A NOTE ON PERFECT MATCHINGS IN UNIFORM HYPERGRAPHS WITH LARGE MINIMUM COLLECTIVE DEGREE

VOJTĚCH RÖDL, ANDRZEJ RUCIŃSKI, MATHIAS SCHACHT, AND ENDRE SZEMERÉDI

Abstract

For an integer $k \geq 2$ and a k-uniform hypergraph H, let $\delta_{k-1}(H)$ be the largest integer d such that every $(k-1)$-element set of vertices of H belongs to at least d edges of H. Further, let $t(k, n)$ be the smallest integer t such that every k-uniform hypergraph on n vertices and with $\delta_{k-1}(H) \geq t$ contains a perfect matching. The parameter $t(k, n)$ has been completely determined for all k and large n divisible by k by Rödl, Ruciński, and Szemerédi in [Perfect matchings in large uniform hypergraphs with large minimum collective degree, submitted]. The values of $t(k, n)$ are very close to $n / 2-k$. In fact, the function $t(k, n)=n / 2-k+c_{n, k}$, where $c_{n, k} \in\{3 / 2,2,5 / 2,3\}$ depends on the parity of k and n. The aim of this short note is to present a simple proof of an only slightly weaker bound: $t(k, n) \leq n / 2+k / 4$. Our argument is based on an idea used in a recent paper of Aharoni, Georgakopoulos, and Sprüssel.

1. Introduction

A k-uniform hypergraph is a pair $H=(V, E)$, where $V:=V(H)$ is a finite set of vertices and $E:=E(H) \subseteq\binom{V}{k}$ is a family of k-element subsets of V. Whenever convenient we will identify H with $E(H)$. A matching in H is a set of disjoint edges of H.

Given a k-uniform hypergraph H and r vertices $v_{1}, \ldots, v_{r} \in V(H), 1 \leq r \leq k-1$, we denote by $\operatorname{deg}_{H}\left(v_{1}, \ldots, v_{r}\right)$ the number of edges of H which contain v_{1}, \ldots, v_{r}. Let $\delta_{r}(H):=\delta_{r}$ be the minimum of $\operatorname{deg}_{H}\left(v_{1}, \ldots, v_{r}\right)$ over all r-element sets of vertices of H.
Definition 1. For all integers $k \geq 2$ and $n \geq k$ divisible by k, denote by $t(k, n)$ the smallest integer t such that every k-uniform hypergraph on n vertices and with $\delta_{k-1} \geq t$ contains a perfect matching, that is, a matching of size n / k.

For graphs, an easy argument shows that $t(2, n)=n / 2$. It follows from [3] that $t(k, n) \leq n / 2+o(n)$. In [2], Kühn and Osthus proved that $t(k, n) \leq n / 2+$ $3 k^{2} \sqrt{n \log n}$. This was further improved in [5] to $t(k, n) \leq n / 2+C \log n$. Finally, the precise result was proved in [4], where it was shown that $t(k, n)=n / 2-k+c_{n, k}$, where $c_{n, k} \in\{3 / 2,2,5 / 2,3\}$ depends on the parity of k and n. The aim of this short note is to present a simple proof of an only slightly weaker bound.

Theorem 2. For all $k \geq 3$ and n divisible by $k, t(k, n) \leq n / 2+k / 4$.

[^0]Our argument is based on an idea used in a recent paper of Aharoni, Georgakopoulos, and Sprüssel [1]. Answering a question from [2], those authors proved in [1] a similar result for k-partite, k-uniform hypergraphs. Their result says that if $V(H)=V_{1} \cup \cdots \cup V_{k},\left|V_{1}\right|=\cdots=\left|V_{k}\right|=n$, and for every $(k-1)$-tuple of vertices $\left(v_{1}, \ldots, v_{k-1}\right) \in V_{1} \times \cdots \times V_{k-1}$ we have $\operatorname{deg}_{H}\left(v_{1}, \ldots, v_{k-1}\right)>n / 2$, while for every $\left(v_{2}, \ldots, v_{k}\right) \in V_{2} \times \cdots \times V_{k}$ we have $\operatorname{deg}_{H}\left(v_{2}, \ldots, v_{k}\right) \geq n / 2$, then H has a perfect matching. While their simple and elegant approach does not seem to readily yield the precise function $t(n, k)$, it can be modified to prove Theorem 2.

