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Brendan Nagle a,∗,1, Vojtěch Rödl b,2 and Mathias Schacht c,3

aDepartment of Mathematics and Statistics, University of Nevada, Reno, Reno,
NV, 89557, USA

bDepartment of Mathematics and Computer Science, Emory University, Atlanta,
GA, 30032, USA

cInstitut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6,
D-10099, Berlin, Germany

Abstract

Szemerédi’s regularity lemma proved to be a powerful tool in extremal graph theory.
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is d(k
2)nk(1± o(1)).

Frankl and Rödl extended Szemerédi’s regularity lemma to 3-graphs and Nagle
and Rödl established an accompanying 3-graph counting lemma analogous to the
graph counting lemma above. In this paper, we provide a new proof of the 3-graph
counting lemma.
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1 Introduction

Szemerédi’s regularity lemma [20] is a powerful tool in combinatorics with
many applications in extremal graph theory, combinatorial number theory, and
theoretical computer science (see, e.g., the excellent surveys [8,9] for some of
these applications). The lemma asserts that all large graphs can be decom-
posed into constantly many edge-disjoint, bipartite subgraphs, almost all of
which behave “random-like” (see Theorem 1 below).

The broad applicability of Szemerédi’s lemma to graph problems suggests that
a regularity lemma for hypergraphs might render many applications. Frankl
and Rödl [1] established such an extension, hereafter called the FR-Lemma,
of the regularity lemma to 3-graphs or 3-uniform hypergraphs. (A 3-uniform
hypergraph H on the vertex set V is a family of 3-element subsets of V ,
i.e., H ⊆

(
V
3

)
. Note that we identify hypergraphs with their edge set and we

write V (H) for the vertex set.) The FR-lemma guarantees that any large 3-
graph admits a decomposition into constantly many edge-disjoint, tripartite
subsystems, almost all of which behave “random-like.” Applications of the
FR-lemma to 3-graphs can be found in [1,4–6,10,11,15,16,18,19].

Most of the applications of the 3-graph regularity lemma are based on a struc-
tural counterpart, the so-called 3-graph counting lemma, which was first ob-
tained by the first two authors [12]. As a cogent example, the counting lemma,
working within the framework of the FR-lemma, gives a new proof of Sze-
merédi’s theorem for arithmetic progressions of length four (see [1]) and its
multidimensional version restricted to four points (see [19]).

In this note we give an alternative proof of the 3-graph counting lemma, The-
orem 5. This result was originally obtained by the first two authors [12] and
follows also from the work of Peng, Skokan and the second author [14]. (In this
latter reference, the authors show that hypergraph ‘regularity’, defined pre-
cisely in Definition 3, is suitably preserved on complete underlying subgraphs,
which then implies the counting lemma.) The proof presented here is substan-
tially different. It is based on Szemerédi’s regularity lemma and is somewhat
simpler than the earlier proofs. The statement of Theorem 5 requires some
notation and we begin by stating Szemerédi’s regularity lemma precisely.

1.1 Szemerédi’s regularity lemma

In this paper we write x = y± ξ for reals x and y and some positive ξ > 0 for
the inequalities y − ξ ≤ x ≤ y + ξ. Szemerédi’s lemma pivots on the concept
of an ε-regular pair. Let bipartite graph B be given with bipartition X ∪ Y .
We say the pair (X, Y ) is (d, ε)-regular if for all X ′ ⊆ X and Y ′ ⊆ Y where
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|X ′| > ε|X| and |Y ′| > ε|Y |, we have dB(X ′, Y ′) = d± ε where dB(X ′, Y ′) =
|E(B[X ′, Y ′])||X ′|−1|Y ′|−1 is the density of the bipartite subgraph B[X ′, Y ′]
of B induced on X ′ ∪ Y ′. We say the pair (X, Y ) is ε-regular if it is (d, ε)-
regular for some d. In this paper, we use a well-known variant of Szemerédi’s
regularity lemma for k-partite graphs G, and therefore present Szemerédi’s
lemma in this context. Let k-partite graph G be given with k-partition V =
V (G) = V1∪ . . .∪Vk. We say a refining partition W i

1∪ . . .∪W i
t = Vi, 1 ≤ i ≤ k,

is t-equitable if |W i
1| ≤ . . . ≤ |W i

t | ≤ |W i
1| + 1. We say a t-equitable partition

W i
1 ∪ . . . ∪W i

t = Vi, 1 ≤ i ≤ k, is ε-regular if for all 1 ≤ i < j ≤ k, all but εt2

pairs (W i
a, W

j
b ), 1 ≤ a, b ≤ t, are ε-regular. Szemerédi’s regularity lemma (for

k-partite graphs) can then be stated ∗ as follows.

Theorem 1 (Szemerédi’s regularity lemma) Let integer k ≥ 1 and ε >
0 be given. There exist positive integers N0 = N0(k, ε) and T0 = T0(k, ε)
such that any k-partite graph G on the vertex set V = V1 ∪ · · · ∪ Vk with
|V1|, . . . , |Vk| ≥ N0, admits an ε-regular and t-equitable partition W i

1 ∪ . . . ∪
W i

t = Vi for 1 ≤ i ≤ k, where t ≤ T0.

Central to many applications of Szemerédi’s regularity lemma is the assertion
that any subgraph F of constant size may be embedded into an appropriately
given collection of “dense and regular” pairs from an ε-regular and t-equitable
partition. This observation is due to the counting lemma for graphs. For a
graph G, we denote by K(2)

s (G) the set of all s-tuples from V (G) spanning
cliques K(2)

s in G.

Fact 2 (Counting lemma) For every integer s ≥ 2 and constants d > 0
and γ > 0 there exists ε > 0 so that whenever G is an s-partite graph with
vertex partition V1∪· · ·∪Vs satisfying that all induced bipartite graphs G[Vi, Vj],
1 ≤ i < j ≤ s, are (d, ε)-regular and |V1| = · · · = |Vs| = n for sufficiently large

n, then |K(2)
s (G)| = d(s

2)ns(1± γ).

