A NOTE ON PERFECT MATCHINGS IN UNIFORM HYPERGRAPHS WITH LARGE MINIMUM COLLECTIVE DEGREE

VOJTĚCH RÖDL, ANDRZEJ RUCIŃSKI, MATHIAS SCHACHT, AND ENDRE SZEMERÉDI

ABSTRACT. For an integer $k \geq 2$ and a k-uniform hypergraph H, let $\delta_{k-1}(H)$ be the largest integer d such that every (k-1)-element set of vertices of H belongs to at least d edges of H. Further, let t(k, n) be the smallest integer t such that every k-uniform hypergraph on n vertices and with $\delta_{k-1}(H) \geq t$ contains a perfect matching. The parameter t(k, n) has been completely determined for all k and large n divisible by k by Rödl, Ruciński, and Szemerédi in [Perfect matchings in large uniform hypergraphs with large minimum collective degree, submitted]. The values of t(k, n) are very close to n/2-k. In fact, the function $t(k, n) = n/2 - k + c_{n,k}$, where $c_{n,k} \in \{3/2, 2, 5/2, 3\}$ depends on the parity of k and n. The aim of this short note is to present a simple proof of an only slightly weaker bound: $t(k, n) \leq n/2 + k/4$. Our argument is based on an idea used in a recent paper of Aharoni, Georgakopoulos, and Sprüssel.

1. INTRODUCTION

A k-uniform hypergraph is a pair H = (V, E), where V := V(H) is a finite set of vertices and $E := E(H) \subseteq {V \choose k}$ is a family of k-element subsets of V. Whenever convenient we will identify H with E(H). A matching in H is a set of disjoint edges of H.

Given a k-uniform hypergraph H and r vertices $v_1, \ldots, v_r \in V(H), 1 \leq r \leq k-1$, we denote by $\deg_H(v_1, \ldots, v_r)$ the number of edges of H which contain v_1, \ldots, v_r . Let $\delta_r(H) := \delta_r$ be the minimum of $\deg_H(v_1, \ldots, v_r)$ over all r-element sets of vertices of H.

Definition 1. For all integers $k \ge 2$ and $n \ge k$ divisible by k, denote by t(k, n) the smallest integer t such that every k-uniform hypergraph on n vertices and with $\delta_{k-1} \ge t$ contains a perfect matching, that is, a matching of size n/k.

For graphs, an easy argument shows that t(2, n) = n/2. It follows from [3] that $t(k, n) \leq n/2 + o(n)$. In [2], Kühn and Osthus proved that $t(k, n) \leq n/2 + 3k^2\sqrt{n\log n}$. This was further improved in [5] to $t(k, n) \leq n/2 + C\log n$. Finally, the precise result was proved in [4], where it was shown that $t(k, n) = n/2 - k + c_{n,k}$, where $c_{n,k} \in \{3/2, 2, 5/2, 3\}$ depends on the parity of k and n. The aim of this short note is to present a simple proof of an only slightly weaker bound.

Theorem 2. For all $k \ge 3$ and n divisible by k, $t(k,n) \le n/2 + k/4$.

The first author was supported by NSF grant DMS 0300529.

The second author was supported by grant N201036 32/2546 and part of research was performed at Emory University, Atlanta.

The fourth author was supported by NSF grants DMS-0100784 and DMS-0603745.

Our argument is based on an idea used in a recent paper of Aharoni, Georgakopoulos, and Sprüssel [1]. Answering a question from [2], those authors proved in [1] a similar result for k-partite, k-uniform hypergraphs. Their result says that if $V(H) = V_1 \cup \cdots \cup V_k$, $|V_1| = \cdots = |V_k| = n$, and for every (k-1)-tuple of vertices $(v_1, \ldots, v_{k-1}) \in V_1 \times \cdots \times V_{k-1}$ we have $\deg_H(v_1, \ldots, v_{k-1}) > n/2$, while for every $(v_2, \ldots, v_k) \in V_2 \times \cdots \times V_k$ we have $\deg_H(v_2, \ldots, v_k) \ge n/2$, then H has a perfect matching. While their simple and elegant approach does not seem to readily yield the precise function t(n, k), it can be modified to prove Theorem 2.

2. Proof of Theorem 2

Let H be a k uniform hypergraph on n vertices, where n is divisible by k, such that $\delta_{k-1}(H) \geq n/2 + k/4$. Further, let M be a largest matching in H. Suppose to the contrary that $|M| \leq n/k - 1$, that is, M is not perfect. By adding fake edges if necessary, without loss of generality we may assume that |M| = n/k - 1. (Alternatively, one could apply Proposition 2.1 from [4] – see Remark 2.1 there, which says that H contains a matching of size at least n/k - 1, if $\delta_{k-1}(H) \geq n/k + O(\log n)$.) Let x_1, \ldots, x_k be the vertices of H not covered by M.

For every $u \in V(M)$, let e_u be the edge of M containing u. For every vertex v of H, let $T_M(v)$ be the set of vertices $u \in V(M)$ such that $(e_u \setminus \{u\}) \cup \{v\}$ is an edge of H. Set $t_M(v) = |T_M(v)|$.

Observation 1. For each i = 1, ..., k, $t_M(x_i) \le n/2 - 5k/4$.