2. Proof of Theorem 2

Let H be a k uniform hypergraph on n vertices, where n is divisible by k, such that $\delta_{k-1}(H) \geq n / 2+k / 4$. Further, let M be a largest matching in H. Suppose to the contrary that $|M| \leq n / k-1$, that is, M is not perfect. By adding fake edges if necessary, without loss of generality we may assume that $|M|=n / k-1$. (Alternatively, one could apply Proposition 2.1 from [4] - see Remark 2.1 there, which says that H contains a matching of size at least $n / k-1$, if $\delta_{k-1}(H) \geq$ $n / k+O(\log n)$.) Let x_{1}, \ldots, x_{k} be the vertices of H not covered by M.

For every $u \in V(M)$, let e_{u} be the edge of M containing u. For every vertex v of H, let $T_{M}(v)$ be the set of vertices $u \in V(M)$ such that $\left(e_{u} \backslash\{u\}\right) \cup\{v\}$ is an edge of H. Set $t_{M}(v)=\left|T_{M}(v)\right|$.

Observation 1. For each $i=1, \ldots, k, t_{M}\left(x_{i}\right) \leq n / 2-5 k / 4$.
Proof. If, say, $t_{M}\left(x_{k}\right)>n / 2-5 k / 4$, then $\operatorname{deg}_{H}\left(x_{1}, \ldots, x_{k-1}\right)+t_{M}\left(x_{k}\right)>n-k=$ $|V(M)|$, so $N\left(x_{1}, \ldots, x_{k-1}\right) \cap T_{M}\left(x_{k}\right) \neq \emptyset$. Let $u \in N\left(x_{1}, \ldots, x_{k-1}\right) \cap T_{M}\left(x_{k}\right)$. Then, setting $e^{\prime}=\left\{u, x_{1}, \ldots, x_{k-1}\right\}$ and $e^{\prime \prime}=\left(e_{u} \backslash\{u\}\right) \cup\left\{x_{k}\right\}$, we see that $M^{\prime}=$ $\left(M \backslash\left\{e_{u}\right\}\right) \cup\left\{e^{\prime}, e^{\prime \prime}\right\}$ is a perfect matching in H - a contradiction.

Observation 2. There exists $w \in V(M)$ with $t_{M}(w)>n / 2-k / 4$.
Proof. Let $B=\left(X \dot{\cup} Y, E_{B}\right)$ be an auxiliary bipartite graph where $X=V(M)$, $Y=V(H)$, and $u v \in E_{B}$ if and only if $u \in X, v \in Y$, and $u \in T_{M}(v)$. In view of the assumption on $\delta_{k-1}(H)$, for each of the $n-k$ vertices $u \in X$ we have $\operatorname{deg}_{B}(u) \geq n / 2+k / 4$. Let $Y^{\prime}=Y \backslash\left\{x_{1}, \ldots, x_{k}\right\}$. Then, in view of Observation 1, the number of edges in the induced subgraph $B^{\prime}=B\left[X \cup Y^{\prime}\right]$ is at least

$$
(n-k)\left(\frac{n}{2}+\frac{k}{4}\right)-k\left(\frac{n}{2}-\frac{5 k}{4}\right) .
$$

Hence, by averaging, there exists $w \in Y^{\prime}=V(M)$ such that

$$
t_{M}(w)=\operatorname{deg}_{B^{\prime}}(w) \geq \frac{e\left(B^{\prime}\right)}{n-k} \geq\left(\frac{n}{2}+\frac{k}{4}\right)-\frac{k(n / 2-5 k / 4)}{n-k}>\frac{n}{2}-\frac{k}{4}
$$