1.2 The counting lemma for 3-graphs

In this section we introduce the notion of regular 3-graphs and state the 3-
graph counting lemma. We omit a formulation of the FR-Lemma since its

∗ There are other k-partite formulations of Szemerédi’s regularity lemma. A pos-
sibly more common formulation would define t-equitable partitions as W i

0 ∪W i
1 ∪

· · · ∪W i
t = Vi, 1 ≤ i ≤ t, where |W i

0| < t and |W i
1| = · · · = |W i

t | (W i
0, 1 ≤ i ≤ t, is

often referred to as a ‘garbage’ class). Then ε-regular, t-equitable partitions would
be defined otherwise the same as we did for Theorem 1; for each 1 ≤ i < j ≤ k,
all but εt2 pairs (W i

a,W
j
b ), 1 ≤ a, b ≤ t, are ε-regular. These two notions of t-

equitable ε-regular partitions are the equivalent, however, up to a slight change
in ε.
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formulation is somewhat technical and, in fact, is not needed to state the
corresponding counting lemma. The following definition generalizes the notion
of regular graphs to regular 3-graphs.

Definition 3 ((δ, r)-regularity) Let a positive integer r ≥ 1 and constants
d ≥ 0 and δ > 0 be given along with a 3-graph H and a 3-partite graph
P = P 12 ∪ P 13 ∪ P 23. We say that H is (d, δ, r)-regular with respect to P if
for any family Q = {Q1, . . . , Qr} of r subgraphs of P with∣∣∣∣∣

r⋃
i=1

K(2)
3 (Qi)

∣∣∣∣∣ > δ
∣∣∣K(2)

3 (P )
∣∣∣ we have |dH (Q)− d| < δ

where

dH (Q) =


|H∩
⋃r

i=1
K(2)

3 (Qi)|
|
⋃r

i=1
K(2)

3 (Qi)|
if

∣∣∣ ⋃r
i=1K

(2)
3 (Qi)

∣∣∣ > 0,

0 otherwise.

is the density of H on Q. We say H is (δ, r)-regular with respect to P if it
is (d, δ, r)-regular with respect to P for some d ≥ 0.

In most contexts where H is (d, δ, r)-regular w.r.t. P , we actually have H ⊆
K(2)

3 (P ). This assumption, however, is not needed to state Definition 3. More-
over, we note that Definition 3 allows some members Qi of Q to be empty.

While Szemerédi’s regularity lemma decomposes the vertex set of a graph, the
3-graph regularity lemma partitions not only the vertex set, but also partitions
the set of all pairs between any two such vertex classes into edge-disjoint bi-
partite graphs. In that environment, the concept corresponding to an ε-regular
pair is that of Definition 3, where the three bipartite graphs P 12, P 13, and P 23

are also regular (in the sense of Szemerédi). Consequently, a corresponding
generalization of Fact 2 takes place in the following environment.

Setup 4 Let positive integers k, r and n and positive constants d3, δ3, d2 and
δ2 be given. Suppose

(1 ) V = V1 ∪ . . . ∪ Vk, |V1| = . . . = |Vk| = n, is a partition of vertex set V .
(2 ) P =

⋃
1≤i<j≤k P ij is a k-partite graph, with vertex set V and k-partition

above, where all P ij = P [Vi, Vj], 1 ≤ i < j ≤ k, are (d2, δ2)-regular.
(3 ) H =

⋃
1≤h<i<j≤kHhij ⊆ K3(P ) is a k-partite 3-graph, with vertex set V

and k-partition above, where all Hhij = H[Vh, Vi, Vj], 1 ≤ h < i < j ≤ k,
are (d3, δ3, r)-regular with respect to P hi ∪ P ij ∪ P hj.

The counting lemma estimates the number of hypercliques, i.e., complete 3-
graphs, K

(3)
k in H. We denote by K(3)

k (H) the set of all k-tuples from V (H)

spanning hypercliques K
(3)
k in H.

Theorem 5 (Counting lemma [12]) Let k ≥ 3 be an integer. For every
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γ > 0 and d3 > 0 there exists δ3 > 0 so that for all d2 > 0 there exist integer
r and δ2 > 0 and n sufficiently large so that with these constants, if H and P
are as in Setup 4, then

∣∣∣K(3)
k (H)

∣∣∣ = d
(k
3)

3 d
(k
2)

2 nk(1± γ) .

Proving Theorem 5 is the content of this paper. The first proof of Theorem 5
appeared in [12] and another proof by Peng, Skokan, and one of the authors
was given in [14]. The proof we present here is shorter than the previous
ones and we believe it is also simpler. We present our proof in Section 2 and
conclude this introduction with the following remarks.

The main problem of proving Theorem 5 is working with the given quantifica-
tion of constants: ∀γ, d3,∃δ3 : ∀d2,∃δ2,∃r. This quantification, consistent with
the output of the 3-graph regularity lemma, allows for the graph P to be rela-
tively “sparse” compared to δ3, the measure of regularity of the 3-graph H. If
the quantification of constants were allowed as ∀γ, d3, d2,∃δ3 = δ2, then such a
“dense” version of Theorem 5 is simpler to prove and was proved in [7]. In the
present paper, we use Szemerédi’s regularity lemma, Theorem 1, to overcome
those difficulties arising from the quantification of constants in Theorem 5.

Recently Gowers [2,3] developed a regularity lemma and a corresponding
counting lemma for `-graphs for general ` ≥ 3. The approach in [2,3] is dif-
ferent and, e.g., for ` = 3 the notion of 3-graph regularity there differs from
that in Definition 3. A regularity lemma for `-graphs (` ≥ 3) extending the
notion of (δ, r)-regularity was proved by Rödl and Skokan [17] and the current
authors [13] proved an accompanying `-graph counting lemma for that regu-
larity lemma. The proof of the general counting lemma in [13] was inspired by
the main idea presented here, i.e., it uses the regularity lemma for `-graphs
to overcome difficulties, which are similar to those indicated in the previous
remark.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful
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2 Proof of the 3-graph counting lemma

It was shown in [12] that the full statement of Theorem 5 can be deduced from
just the lower bound. Hence it suffices to prove the lower bound of Theorem 5
only.

Our proof of Theorem 5 proceeds by induction on k ≥ 3. The base case k = 3
is trivial. Indeed, by Definition 3, H = H123 has (relative) density d3 ± δ3

with respect to P = P 12 ∪ P 23 ∪ P 13. Fact 2 implies that (with δ2 � γ)

|K(2)
3 (P )| = d3

2n
3(1 ± γ/2) and the lower bound of Theorem 5 for k = 3 then

follows from δ3 � γ.

To proceed to the induction step, we assume that Theorem 5 holds for k − 1.
Recalling the quantification of Theorem 5, which is ∀γ, d3,∃d3 : ∀d2,∃δ2,∃r,
we may assume that

1

k
,
γ

2
, d3 � δ3 ≥ min{δ3, d2} � δ2,

1

r
� 1

n
(1)

holds. Then for a given graph P and a 3-graph H as in Setup 4, we show

|K(3)
k (H)| ≥ d

(k
3)

3 d
(k
2)

2 nk(1− γ).

