn^{2} pairs $E F \in\binom{M}{2}$ such that $L_{v}(E F)$ contains a perfect matching. Then $\left|Y_{1}\right| \leq \varepsilon n$.
Proof. Consider the auxiliary bipartite graph G_{1} with vertex classes Y_{1} and $\binom{M}{2}$ and $\{v, E F\}$ being an edge if and only if $L_{v}(E F)$ contains a perfect matching. Then G_{1} has at least $\left|Y_{1}\right| \varepsilon n^{2}$ edges and if $\left|Y_{1}\right|$ exceeds εn, by averaging, there is a pair $E F \in\binom{M}{2}$ such that $\operatorname{deg}_{G_{1}}(E F) \geq \varepsilon^{2} n$. Since the number of bipartite graphs on six vertices having a perfect matching is at most 2^{9} we conclude from the choice of n_{0} that there are $\varepsilon^{2} n / 2^{9} \geq 3$ vertices $v_{1}, v_{2}, v_{3} \in Y_{1}$ such that $L_{v_{1}}(E F)=L_{v_{2}}(E F)=$ $L_{v_{3}}(E F)$ and $L_{v_{1}}(E F)$ containing a perfect matching. This yields a contradiction to Fact 17.

Now remove Y_{1} from X to obtain the set $X_{1} \subset X$ of size $\left|X_{1}\right| \geq \gamma n / 2$. Note that from Fact 14 each vertex $v \in X_{1}$ satisfies the following: for all but εn^{2} pairs
$E F \in\binom{M}{2}$ the link graph $L_{v}(E F)$ either contains at most four edges or is isomorphic to a graph in $\left\{B_{113}, B_{023}, B_{033}\right\}$.

Next we introduce some further notations. For a vertex $v \in X$ let

- $\mathcal{A}(v)=\left\{E F \in\binom{M}{2}: L_{v}(E F) \simeq B_{113}\right\}$,
- $R(v)=\{E \in M$: there are εn elements $F \in M$ with $E F \in \mathcal{A}(v)\}$.
- $\mathcal{B}(v)=\left\{E F \in\binom{M}{2}: L_{v}(E F) \simeq B \in\left\{B_{023}, B_{033}\right\}\right\}$.

The remaining part of the proof is now devoted to showing

$$
\begin{equation*}
|\mathcal{B}(v)| \leq 2 \varepsilon n^{2} \tag{9}
\end{equation*}
$$

for some vertex $v \in X_{1}$. This with Fact 18 would imply

$$
\begin{aligned}
e\left(L_{v}(M)\right) \leq 5|\mathcal{A}(v)|+6|\mathcal{B}(v)|+9 \varepsilon n^{2}+4\left(\binom{|M|}{2}-|\mathcal{A}(v)|\right. & -|\mathcal{B}(v)|) \\
& \leq 5\binom{|M|}{2}+21 \varepsilon n^{2}
\end{aligned}
$$

thus (8) follows, and by contradiction, we obtain the theorem.
To this end we first argue that there are only few pairs in $\mathcal{B}(v)$ with both elements located in $R(v)$.

Fact 19. There are no $v_{1} \ldots v_{5} \in\binom{X_{1}}{5}$ and $(E, F, G, H) \in(M)_{4}$ such that
(1) $L_{v_{i}}(E F G H)=L_{v_{j}}(E F G H)$ for all $i, j \in[5]$,
(2) $\{E, F\},\{G, H\} \in \mathcal{A}\left(v_{1}\right)$, and $\{F, G\} \in \mathcal{B}\left(v_{1}\right)$.

Proof. It is sufficient to show that there is a matching of size five in $L_{v_{i}}(E F G H)$. With the five vertices $v_{1} \ldots v_{5}$ this yields a matching of size five in \mathcal{H} and using this as replacement of $E F G H$ yields a contradiction to the maximality of M.