Proof. If, say, $t_M(x_k) > n/2 - 5k/4$, then $\deg_H(x_1, \ldots, x_{k-1}) + t_M(x_k) > n-k = |V(M)|$, so $N(x_1, \ldots, x_{k-1}) \cap T_M(x_k) \neq \emptyset$. Let $u \in N(x_1, \ldots, x_{k-1}) \cap T_M(x_k)$. Then, setting $e' = \{u, x_1, \ldots, x_{k-1}\}$ and $e'' = (e_u \setminus \{u\}) \cup \{x_k\}$, we see that $M' = (M \setminus \{e_u\}) \cup \{e', e''\}$ is a perfect matching in H – a contradiction.

Observation 2. There exists $w \in V(M)$ with $t_M(w) > n/2 - k/4$.

Proof. Let $B = (X \cup Y, E_B)$ be an auxiliary bipartite graph where X = V(M), Y = V(H), and $uv \in E_B$ if and only if $u \in X$, $v \in Y$, and $u \in T_M(v)$. In view of the assumption on $\delta_{k-1}(H)$, for each of the n-k vertices $u \in X$ we have $\deg_B(u) \ge n/2 + k/4$. Let $Y' = Y \setminus \{x_1, \ldots, x_k\}$. Then, in view of Observation 1, the number of edges in the induced subgraph $B' = B[X \cup Y']$ is at least

$$(n-k)\left(\frac{n}{2}+\frac{k}{4}\right)-k\left(\frac{n}{2}-\frac{5k}{4}\right).$$

Hence, by averaging, there exists $w \in Y' = V(M)$ such that

$$t_M(w) = \deg_{B'}(w) \ge \frac{e(B')}{n-k} \ge \left(\frac{n}{2} + \frac{k}{4}\right) - \frac{k(n/2 - 5k/4)}{n-k} > \frac{n}{2} - \frac{k}{4}.$$

Fix w as in Observation 2.

Observation 3. There exists two vertices v_1 and v_2 and an edge $e \in M \setminus \{e_w\}$ such that $\{v_1, v_2\} \subseteq e, v_1 \in N_H(e_w \setminus \{w\})$, and $v_2 \in N_H(x_1, \ldots, x_{k-1})$.

Proof. Together, the (k-1)-tuples $S_1 = e_w \setminus \{w\}$ and $S_2 = \{x_1, \ldots, x_{k-1}\}$ have at most 2(k+1) - 1 = 2k + 1 neighbors in $e_w \cup \{x_1, \ldots, x_k\}$. Thus, the total number

of pairs (v, i), where $v \in N_H(S_i)$, $v \notin e_w \cup \{x_1, \ldots, x_k\}$, and i = 1, 2, is at least 2(n/2 + k/4) - 2k - 1, and, by averaging, there exists $e \in M \setminus \{e_w\}$ for which

$$|\{(v,i): v \in N_H(S_i) \cap e, i = 1, 2\}| \ge \frac{n+k/2-2k-1}{n/k-2} > k.$$

Consequently, there exist $v_1, v_2 \in e, v_1 \neq v_2$, such that $v_i \in N_H(S_i), i = 1, 2$. \Box

By Observation 3, setting $e' = (e_w \setminus \{w\}) \cup \{v_1\}$ and $e'' = \{x_1, \ldots, x_{k-1}, v_2\}$, one can replace M with another matching $M' = (M \setminus \{e_w, e\}) \cup \{e', e''\}$ of the same size, but such that $w \notin V(M')$. Note that $T_M(w) \setminus T_{M'}(w) \subseteq e$, and so,

$$t_{M'}(w) \ge t_M(w) - k > n/2 - 5k/4.$$

This is, however, a contradiction to Observation 1 (applied to M'). This completes the proof of Theorem 2.

Remark 3. We believe that the bound on t(n, k) from Theorem 2 can be improved slightly, with a more cumbersome case analysis. However, for a clearer presentation we avoided those details.

Acknowledgements. We are grateful to the authors of [1] for providing us with an early version of their manuscript.

References

- R. Aharoni, A. Georgakopoulos, and Ph. Sprüssel, Perfect matchings in r-partite r-graphs, submitted. 1, 2
- [2] D. Kühn and D. Osthus, Matchings in hypergraphs of large minimum degree, J. Graph Theory 51 (2006), no. 4, 269–280. 1, 1
- [3] V. Rödl, A. Ruciński, and E. Szemerédi, An approximative Dirac-type theorem for k-uniform hypergraphs, Combinatorica, to appear. 1
- [4] _____, Perfect matchings in large uniform hypergraphs with large minimum collective degree, submitted. 1, 2
- [5] _____, Perfect matchings in uniform hypergraphs with large minimum degree, European J. Combin. 27 (2006), no. 8, 1333–1349.

Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA

 $E\text{-}mail\ address:\ \texttt{rodl}\texttt{Qmathcs.emory.edu}$

A. Mickiewicz University, Department of Discrete Mathematics, Umultowska 87, 61-614 Poznań, Poland

E-mail address: rucinski@amu.edu.pl

Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany

 $E\text{-}mail\ address: \texttt{schacht@informatik.hu-berlin.de}$

Department of Computer Science, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

E-mail address: szemered@cs.rutgers.edu