We now refine the hierarchy in (1) and introduce some further auxiliary con-
stants. Let ε0 > 0 and integer r′ > 0 be chosen so that both ε0, 1/r

′ �
min{d2, δ3}. Let T0 = T0(k− 1, ε0) be the constant guaranteed by Szemerédi’s
regularity lemma, Theorem 1. We choose δ2 > 0 so small and integers r and n
so large (which complies with the quantification of Theorem 5) that the hier-
archy (1) extends to

1

k
, γ, d3 � δ3 ≥ min{δ3, d2} � ε0,

1

r′
,

1

T0

� δ2,
1

r
� 1

n
. (2)

Before going into the precise details of the induction step, we first give an
informal description of the proof.

2.1 Outline of the induction step

The so-called link graphs of H play a central rôle in our proof of the induction
step. In the context of Setup 4, consider a vertex v ∈ V1 and fix 2 ≤ i < j ≤ k.
The (i, j)-link graph Lij

v is defined † as Lij
v = {{vi, vj} ∈ P ij : {v, vi, vj} ∈ H}

† Note that Lij
v has vertex set NP 1i(v) ∪ NP 1j (v) where, for example, NP 1i(v)

is the P 1i-neighborhood of the vertex v. Note that Lij
v is a subgraph of P ij

v ,
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and the link graph Lv of v is then set as Lv =
⋃

2≤i<j≤k Lij
v . (Note that Lv is

a (k − 1)-partite graph.)

A natural place to consider applying the induction hypothesis on the counting
lemma is to enumerate cliques K

(3)
k−1 in the (k − 1)-partite hypergraph H ∩

K(2)
3 (Lv) (with the (k − 1)-partite graph Lv), where v ∈ V1 is a ‘typical’

vertex. (Indeed, a clique K
(3)
k−1 in H ∩ K(2)

3 (Lv) corresponds to a clique K
(3)
k

in H containing the vertex v.) For this, one would need to check that the

hypothesis of the counting lemma is met (for (k− 1)) by H∩K(2)
3 (Lv) and Lv

(replacing H and P , as in Setup 4). Unfortunately, this won’t often be the
case. Indeed, one may show that while the density of the bipartite graphs Lij

v

(for most v ∈ V1), 1 ≤ i < j ≤ k, is about d2d3, the regularity of Lij
v depends

on δ3. As we see in (2), δ3 � d3d2, and to apply the induction hypothesis, we
would need it the other way around.

The main idea of our proof is to apply the Szemerédi regularity lemma, The-
orem 1, to the link graphs Lv, i.e., we ‘regularize’ the links. With ε0 � d2d3

(cf. (2)), we will regularize each Lv to obtain ε0-regular partition P v given by
Vi = W v,i

1 ∪ · · · ∪W v,i
tv , 2 ≤ i ≤ k, where tv ≤ T0 for the constant T0 appearing

in (2). We will then show that for each 2 ≤ i < j ≤ k, for most v ∈ V1, most
of the pairs W v,i

a , W v,j
b , 1 ≤ a, b ≤ tv, will have density in Lij

v close to d2d3 (see
part (i ) of Claim 7). (Of course, most of these pairs W v,i

a , W v,j
b are ε0-regular

where ε0 � d2d3.) Showing this will involve using the (d3, δ3, r)-regularity
of H1ij w.r.t. P 1i ∪ P 1j ∪ P ij and the choice r � T0. We will then show that
for all 2 ≤ h < i < j ≤ k, for most v ∈ V1, most triples W v,h

a , W v,i
b , W v,j

c ,

1 ≤ a, b, c ≤ tv, will satisfy that Hhij ∩ K(2)
3 (Lv) is (d3, δ

1/20
3 , r′)-regular

w.r.t. Lv[W
v,h
a , W v,i

b , W v,j
c ] (see part (ii ) of Claim 7). Showing this will in-

volve using the (d3, δ3, r)-regularity of Hhij w.r.t. P hi ∪ P hj ∪ P ij and the
choice r � max{r′, T0}.

From the two observations above, we then infer that for most v ∈ V1, most
(k−1)-partite graphs Lv[W

v,2
a2

, . . . ,W v,k
ak

], 1 ≤ a2, . . . , ak ≤ tv, and correspond-

ing 3-graphs H∩K(2)
3 (Lv[W

v,2
a2

, . . . ,W v,k
ak

]) satisfy the hypothesis (for (k − 1))
of the counting lemma. (That is, after the adjustment of regularizing the
links, we are in a position of using the induction hypothesis (within the

pieces).) We then use the induction hypothesis to count the cliques K
(3)
k−1

in H ∩ K(2)
3 (Lv[W

v,2
a2

, . . . ,W v,k
ak

]). We then add over all suitable choices of
indices 1 ≤ a2, . . . , ak ≤ tv and then add over all suitable choices of ver-
tices v ∈ V1.

We now formalize the details sketched above.

where P ij
v = P ij [NP 1i(v), NP 1j (v)] is the subgraph of P ij induced on the neigh-

borhoods NP 1i(v) and NP 1j (v).
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2.2 Transversals and their properties

Let the constants be fixed as in (2) and a k-partite graph P and a 3-graph H
be given as in Setup 4. We first regularize the link graphs. For every vertex
v ∈ V1, we apply Szemerédi’s regularity lemma, Theorem 1 with ε0, to the
(k−1)-partite link graph Lv to obtain an ε0-regular and tv-equitable partition
P v of V (Lv), where tv ≤ T0 (see (2)). In other words, P v refines the partition
NP 12(v) ∪ · · · ∪ NP 1k(v) = V (Lv), i.e., we obtain W v,i

1 ∪ · · · ∪W v,i
tv = NP 1i(v)

for i = 2, . . . , k, where for all pairs 2 ≤ i < j ≤ k all but at most ε0t
2
v pairs

(a, b) ∈ [tv]× [tv] satisfy that Lij
v [W v,i

a , W v,j
b ] is ε0-regular.