To this end note first that since $L_{v_{1}}(E F) \simeq B_{113}$ there is a vertex of degree three in each E and F which we denote by $e_{1} \in E$ and $f_{1} \in F$. The same holds for G and H and we denote the respective vertices by $g_{1} \in G$ and $h_{1} \in H$. Note that for a graph $B \in\left\{B_{023}, B_{033}\right\}, B$ contains two vertices of degree at least two in each partition class. Consequently, since $L_{v_{i}}(F G) \simeq B \in\left\{B_{023}, B_{033}\right\}$ there is a vertex $f_{2} \in F, f_{2} \neq f_{1}$ which has at least two neighbours in G. Thus we can pick the edge $f_{2} g_{2}$ in $L_{v_{1}}(F G)$ such that $g_{2} \neq g_{1}$. In the graph $L_{v_{1}}(E F)$ (and $L_{v_{1}}(G H)$, resp.), by using the vertices f_{1}, e_{1} (and g_{1}, h_{1}, resp.), we now find a matching of size two which does not cover the vertex f_{2} and g_{2}. This together yields a matching of size five in $L_{v_{i}}(E F G H)$.

Fact 20. Let $Y_{2} \subset X_{1}$ consist of those vertices $v \in X_{1}$ such that there are at least εn^{2} pairs $F G \in\binom{R(v)}{2}$ with $F G \in \mathcal{B}(v)$. Then $\left|Y_{2}\right| \leq \varepsilon n$.
Proof. Consider the auxiliary bipartite graph G_{2} with vertex classes Y_{2} and $(M)_{4}$ with $\{v,(E, F, G, H)\}$ being an edge if and only if $E F, G H \in \mathcal{A}(v)$ and $F G \in \mathcal{B}(v)$. Note that for each pair $F G \in\binom{R(v)}{2}$ with $F G \in \mathcal{B}(v)$, by definition of $R(v)$ there are at least $\varepsilon n(\varepsilon n-1)>(\varepsilon n)^{2} / 2$ pairs $(E, H) \in(M)_{2}$ such that $\{v,(E, F, G, H)\} \in$ $E\left(G_{2}\right)$. Hence, v has at least $\varepsilon n^{2}(\varepsilon n)^{2} / 2$ neighbours and G_{2} contains at least $\left|Y_{2}\right| \varepsilon^{3} n^{4} / 2$ edges.

Suppose $\left|Y_{2}\right|>\varepsilon n$ then, by averaging, there is a $E F G H \in(M)_{4}$ which has at least $\varepsilon^{4} n$ neighbours in G_{2}. Since the number of graphs on twelve vertices does not exceed 2^{66} from the choices of n_{0} we obtain $\varepsilon^{4} n / 2^{66} \geq 5$ vertices $v_{1} \ldots v_{5} \in\binom{Y_{1}}{5}$ such that $L_{v_{i}}(E F G H)=L_{v_{j}}(E F G H)$ for all $i, j \in[5]$. This contradicts Fact 19 .

Next let $X_{2}=X_{1} \backslash Y_{2}$ and $S(v)=M \backslash R(v)$ for $v \in X_{2}$. Note that $|S(v)|>\varepsilon n$ otherwise from the previous fact we have at most

$$
\begin{equation*}
\binom{|S(v)|}{2}+|R(v)||S(v)|+\varepsilon n^{2} \leq 2 \varepsilon n^{2} \tag{10}
\end{equation*}
$$

pairs in $\mathcal{B}(v)$ which by (9) yields the theorem. Now we argue that there are only few pairs of $\mathcal{B}(v)$ containing one element from $R(v)$ and the other from $S(v)$.
Fact 21. There are no $v_{1} \ldots v_{6} \in\binom{X_{2}}{6}$ and $(E, F, G, H, I) \in(M)_{5}$ such that
(1) $L_{v_{i}}(E F G H I)=L_{v_{j}}(E F G H I)$ for all $i, j \in[5]$,
(2) $\{E, F\},\{H, I\} \in \mathcal{A}\left(v_{1}\right)$ and $\{F, G\},\{G, H\} \in \mathcal{B}\left(v_{1}\right)$.