Fix w as in Observation 2.
Observation 3. There exists two vertices v_{1} and v_{2} and an edge $e \in M \backslash\left\{e_{w}\right\}$ such that $\left\{v_{1}, v_{2}\right\} \subseteq e, v_{1} \in N_{H}\left(e_{w} \backslash\{w\}\right)$, and $v_{2} \in N_{H}\left(x_{1}, \ldots, x_{k-1}\right)$.
Proof. Together, the $(k-1)$-tuples $S_{1}=e_{w} \backslash\{w\}$ and $S_{2}=\left\{x_{1}, \ldots, x_{k-1}\right\}$ have at most $2(k+1)-1=2 k+1$ neighbors in $e_{w} \cup\left\{x_{1}, \ldots, x_{k}\right\}$. Thus, the total number
of pairs (v, i), where $v \in N_{H}\left(S_{i}\right), v \notin e_{w} \cup\left\{x_{1}, \ldots, x_{k}\right\}$, and $i=1,2$, is at least $2(n / 2+k / 4)-2 k-1$, and, by averaging, there exists $e \in M \backslash\left\{e_{w}\right\}$ for which

$$
\left|\left\{(v, i): v \in N_{H}\left(S_{i}\right) \cap e, i=1,2\right\}\right| \geq \frac{n+k / 2-2 k-1}{n / k-2}>k
$$

Consequently, there exist $v_{1}, v_{2} \in e, v_{1} \neq v_{2}$, such that $v_{i} \in N_{H}\left(S_{i}\right), i=1,2$.
By Observation 3, setting $e^{\prime}=\left(e_{w} \backslash\{w\}\right) \cup\left\{v_{1}\right\}$ and $e^{\prime \prime}=\left\{x_{1}, \ldots, x_{k-1}, v_{2}\right\}$, one can replace M with another matching $M^{\prime}=\left(M \backslash\left\{e_{w}, e\right\}\right) \cup\left\{e^{\prime}, e^{\prime \prime}\right\}$ of the same size, but such that $w \notin V\left(M^{\prime}\right)$. Note that $T_{M}(w) \backslash T_{M^{\prime}}(w) \subseteq e$, and so,

$$
t_{M^{\prime}}(w) \geq t_{M}(w)-k>n / 2-5 k / 4
$$

This is, however, a contradiction to Observation 1 (applied to M^{\prime}). This completes the proof of Theorem 2.
Remark 3. We believe that the bound on $t(n, k)$ from Theorem 2 can be improved slightly, with a more cumbersome case analysis. However, for a clearer presentation we avoided those details.

Acknowledgements. We are grateful to the authors of [1] for providing us with an early version of their manuscript.

References

[1] R. Aharoni, A. Georgakopoulos, and Ph. Sprüssel, Perfect matchings in r-partite r-graphs, submitted. 1, 2
[2] D. Kühn and D. Osthus, Matchings in hypergraphs of large minimum degree, J. Graph Theory 51 (2006), no. 4, 269-280. 1, 1
[3] V. Rödl, A. Ruciński, and E. Szemerédi, An approximative Dirac-type theorem for k-uniform hypergraphs, Combinatorica, to appear. 1
[4] \longrightarrow , Perfect matchings in large uniform hypergraphs with large minimum collective degree, submitted. 1, 2
[5] _, Perfect matchings in uniform hypergraphs with large minimum degree, European J. Combin. 27 (2006), no. 8, 1333-1349. 1

Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA

E-mail address: rodl@mathcs.emory.edu
A. Mickiewicz University, Department of Discrete Mathematics, Umultowska 87, 61614 Poznań, Poland

E-mail address: rucinski@amu.edu.pl
Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, D10099 Berlin, Germany

E-mail address: schacht@informatik.hu-berlin.de
Department of Computer Science, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

E-mail address: szemered@cs.rutgers.edu

[^0]: The first author was supported by NSF grant DMS 0300529.
 The second author was supported by grant N201036 32/2546 and part of research was performed at Emory University, Atlanta.

 The fourth author was supported by NSF grants DMS-0100784 and DMS-0603745.