For a fixed v ∈ V1 and a fixed (k − 1)-vector av = (a2, . . . , ak) ∈ [tv] × · · · ×
[tv] = [tv]

k−1 we denote by Lv(av) the subgraph of Lv induced on the sets
W v,2

a2
, . . . ,W v,k

ak
, i.e.,

Lv (av) =
⋃

2≤i<j≤k

Lij
v

[
W v,i

ai
, W v,j

aj

]
= Lv

[
W v,2

a2
, . . . ,W v,k

ak

]
. (3)

Similarly, we define for all 2 ≤ h < i < j ≤ k and (ah, ai, aj) ∈ [tv]
3

Lhij
v [ah, ai, aj] = Lhi

v [W v,h
ah

, W v,i
ai

] ∪ Lij
v [W v,i

ai
, W v,j

aj
] ∪ Lhj

v [W v,h
ah

, W v,j
aj

] . (4)

Moreover, we set H(av) to be equal to the 3-graph H induced on the triangles
of Lv(av), i.e.,

H(av) = H ∩K(2)
3

(
Lv (av)

)
=

⋃
2≤h<i<j≤k

Hhij(av), (5)

where Hhij(av) = Hhij ∩ K(2)
3 (Lhij

v [ah, ai, aj]).

We refer to the objects H(av) and Lv(av) as transversals of the partition P v

(see Figure 1).

Note that as Lv was regularized, we infer that all but ε0k
2tk−1

v vectors av =

(a2, . . . , ak) ∈ [tv]
k−1 satisfy that all

(
k−1
2

)
bipartite graphs Lij

v [W v,i
ai

, W v,j
aj

],
2 ≤ i < j ≤ k, are ε0-regular.

It follows directly from the definitions in (3) and (5) that∣∣∣K(3)
k (H)

∣∣∣ = ∑
v∈V1

∑
av∈[tv ]k−1

∣∣∣K(3)
k−1(H(av))

∣∣∣ . (6)

In our proof of the induction step we will use the following well-known fact
about the size of typical neighborhoods in δ2-regular graphs (see, e.g., [8,
Fact 1]).
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V1

V2

V3

Vi

Vj

Vk

v

W
v,2
a2

W
v,j
aj

W
v,k
ak

W
v,i
ai

W
v,3
a3

Fig. 1. A transversal of the partition P v.

Fact 6 For all but 2kδ2n vertices v ∈ V1, we have |NP 1i(v)| = (d2 ± δ2)n, for
all 2 ≤ i ≤ k.

For future reference, we set

V ′
1 = {v ∈ V1 : |NP 1i(v)| = (d2 ± δ2)n, for all 2 ≤ i ≤ k} (7)

so that Fact 6 implies |V ′
1 | ≥ (1− 2kδ2)n.

The following claim is the key observation for the proof of Theorem 5. While
technical looking, part (i ) of Claim 7 follows from standard arguments, which
we present in Section 4. The proof of part (ii ) is given in Section 5.

Claim 7 For all but δ
1/4
3 n vertices v ∈ V ′

1 (see (7)), all but δ
1/20
3 k3tk−1

v vectors
av = (a2, . . . , ak) ∈ [tv]

k−1 yield transversals Lv(av) and H(av) satisfying that

(i ) for all 2 ≤ i < j ≤ k the bipartite graphs Lij
v [W v,i

ai
, W v,j

aj
] have density

d2d3(1± δ
1/4
3 ) and (due to regularization) are ε0-regular,

(ii ) for all 2 ≤ h < i < j ≤ k the 3-partite 3-graph Hhij(av) is (d3, δ
1/20
3 , r′)-

regular with respect to the 3-partite graphs Lhij
v [ah, ai, aj], where r′ is given

in (2) (recall the notation in (4)).

Let V typ
1 denote the set of “typical” vertices v ∈ V1 to which Fact 6 and

Claim 7 refer. For each v ∈ V typ
1 , let [tv]

k−1
typ denote the set of “typical” vectors

av ∈ [tv]
k−1 to which Claim 7 refers.
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2.3 The induction step

We conclude from Fact 6 and Claim 7 above that for any vertex v ∈ V typ
1 and

any av ∈ [tv]
k−1
typ , the transversals H(av) and Lv(av), satisfy the hypothesis of

Setup 4 with the constants k − 1, d3, δ
1/20
3 , d2d3, ε0, r′ and d2n/tv. Indeed, as

in Setup 4, observe that H(av) replaces H, Lv(av) replaces P , k − 1 replaces

k, d3 remains d3, δ
1/20
3 replaces δ3, d2d3 replaces d2, ε0 replaces δ2 and d2n/tv

replaces n. (We’ll take γ/2 to replace γ)

Due to the hierarchy of the constants in (2), we may assume that

1

k − 1
,
γ

2
, d3 � δ

1/20
3 ≥ min{δ1/20

3 , d2d3} � ε0,
1

r′
� tv

d2n
. (8)

As such, for fixed v ∈ V typ
1 and av = (a2, . . . , ak) ∈ [tv]

k−1
typ , we may apply the

induction hypothesis to the transversals H(av) and Lv(av) and infer

∣∣∣K(3)
k−1 (H(av))

∣∣∣ ≥ d
(k−1

3 )
3 (d2d3)

(k−1
2 )
(

d2n

tv

)k−1 (
1− γ

2

)

= d
(k
3)

3 d
(k
2)

2

nk−1

tk−1
v

(
1− γ

2

)
.

(9)

Consequently, by (6) we have

∣∣∣K(3)
k (H)

∣∣∣ = ∑
v∈V1

∑
av∈[tv ]k−1

∣∣∣K(3)
k−1(H(av))

∣∣∣
(9)

≥ d
(k
3)

3 d
(k
2)

2 nk−1
(
1− γ

2

) ∑
v∈V typ

1

∣∣∣[tv]k−1
typ

∣∣∣
tk−1
v

.

By Fact 6 and Claim 7, |V typ
1 | ≥ (1 − δ

1/4
3 − 2kδ2)n > (1 − 2δ

1/4
3 )n and

|[tv]k−1
typ | ≥ (1− k3δ

1/20
3 )tk−1

v for every v ∈ V typ
1 . Hence we conclude (due to the

hierarchy in (8)) that

∣∣∣K(3)
k H)

∣∣∣ ≥ d
(k
3)

3 d
(k
2)

2 nk
(
1− γ

2

)
(1− 2δ

1/4
3 )(1− k3δ

1/20
3 ) ≥ d

(k
3)

3 d
(k
2)

2 nk(1− γ) .

This concludes our proof of Theorem 5. 2
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3 Proof of Claim 7

In this section, we outline our strategies for proving parts (i ) and (ii ) of
Claim 7. To begin, we find the following notation helpful to discuss Claim 7
and use it in the remainder of this paper.