Proof. Again it is sufficient to prove that one can find a matching of size six in $L_{v_{1}}(E F G H I)$. To this end first denote the vertices with degree three in $L_{v_{1}}(E F)$ by $e_{1} \in E, f_{1} \in F$ (and in $L_{v_{1}}(H I)$ by $h_{1} \in H, i_{1} \in I$, resp.). Since $F G \in \mathcal{B}\left(v_{1}\right)$ there are two vertices in G having two neighbours in F. The same holds for $G H \in \mathcal{B}\left(v_{1}\right)$. Thus there are $g_{1}, g_{2} \in G, g_{1} \neq g_{2}$ such that g_{1} has two neighbours in F and g_{2} has two neighbours in H. Using them we can pick two matching edges in $L_{v_{1}}(F G H)$ which avoid f_{1} and h_{1}. Now the vertices e_{1}, f_{1} (and h_{1}, i_{1}, resp.) can be extended to a matching of size two in $L_{v_{1}}(E F)$ (and $L_{v_{1}}(H I)$, resp.) which leaves the chosen neighbours of g_{1} (and g_{2}, resp.) uncovered. Together this yields a matching of size six.

Fact 22. Let $Y_{3} \subset X_{2}$ consist of all those vertices $v \in X_{2}$ such that there are at least εn^{2} pairs $(E, F) \in R(v) \times S(v)$ which satisfy $E F \in \mathcal{B}(v)$. Then $\left|Y_{3}\right| \leq \varepsilon n$.

Proof. For a vertex $v \in Y_{3}$ and a $G \in S(v)$ let x_{G} denote the number of those $F \in R(v)$ such that $F G \in \mathcal{B}(v)$. Then there are $x_{G}\left(x_{G}-1\right)$ choices $(F, H) \in(R(v))_{2}$ such that $F G, H G \in \mathcal{B}(v)$. And since $F, H \in R(v)$ we have at least $\varepsilon n(\varepsilon n-1)$ choices $(E, I) \in(M)_{2}$ such that $E F, H I \in \mathcal{A}(v)$. Thus G gives rise to at least $x_{G}^{2}(\varepsilon n)^{2} / 2$ sets $(E, F, H, I) \in(M)_{4}$ satisfying $E F, H I \in \mathcal{A}(v)$ and $F G, G H \in \mathcal{B}(v)$. Recall that $s=|S(v)|>\varepsilon n$ according to (10) and that $\sum_{G \in S(v)} x_{G} \geq \varepsilon n^{2}$ since $v \in Y_{3}$. From Jensen's inequality and $s<n / 3$ we obtain:

$$
\begin{equation*}
\frac{(\varepsilon n)^{2}}{2} \sum_{G \in S(v)} x_{G}^{2} \geq \frac{(\varepsilon n)^{2}}{2} s\left(\sum \frac{1}{s} x_{G}\right)^{2} \geq \varepsilon^{4} n^{5} \tag{11}
\end{equation*}
$$

Thus a vertex $v \in Y_{3}$ gives rise to at least $\varepsilon^{4} n^{5}$ ordered tuples $(E, F, G, H, I) \in$ $(M)_{5}$ which satisfy $E F, H I \in \mathcal{A}(v)$ and $F G, G H \in \mathcal{B}(v)$. We consider the auxiliary bipartite graph G_{3} with vertex classes Y_{3} and $(M)_{5}$ and $\{v,(E, F, G, H, I)\}$ being an edge if and only if (E, F, G, H, I) satisfies $E F, H I \in \mathcal{A}(v)$ and $F G, G H \in \mathcal{B}(v)$. If $\left|Y_{3}\right|$ exceeds εn then G_{3} contains at least $\varepsilon^{5} n^{6}$ edges. Then by averaging and the choice of n_{0} we find $v_{1} \ldots v_{6}$ which with EFGHI meet the conditions in Fact 21. This yields a contradiction.

Let $X_{3}=X_{2} \backslash Y_{3}$ and note that $\left|X_{3}\right| \geq \gamma n / 4$. Now before deriving the contradiction, we show that the density of $\mathcal{B}(v)$ in $S(v)$ is at most $1 / 2+\varepsilon$.
Fact 23. There are no $v_{1} \ldots v_{4}$ and $E F G \in\binom{M}{3}$ such that
(1) $L_{v_{1}}(E F G)=L_{v_{2}}(E F G)=L_{v_{3}}(E F G)$,
(2) $E F, F G, G E \in \mathcal{B}\left(v_{1}\right)$.