Definition 8 Fix v ∈ V1. For fixed 2 ≤ i < j ≤ k and 2 ≤ h < i, set

Lij
good(v) = {(a, b) ∈ [tv]2 : Lij

v [W v,i
a ,W v,j

b ] is (d, ε0)-regular for d = d2d3(1± δ
1/4
3 )},

Lhij
good(v) = {(a, b, c) ∈ [tv]3 : (a, b) ∈ Lhi

good(v), (b, c) ∈ Lij
good(v), (a, c) ∈ Lhj

good(v)},

Hhij
good(v) = {(a, b, c) ∈ [tv]3 : Hhij is (d3, δ

1/20
3 , r′)-regular w.r.t Lhij

v [a, b, c]},

where Lhij
v [a, b, c] was defined in (4). Finally, set

Lgood(v) =
{
av ∈ [tv]

k−1 : (ai, aj) ∈ Lij
good(v) for all 2 ≤ i < j ≤ k

}
,

Hgood(v) =
{
av ∈ [tv]

k−1 : (ah, ai, aj) ∈ Hhij
good(v) for all 2 ≤ h < i < j ≤ k

}
.

We also define corresponding “bad” sets and fix

Lij
bad(v) = [tv]2 \ Lij

good(v), Lhij
bad(v) = [tv]3 \ Lhij

good(v), Hhij
bad(v) = [tv]3 \Hhij

good(v),

Lbad(v) = [tv]k−1 \ Lgood(v), and Hbad(v) = [tv]k−1 \Hgood(v).

In the notation above, Claim 7 asserts that all but δ
1/4
3 n vertices v ∈ V ′

1

(see (7)) satisfy

|Lbad(v)|+ |Hbad(v)| ≤ δ
1/20
3 tk−1

v .

We consider the sum on the left hand side of the inequality above. Observe
that

|Lbad(v)|+ |Hbad(v)| = |Lbad(v)|+ |Hbad(v) ∩ Lgood(v)|+ |Hbad(v) ∩ Lbad(v)|
≤ 2|Lbad(v)|+ |Hbad(v) ∩ Lgood(v)|.

Moreover, observe that

|Lbad(v)| ≤ tk−3
v

∑
2≤i<j≤k

∣∣∣Lij
bad(v)

∣∣∣
and

|Hbad(v) ∩ Lgood(v)| ≤ tk−4
v

∑
2≤h<i<j≤k

∣∣∣Hhij
bad(v) ∩ Lhij

good(v)
∣∣∣

hold for all v ∈ V ′
1 . We may therefore give reformulations of parts (i ) and (ii )

from Claim 7 in the following form.

Proposition 9 (Claim 7 part (i )) Let P and H satisfy Setup 4 with con-

stants as in (2). Then all but 2k2δ
1/2
3 n vertices v ∈ V ′

1 (see (7)) satisfy that

|Lij
bad(v)| ≤ 3δ

1/4
3 t2v for all 2 ≤ i < j ≤ k.

11



Proposition 10 (Claim 7 part (ii )) Let P and H satisfy Setup 4 with con-

stants as in (2). Then all but k3δ
1/4
2 n vertices v ∈ V ′

1 (see (7)) satisfy that

|Lhij
good(v) ∩ Hhij

bad(v)| < 2δ
1/20
3 t3v for all 2 ≤ h < i < j ≤ k.

Propositions 9 and 10 together imply that all but 2k2δ
1/2
3 n + k3δ

1/4
2 n ≤ δ

1/4
3 n

vertices v ∈ V ′
1 satisfy

2|Lbad(v)|+ |Hbad(v) ∩ Lgood(v)|
≤ 2tk−3

v

∑
2≤i<j≤k

∣∣∣Lij
bad(v)

∣∣∣+ tk−4
v

∑
2≤h<i<j≤k

∣∣∣Hhij
bad(v) ∩ Lhij

good(v)
∣∣∣

≤ 6δ
1/4
3

(
k

2

)
tk−1
v + 2δ

1/20
3

(
k

3

)
tk−1
v ≤ δ

1/20
3 k3tk−1

v ,

as promised by Claim 7.

We give the proofs of Proposition 9 and Proposition 10 in Section 4 and
Section 5, respectively.

4 Proof of Proposition 9

Let P and H be given as in Setup 4 where the constants satisfy (2). Moreover,
let {P v}v∈V1 be the family of ε0-regular, tv-equitable partitions obtained in

Section 2.2. We prove that all but 2k2δ
1/2
3 n vertices v ∈ V ′

1 (see (7)) satisfy

|Lij
bad(v)| ≤ 3δ

1/4
3 t2v for all 2 ≤ i < j ≤ k. Let us clarify this goal. Fix 2 ≤

i < j ≤ k. Since P v is ε0-regular for every v ∈ V1, at most ε0t
2
v ≤ δ

1/4
3 t2v pairs

(W v,i
a , W v,j

b ), 1 ≤ a, b ≤ tv, can be irregular. Hence we only have to verify the

density assertion of Proposition 9, namely, for all but 2δ
1/2
3 n vertices v ∈ V ′

1 ,

dLij
v
(W v,i

a , W v,j
b ) = d2d3(1± δ

1/4
3 ) ,

holds for all but 3δ
1/4
3 t2v pairs (W v,i

a , W v,j
b ).

We begin with the following definition.

Definition 11 Let L ⊆ P be bipartite graphs with bipartition U1 ∪U2 and let
d, δ > 0 and integer r be given. We say L is (d, δ, r)-regular with respect to
P if every family B = {B1, . . . , Br} of r induced subgraphs Bi ⊆ P satisfying
|⋃r

s=1 Bs| > δ|P | also satisfies |L ∩ ⋃r
s=1 Bs| = (d± δ)|⋃r

s=1 Bs|.

The following fact appeared (in slightly different language) in [1, Claim A] (see
also [12]). It asserts that forH and P as in Setup 4, most vertices v ∈ V1 satisfy
that their links Lij

v , 2 ≤ i ≤ j ≤ k, are regular in the sense of Definition 11.

12



Fact 12 (most links are (d3, 2δ
1/2
3 , r)-regular) Let k, d3, δ3, d2 and r be

given as in (2). Then for H and P are as in Setup 4, all but 2k2δ
1/2
3 n vertices

v ∈ V ′
1 (see (7)) satisfy that for all 2 ≤ i < j ≤ k, Lij

v is (d3, 2δ
1/2
3 , r)-regular

with respect to P ij
v = P [NP 1i(v), NP 1j(v)].

Fact 12 is essentially the same as Claim A from [1]. For completeness, we
sketch a proof of Fact 12 at the end of this section.