Proof. Similar to the previous arguments we are looking for a matching of size four in the graph $L_{v_{1}}(E F G)$. To this end denote the isolated vertex in $L_{v_{1}}(E F)$ by x_{1}, the one in $L_{v_{1}}(F G)$ by x_{2} and the one in $L_{v_{1}}(G E)$ by x_{3}. Then there are $1 \leq i, j \leq 3$ such that x_{i} and x_{j} belong to different edges and without loss of generality let $x_{1} \in E$ and $x_{2} \in F$. Since in the link graph $L_{v_{1}}(E F)$ the vertex x_{1} is not adjacent to any vertex of F there must be a vertex $e_{2} \in E$ which has degree three, hence is adjacent to x_{2}. Take $e_{2} x_{2}$ as the first matching edge. In the link graph $L_{v_{1}}(G E)$ there is a vertex $g_{1} \in G$ of degree at least two. This we use to match a vertex $e_{1} \neq e_{2}$ in E. Note that e_{2} could equal x_{1}. Lastly in the link graph $L_{v_{1}}(F G)$ the remaining vertices $f_{1} \neq x_{2} \neq f_{2}$ have degree at least two, hence they can be used to create a matching of size two in $L_{v_{1}}(F G)$ which avoids the vertex g_{1}. Together this yields a matching of size four.

Fact 24. Let $Y_{4} \subset X_{3}$ contain all those vertices $v \in X_{3}$ such that there are at least $\left(\frac{1}{2}+\varepsilon\right)\binom{S(v)}{2}$ pairs $E F \in\binom{S(v)}{2}$ such that $E F \in \mathcal{B}(v)$. Then $\left|Y_{4}\right| \leq \varepsilon n$.

Proof. Consider $\mathcal{B}(v) \cap\binom{S(v)}{2}$ as edges on the vertex set $S(v)$. Further note that $|S(v)| \geq \varepsilon n \geq n_{0}$ and $\varepsilon \geq \varepsilon^{\prime}$. Applying Theorem 15 we obtain at least $c(\varepsilon n)^{3}$ triangles in $S(v)$, i.e., $E F G \in\binom{S(v)}{3}$ such that $E F, F G, G E \in \mathcal{B}(v)$.

As before consider the auxiliary bipartite graph G_{4} on the partition classes Y_{4} and $\binom{M}{3}$ with the edges $\{v, E F G\}$ if and only if $E F G \in\binom{S(v)}{3}$ and $E F, F G, G E \in$ $\mathcal{B}(v)$. In case $\left|Y_{4}\right|>\varepsilon n$ we find by averaging a set $E F G \in\binom{M}{3}$ which, in G_{4}, is connected to at least $c \varepsilon^{4} n$ vertices from Y_{4}. And since n was chosen in such a way that $c \varepsilon^{4} n / 2^{40}>3$ there are $v_{1} v_{2} v_{3} \in\binom{Y_{4}}{3}$ whose link graphs agree on $E F G$, i.e., $L_{v_{1}}(E F G)=L_{v_{2}}(E F G)=L_{v_{3}}(E F G)$. But by Fact 23 this yields a contradiction.

From Facts 18, 20, 22, 24 and the choice $\varepsilon=\gamma / 150$ we infer that $X \backslash \bigcup_{i \in[4]} Y_{i}$ is non-empty. For a vertex $v \in X \backslash \bigcup_{i \in[4]} Y_{i}$ the following properties hold by the definitions of the sets Y_{1}, \ldots, Y_{4}.
(1) There are at most εn^{2} pairs $E F \in\binom{M}{2}$ such that $L_{v}(E F)$ contains a perfect matching. So their contribution to $e\left(L_{v}(M)\right)$ is at most $9 \varepsilon n^{2}$. (Recalling Fact 14 we note that if $L_{v}(E F)$ does not contain a perfect matching then $L_{v}(E F)$ either contains at most four edges or is isomorphic to B_{113}, B_{023} or B_{033}.)
(2) There are at most εn^{2} pairs $E F \in\binom{R(v)}{2}$ such that $E F \in \mathcal{B}(v)$, contributing at most $6 \varepsilon n^{2}$ edges to $L_{v}(M)$. Each of the remaining pairs have a contribution of at most 5 .
(3) There are at most εn^{2} pairs $E F \in R(v) \times S(v)$ such that $E F \in \mathcal{B}(v)$ - which yields a contribution of at most $6 \varepsilon n^{2}$. Note that by definition of $S(v)$ all but $\varepsilon n|S(v)|$ of the remaining pairs from $R(v) \times S(v)$ contribute at most 4 edges to $L_{v}(M)$.
(4) There are at most $\left(\frac{1}{2}+\varepsilon\right)\binom{|S(v)|}{2}$ pairs $E F \in\binom{S(v)}{2}$ such that $E F \in \mathcal{B}(v)$ which yields a contribution of at most $6(1 / 2+\varepsilon)\binom{|S(v)|}{2}$. For all but at most $\varepsilon n|S(v)|$ of the remaining pairs from $\binom{S(v)}{2}$ we have $e\left(L_{v}(E F)\right) \leq 4$.

Now let $r=|R(v)|$ and $s=|S(v)|$. Counting the edges in the link graph of v with respect to $M=R(v) \dot{\cup} S(v)$ we obtain from the (1)-(4) and from $s \leq|M|<n / 3$

$$
\begin{aligned}
e\left(L_{v}(M)\right) \leq & 9 \varepsilon n^{2}+\left[6 \varepsilon n^{2}+5\binom{r}{2}\right]+\left[6 \varepsilon n^{2}+5 \varepsilon n s+4 r s\right] \\
& +\left[6\left(\frac{1}{2}+\varepsilon\right)\binom{s}{2}+4\left(\frac{1}{2}-\varepsilon\right)\binom{s}{2}+5 \varepsilon n s\right] \\
\leq & 5\binom{r}{2}+5\binom{s}{2}+4 r s+30 \varepsilon n^{2} \\
< & 5\binom{|M|}{2}+30 \varepsilon n^{2}<\left(\frac{5}{9}+\gamma\right)\binom{n}{2}
\end{aligned}
$$

with contradiction to (7).
As an immediate consequence we obtain Theorem 6.
Proof of Theorem 6. Let $\gamma>0$ be given. Set $\gamma_{1}=\gamma / 4$ and $\gamma_{2}=\gamma_{1}^{6}$. Applying Corollary 12 with $k=3, \ell=1$ and $2 \gamma_{1}$ yields n_{0}^{\prime} and applying Theorem 16 with γ_{2} yields $n_{0}^{\prime \prime}$. We choose $n_{0}=\max \left\{n_{0}^{\prime}, 2 n_{0}^{\prime \prime}\right\}$. Now let $n>n_{0}, n \in 3 \mathbb{Z}$ and suppose \mathcal{H} is a 3 -uniform hypergraph on n vertices with $\delta(\mathcal{H}) \geq(5 / 9+\gamma)\binom{n}{2}$. Then, trivially, \mathcal{H} has minimum degree $\delta(\mathcal{H}) \geq\left(1 / 2+2 \gamma_{1}\right)\binom{n}{2}$ and we would like to apply Corollary 12 . To this end note that for all subsets $U \subset V(\mathcal{H})$ of size at most $\gamma_{1}^{3} n$ the remaining hypergraph $\mathcal{H}_{U}=\mathcal{H}[V \backslash U]$ still has minimum degree

$$
\delta\left(\mathcal{H}_{U}\right) \geq\left(\frac{5}{9}+\frac{\gamma}{2}\right)\binom{n}{2} \geq\left(\frac{5}{9}+4 \gamma_{2}\right)\binom{n^{\prime}}{2}
$$

where $n^{\prime}=|V(\mathcal{H})|-|U|$. Thus, due to Theorem 16 there is a matching in \mathcal{H}_{U} covering all but $\gamma_{2} n^{\prime} \leq \gamma_{1}^{6} n$ vertices. So, we can to apply Corollary 12 and obtain a perfect matching in \mathcal{H}.