As in Fact 12, we say that a vertex v ∈ V ′
1 is a good vertex if for all 2 ≤

i < j ≤ k, Lij
v is (d3, 2δ

1/2
3 , r)-regular with respect to P ij

v . Let V good
1 =

V good
1 (k, d3, δ3, d2, δ2, r) be the set of all good vertices v ∈ V ′

1 .

PROOF of Proposition 9. Fact 12 ensures us that almost every vertex
v ∈ V ′

1 is a good vertex. Now, fix 2 ≤ i < j ≤ k. The key observation is

that every good vertex v ∈ V good
1 satisfies that all but 2δ

1/4
3 t2v pairs W v,i

a , W v,j
b ,

1 ≤ a, b ≤ tv, have density d2d3(1± δ
1/4
3 ).

Indeed, let v ∈ V good
1 but suppose {(W v,i

a , W v,j
b )}(a,b)∈I is a collection of pairs,

each with density, say, smaller than d2d3(1− δ
1/4
3 ), such that |I| ≥ δ

1/4
3 t2v. We

claim the family B = {P ij
v [W v,i

a , W v,j
b ] : (a, b) ∈ I} contradicts the (d3, 2δ

1/2
3 , r)-

regularity of Lij
v with respect to P ij

v .

Note that (2) gives that r ≥ T 2
0 ≥ t2v ≥ |I| = |B|. The set B is therefore a

family of r induced subgraphs of P ij
v = P [NP 1i(v), NP 1j(v)]. We claim B is a

family of r induced subgraphs of P ij
v satisfying∣∣∣∣ ⋃

(a,b)∈I

P ij
v

[
W v,i

a , W v,j
b

] ∣∣∣∣ > 2δ
1/2
3

∣∣∣P ij
v

∣∣∣ (10)

and∣∣∣∣Lij
v ∩

⋃
(a,b)∈I

P ij
v

[
W v,i

a , W v,j
b

] ∣∣∣∣ < (
d3 − 2δ

1/2
3

) ∣∣∣∣ ⋃
(a,b)∈I

P ij
v

[
W v,i

a , W v,j
b

] ∣∣∣∣ . (11)

Once (10) and (11) are established, we see that B contradicts the (d3, 2δ
1/2
3 , r)-

regularity of Lij
v with respect to P ij

v . This will prove Proposition 9. We first
verify (10). Observe that∣∣∣∣ ⋃

(a,b)∈I

P ij
v

[
W v,i

a , W v,j
b

] ∣∣∣∣ = ∑
(a,b)∈I

∣∣∣P ij
v

[
W v,i

a , W v,j
b

]∣∣∣ . (12)

Fix (a, b) ∈ I. Recall that δ2 � 1/T0 ≤ 1/tv in (2) and since v ∈ V ′
1∣∣∣W v,i

a

∣∣∣ = |NP 1i(v)|
tv

± 1 = (d2 ± 2δ2)
n

tv
,

13



(recall (7)). Consequently, the (d2, δ2)-regularity of P ij implies that∣∣∣P ij
v

[
W v,i

a , W v,j
b

]∣∣∣ = (d2 ± δ2)
∣∣∣W v,i

a

∣∣∣∣∣∣W v,j
b

∣∣∣
= (d2 ± δ2)

(
(d2 ± 2δ2)

n

tv

)2

= (d2 ± 2δ2)
3n2

t2v
.

(13)

The (d2, δ2)-regularity of P ij also implies (recalling v ∈ V ′
1 (cf. (7))

∣∣∣P ij
v

∣∣∣ = (d2 ± δ2)
(
(d2 ± δ2)n

)2

= (d2 ± δ2)
3n2. (14)

Consequently, with |I| ≥ δ
1/4
3 t2v, (12), (13) and (14) establish (10).

Observe that (11) is equivalent to

∑
(a,b)∈I

∣∣∣Lij
v

[
W v,i

a , W v,j
b

]∣∣∣ < (
d3 − 2δ

1/2
3

) ∑
(a,b)∈I

∣∣∣P ij
v

[
W v,i

a , W v,j
b

]∣∣∣ . (15)

Fix (a, b) ∈ I. Our assumption is that∣∣∣Lij
v

[
W v,i

a , W v,j
b

]∣∣∣ < d2d3

(
1− δ

1/4
3

) ∣∣∣W v,i
a

∣∣∣∣∣∣W v,j
b

∣∣∣
which, with (13), implies

∣∣∣Lij
v

[
W v,i

a , W v,j
b

]∣∣∣ < d3
(1− δ

1/4
3 )

(1− δ2d
−1
2 )

∣∣∣P ij
v

[
W v,i

a , W v,j
b

]∣∣∣
< (d3 − 2δ

1/2
3 )

∣∣∣P ij
v

[
W v,i

a , W v,j
b

]∣∣∣ (16)

where the last inequality follows from δ2 � d2, δ3 in (2). As (16) holds for each
(a, b) ∈ I, (15) follows. 2

PROOF of Fact 12. It suffices to consider just the case k = 3, for which we
prove all but 2δ

1/2
3 n vertices v ∈ V ′

1 (see (7)) satisfy that L23
v is (d3, 2δ

1/2
3 , r)-

regular w.r.t. P 23
v . We note that while the constants d3, δ3, d2, δ2 and r satisfy

the hierarchy in (2) (due to the quantification of the counting lemma), all
that is required to enable the present sketch is that 0 < δ2 = δ2(d2) � d2 is
sufficiently small.

For each fixed vertex v ∈ V ′
1 (see (7)) for which L23

v is not (d3, 2δ
1/2
3 , r)-regular

w.r.t. P 23
v , fix a family Bv = {Bv1, . . . , Bvr} of r induced subgraphs Bvs ⊆ P 23

v ,
1 ≤ s ≤ r, for which ∣∣∣∣ r⋃

s=1

Bvs

∣∣∣∣ > 2δ
1/2
3

∣∣∣P 23
v

∣∣∣ (17)
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but for which either∣∣∣∣L23
v ∩

r⋃
s=1

Bvs

∣∣∣∣ < (d3− 2δ
1/2
3 )

∣∣∣∣ r⋃
s=1

Bvs

∣∣∣∣ or
∣∣∣∣L23

v ∩
r⋃

s=1

Bvs

∣∣∣∣ > (d3 +2δ
1/2
3 )

∣∣∣∣ r⋃
s=1

Bvs

∣∣∣∣ .
Let V −

1 be the set of such vertices v ∈ V ′
1 for which the first condition holds

and let V +
1 be the set of such vertices v ∈ V ′

1 for which the second condition

holds. We claim |V −
1 | < δ

1/2
3 n and |V +

1 | < δ
1/2
3 n. The proofs of these two

inequalities are symmetric, so w.l.o.g., we prove only the first.