5. Perfect and nearly perfect matchings with several minimum DEGREES

In the sequel we are interested in the interplay between several minimum degree parameters of k-uniform hypergraphs. Our aim is to give an asymptotic characterisation of the existence of a perfect matching and a nearly perfect matching in terms of several minimum degrees. Recall that a nearly perfect matching in a hypergraph on n vertices is a matching covering all but a constant number of vertices. Here, we mainly focus on the asymptotic behaviour of k-uniform hypergraphs.

To be more precise let $k \geq 2$ be fixed integers, $n \in k \mathbb{Z}$ and $\gamma, x_{1}, \ldots, x_{k-1}>0$ be arbitrary positive reals, then we define the subset $\mathfrak{H}_{k, n}\left(\gamma, x_{1} \ldots, x_{k-1}\right)$ of k-uniform hypergraphs \mathcal{H} on n vertices to be

$$
\mathfrak{H}_{k, n}\left(\gamma, x_{1} \ldots, x_{k-1}\right)=\left\{\mathcal{H}: \delta_{i}(\mathcal{H}) \geq\left(x_{i}+\gamma\right)\binom{n}{k-i} \text { for } i=1,2, \ldots, k-1\right\} .
$$

Due to Proposition 9 we have

$$
\begin{equation*}
\delta_{i}(\mathcal{H}) \geq x\binom{n}{k-i} \text { implies } \delta_{i-1}(\mathcal{H}) \geq x\binom{n}{k-i-1}-O\left(n^{k-i-2}\right) \tag{12}
\end{equation*}
$$

thus, we may assume $x_{i} \geq x_{i+1}$ for $i=1, \ldots, k-2$.
We say $\left(x_{1}, \ldots, x_{k-1}\right)$ asymptotically forces a perfect matching if for all $\gamma>0$ there is an n_{0} such that for all $n>n_{0}, n \in k \mathbb{Z}$ every $\mathcal{H} \in \mathfrak{H}_{k, n}\left(\gamma, x_{1}, \ldots, x_{k-1}\right)$
contains a perfect matching. Similarly, we say $\left(x_{1}, \ldots, x_{k}\right)$ asymptotically forces a nearly perfect matching if there is a constant C such that for all $\gamma>0$ there is an n_{0} such that for all $n>n_{0}, n \in k \mathbb{Z}$ every $\mathcal{H} \in \mathfrak{H}_{k, n}\left(\gamma, x_{1}, \ldots, x_{k-1}\right)$ contains a matching covering all but C vertices and there is an $\mathcal{H} \in \mathfrak{H}_{k, n}\left(\gamma, x_{1}, \ldots, x_{k-1}\right)$ which does not contain a perfect matching.

For arbitrary integers $k \geq 2$ we are interested in the functions

$$
s_{k}: D_{k-1} \rightarrow\{0,1,2\}
$$

on the domain $D_{k-1}=\left\{\left(x_{1}, \ldots, x_{k-1}\right) \in[0,1]^{k}: x_{i} \geq x_{2} \geq \ldots x_{k}\right\}$ which are defined by
$s_{k}\left(x_{1}, \ldots, x_{k-1}\right)= \begin{cases}2 & \left(x_{1}, \ldots, x_{k}\right) \text { asymptotically forces a perfect matching } \\ 1 & \left(x_{1}, \ldots, x_{k}\right) \text { asymptotically forces a nearly perfect matching } \\ 0 & \text { otherwise. }\end{cases}$
First note that $s_{k}\left(x_{1}, \ldots, x_{k-1}\right)$ is monotone increasing in each x_{i}. And for $k=3$ our results determine $s_{3}\left(x_{1}, x_{2}\right)$ completely. We know $s_{3}(5 / 9,0)=2$ by Theorem 6 , $s_{3}(1 / 2,1 / 3)=2$ by Theorem 3 combined with the Absorbing Lemma, Lemma 10. By Theorem 3 we know $s_{3}(1 / 3,1 / 3)=1$ and combined with the lower bounds and the monotonicity we know $s_{3}\left(x_{1}, x_{2}\right)$ for all $x_{1} \geq x_{2}$ (see Figure 2). Fact 5 gives examples for $s_{3}(1 / 2,1 / 2)$ and $s_{3}(5 / 9,1 / 3)$.