Assume, on the contrary, that |V −
1 | ≥ δ

1/2
3 n. We show V −

1 leads to a contradic-
tion with the (d3, δ3, r)-regularity of H123 w.r.t. P 12∪P 13∪P 23. In particular,
we show the set V −

1 implies the existence of a family Q = QV −
1

= {Q1, . . . , Qr}
satisfying∣∣∣∣∣

r⋃
s=1

K(2)
3 (Qs)

∣∣∣∣∣ > δ3

∣∣∣K(2)
3 (P 12 ∪ P 13 ∪ P 23)

∣∣∣ and dH123(Q) < d3 − δ3. (18)

Indeed, fix v ∈ V −
1 and fix 1 ≤ s ≤ r. Define Q12

vs ⊆ P 12 (respectively
Q13

vs ⊆ P 13) as the set of all edges of P 12 (resp. P 13) containing vertex v
and define Q23

vs = Bvs. Set Qvs = Q12
vs ∪ Q13

vs ∪ Q23
vs and Qs =

⋃
v∈V −

1
Qvs.

Set Q = {Q1, . . . , Qr}. Note that∣∣∣∣∣
r⋃

s=1

K(2)
3 (Qs)

∣∣∣∣∣ = ∑
v∈V −

1

∣∣∣∣∣
r⋃

s=1

Bvs

∣∣∣∣∣ (19)

and

∣∣∣∣∣H123 ∩
r⋃

s=1

K(2)
3 (Qs)

∣∣∣∣∣ = ∑
v∈V −

1

∣∣∣∣∣L23
v ∩

r⋃
s=1

Bvs

∣∣∣∣∣ . (20)

Note that the second inequality of (18) is trivial. Indeed, using both equalities
in (19) and (20) and the definition of V −

1 , we have

∑
v∈V −

1

∣∣∣∣∣L23
v ∩

r⋃
s=1

Bvs

∣∣∣∣∣ < (
d3 − 2δ

1/2
3

) ∑
v∈V −

1

∣∣∣∣∣
r⋃

s=1

Bvs

∣∣∣∣∣ = (
d3 − 2δ

1/2
3

) ∣∣∣∣∣
r⋃

s=1

K(2)
3 (Qs)

∣∣∣∣∣
so that dH123(Q) < d− 2δ

1/2
3 < d3 − δ3 follows.

To see the first inequality of (18), we use (17) to see

∑
v∈V −

1

∣∣∣∣∣
r⋃

s=1

Bvs

∣∣∣∣∣ > ∑
v∈V −

1

2δ
1/2
3 |P 23

v | > 2δ
1/2
3 (d2 − δ2) ((d2 − δ2)n)2

∣∣∣V −
1

∣∣∣
where the last inequality follows from v ∈ V ′

1 (as in (14) cf. (7)). Then our
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assumption about V −
1 implies

2δ
1/2
3 (d2 − δ2)

3 n2
∣∣∣V −

1

∣∣∣ > 2δ3 (d2 − δ2)
3 n3.

Since δ2 � d2, Fact 2 implies |K(2)
3 (P 12 ∪ P 13 ∪ P 23)| ≤ (3/2)d3

2n
3, and so the

first inequality of (18) follows from (19) and from δ2d
−1
2 � d2 in (2). 2

5 Proof of Proposition 10

We show that all but k3δ
1/4
2 n vertices v ∈ V ′

1 (see (7)) satisfy |Lhij
good(v) ∩

Hhij
bad(v)| < 2δ

1/20
3 t3v for all 2 ≤ h < i < j ≤ k. In the remainder of this paper,

we fix 2 ≤ h < i < j ≤ k. It suffices to prove that all but δ
1/4
2 n vertices v ∈ V ′

1

satisfy |Lhij
good(v) ∩ Hhij

bad(v)| < 2δ
1/20
3 t3v for the fixed indices 2 ≤ h < i < j ≤ k.

Remark 13 In the remainder of this paper, the indices 2 ≤ h < i < j ≤ k
are fixed.

Assume, on the contrary, there exists a set Ahij ⊆ V ′
1 of size

|Ahij| > δ
1/4
2 n (21)

consisting of vertices for which∣∣∣Lhij
good(v) ∩ Hhij

bad(v)
∣∣∣ ≥ 2δ

1/20
3 t3v. (22)

We show that (21) leads to a contradiction to our hypothesis of Setup 4 that
the triad Hhij is (d3, δ3, r)-regular with respect to P hi ∪P ij ∪P hj. We outline
our approach in the following remark.

Remark 14 Fix v ∈ Ahij and fix (a, b, c) ∈ Lhij
good(v)∩Hhij

bad(v). Since (a, b, c) ∈
Hhij

bad(v), we appeal to Definitions 3 and 8 to infer that there exists a family
Qhij

vabc = {Qhij
vabc(p) : 1 ≤ p ≤ r′}, Qhij

vabc(p) ⊆ Lhij
v [a, b, c] (see (4)), satisfying∣∣∣∣∣∣

r′⋃
p=1

K(2)
3 (Qhij

vabc(p))

∣∣∣∣∣∣ > δ
1/20
3

∣∣∣K(2)
3

(
Lhij

v [a, b, c]
)∣∣∣ , (23)

but ∣∣∣dH (Qhij
vabc

)
− d3

∣∣∣ ≥ δ
1/20
3 . (24)

In (32), we collect a witness Qhij
vabc for each (a, b, c) ∈ Lhij

good(v) ∩ Hhij
bad(v) and

v ∈ Ahij to create a “big witness” Qhij that will contradict the (d3, δ3, r)-
regularity of Hhij with respect to P hi ∪ P ij ∪ P hj.
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In the process of collecting the witnesses Qhij
vabc over (a, b, c) ∈ Lhij

good(v)∩Hhij
bad(v)

and v ∈ Ahij, we do not need the entire set Ahij, and in fact, we need only
a small subset thereof. Over two steps, we refine the set Ahij into two nested
subsets Chij ⊆ Bhij ⊆ Ahij where the final subset Chij produces the big
witness Qhij promised.

5.1 Refining the set Ahij

We obtain the intermediate subset Bhij ⊆ Ahij using Fact 15 below. This fact
states that from Ahij we may find a subset of vertices Bhij, every pair from
which has the “right” shared P 1q-neighborhood, q ∈ {h, i, j}.