Figure 2. The function $s_{3}\left(x_{1}, x_{2}\right)$.

6. Open Problems

In Theorem 6 we determined the asymptotic value of $t(3,1, n)$. However, we believe that the error term $\gamma\binom{n}{2}$ in Theorem 6 can be reduced.

For $\ell<k / 2$ and $k>3$ the asymptotic value of $t(k, \ell, n)$ is still not known and the known upper and lower bound are far apart. It would be interesting to close this gap.

Further, we have shown that for $\ell>k / 2$ there is a significant difference between perfect and nearly perfect matchings in terms of minimum ℓ-degrees (compare Theorem 3 and Theorem 4). This phenomenon, however, cannot happen if $\ell=1$ (due to the Absorbing Lemma, Lemma 10) and, more generally, it cannot happen if $((k-1) / k)^{k-\ell}<1 / 2$ (see $\delta_{\ell}\left(\mathcal{H}_{1}\right)$ in Fact 5$)$ and it would be nice to know for which $\ell=\ell(k)$ the minimum ℓ-degree for nearly perfect matchings and perfect matchings have the same asymptotics.

More generally, the task of determining the function $s_{k}\left(x_{1}, \ldots, x_{k-1}\right)$ for all k and all x_{i} remains open.

References

1. N. Alon and J. H. Spencer, The probabilistic method, second ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience [John Wiley \& Sons], New York, 2000, With an appendix on the life and work of Paul Erdős. 2.1, 2.2
2. B. Bollobás, Modern graph theory, Graduate Texts in Mathematics, vol. 184, Springer-Verlag, New York, 1998. 1
3. D. E. Daykin and R. Häggkvist, Degrees giving independent edges in a hypergraph, Bull. Austral. Math. Soc. 23 (1981), no. 1, 103-109. 1, 1, 1
4. A. W. Goodman, On sets of acquaintances and strangers at any party, Amer. Math. Monthly 66 (1959), 778-783. 4.1
5. D. Kühn and D. Osthus, Matchings in hypergraphs of large minimum degree, J. Graph Theory 51 (2006), no. 4, 269-280. 1, 1, 1, 1, 2.1
6. J. W. Moon and L. Moser, On a problem of Turán, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 283-286. 4.1
7. E. A. Nordhaus and B. M. Stewart, Triangles in an ordinary graph, Canad. J. Math. 15 (1963), 33-41. 4.1
8. O. Pikhurko, Perfect matchings and K_{4}^{3}-tilings in hypergraphs of large codegree, Graphs Combin. 24 (2008), no. 4, 391-404. 1, 1, 1, 2.1, 2.1
9. V. Rödl, A. Ruciński, M. Schacht, and E. Szemerédi, A note on perfect matchings in uniform hypergraphs with large minimum collective degree, Comment. Math. Univ. Carolin. 49 (2008), no. 4, 633-636. 1
10. V. Rödl, A. Ruciński, and E. Szemerédi, Perfect matchings in large uniform hypergraphs with large minimum collective degree, submitted. 1, 1, 2.2
11. , Dirac's theorem for 3-uniform hypergraphs, Combin. Probab. Comput. 15 (2006), no. 1-2, 229-251. 2.2
12. -_, Perfect matchings in uniform hypergraphs with large minimum degree, European J. Combin. 27 (2006), no. 8, 1333-1349. 1, 1

Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, D10099 Berlin, Germany

E-mail address: \{hhan|person|schacht\}@informatik.hu-berlin.de

[^0]: The first author was supported by DFG within the research training group "Methods for Discrete Structures".

 The second author was supported by GIF grant no. I-889-182.6/2005.