Fact 15 Set

f = 128
δ
2/5
3

d3
3d

3
2

. (25)

Assuming (21), there exists a set Bhij ⊆ Ahij of size |Bhij| = 2f such that for
each q ∈ {h, i, j} and for every distinct vertices u, v ∈ Bhij ,∣∣∣NP 1q(u) ∩NP 1q(v)

∣∣∣ = (d2 ± δ2)
2n. (26)

Fact 15 is not difficult to prove and was shown, in a slightly different context,
in [1, page 155]. For completeness, we prove Fact 15 in Section 5.5.

To identify the subset Chij ⊆ Bhij, we use the following considerations. Fix
v ∈ Bhij and set

LH−(v) =
{
(a, b, c) ∈ Lhij

good(v) ∩ Hhij
bad(v) : dH

(
Qhij

vabc

)
< d3 − δ

1/20
3

}
, (27)

LH+(v) =
{
(a, b, c) ∈ Lhij

good(v) ∩ Hhij
bad(v) : dH

(
Qhij

vabc

)
> d3 + δ

1/20
3

}
. (28)

Moreover, we define

Bhij
− =

{
v ∈ Bhij : |LH−(v)| ≥ 1

2

∣∣∣Lhij
good(v) ∩ Hhij

bad(v)
∣∣∣} ,

Bhij
+ =

{
v ∈ Bhij : |LH+(v)| ≥ 1

2

∣∣∣Lhij
good(v) ∩ Hhij

bad(v)
∣∣∣} .

Clearly, one of |Bhij
− | ≥ 1

2
|Bhij| = f or |Bhij

+ | ≥ 1
2
|Bhij| = f holds. In our

proof, it does not matter which holds as the cases are symmetric. We assume,
without loss of generality, that the former holds and we fix some set

Chij ⊂ Bhij
− ⊆ Bhij such that |Chij| = f . (29)
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We construct the witness Qhij from Chij. Before doing so, however, we state
the following fact for future reference.

Fact 16 Let v ∈ Chij. From (22) and the definition of T0 (see (2)), we infer

δ
1/20
3 t3v ≤

1

2

∣∣∣Lhij
bad(v) ∩ Hhij

bad(v)
∣∣∣ ≤ |LH−(v)| ≤ t3v ≤ T 3

0 (30)

For each (a, b, c) ∈ LH−(v), we recall from (24) that dH
(
Qhij

vabc

)
< d3 − δ

1/20
3 ,

and so, ∣∣∣∣∣∣Hhij ∩
r′⋃

p=1

K(2)
3 (Qhij

vabc(p))

∣∣∣∣∣∣ <
(
d3 − δ

1/20
3

) ∣∣∣∣∣∣
r′⋃

p=1

K(2)
3 (Qhij

vabc(p))

∣∣∣∣∣∣ . (31)

5.2 Constructing the witness

With the set Chij above, we proceed to construct the promised witness Qhij.
Define

Qhij =
{
Qhij

vabc(p) : v ∈ Chij, (a, b, c) ∈ LH−(v), and p = 1, . . . , r′
}

. (32)

We assert Qhij is the promised family witnessing the (d3, δ3, r)-irregularity of
Hhij with respect to P hi ∪ P ij ∪ P hj.

We first claim that Qhij has at most r members. Indeed, we have

|Qhij| (32)
= r′

∑
v∈Chij

|LH−(v)|
(30)

≤ r′fT 3
0

(25)
= 128r′T 3

0

δ
2/5
3

d3
3d

3
2

(2)
� r ,

as desired.

Now, as Qhij has at most r members consisting of subgraphs from P hi∪P ij ∪
P hj, the following observation, Claim 17 and 18, provide a direct contradiction
to the (d3, δ3, r)-regularity of Hhij with respect to P hi ∪ P ij ∪ P hj. For that
set

K(2)
3 (Qhij) =

⋃{
K(2)

3 (Qhij
vabc(p)) : v ∈ Chij, (a, b, c) ∈ LH−(v), p = 1, . . . , r′

}
.

Claim 17
∣∣∣K(2)

3 (Qhij)
∣∣∣ > δ3

∣∣∣K(2)
3 (P hi ∪ P ij ∪ P hj)

∣∣∣ .

Claim 18
∣∣∣Hhij ∩ K(2)

3 (Qhij)
∣∣∣ < (d3 − δ3)

∣∣∣K(2)
3 (Qhij)

∣∣∣ .

Since Claims 17 and 18 provide a contradiction to the (d3, δ3, r)-regularity
of Hhij with respect to P hi ∪ P ij ∪ P hj, our proof of Proposition 10 will be
complete upon proving these two claims.
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5.3 Proof of Claim 17

Inclusion-exclusion gives∣∣∣K(2)
3 (Qhij)

∣∣∣ ≥ ∑
v∈Chij

∣∣∣⋃{
K(2)

3

(
Qhij

vabc(p)
)

: (a, b, c) ∈ LH−(v), p = 1, . . . , r
}∣∣∣

−
∑

v 6=v′∈Chij

∣∣∣⋃{
K(2)

3

(
Qhij

vabc(p)
)
∩ K(2)

3

(
Qhij

v′a′b′c′(p
′)
)}∣∣∣ , (33)

where the last union runs over all (a, b, c) ∈ LH−(v), (a′, b′, c′) ∈ LH−(v′), and
p, p′ = 1, . . . , r′. We bound the two terms on the right hand side of (33) in the
following two facts ‡ .

Fact 19 For every v ∈ Chij

∣∣∣⋃{
K(2)

3 (Qhij
vabc(p)) : (a, b, c) ∈ LH−(v), p = 1, . . . , r

}∣∣∣ ≥ δ
1/10
3

128
d3

3d
6
2n

3.

Fact 20 For all distinct vertices v, v′ ∈ Chij

∣∣∣⋃{
K(2)

3

(
Qhij

vabc(p)
)
∩ K(2)

3

(
Qhij

v′a′b′c′(p
′)
)

: (a, b, c) ∈ LH−(v),

(a′, b′, c′) ∈ LH−(v′), and p, p′ = 1, . . . , r′
}∣∣∣ ≤ 16d9

2n
3 .

Facts 19 and 20 conclude the proof of Claim 17.

PROOF of Claim 17. Applying Facts 19 and 20 to (33), we obtain the
lower bound

∣∣∣K(2)
3 (Qhij)

∣∣∣ ≥ f
δ
1/10
3

128
d3

3d
6
2n

3 − 16

(
f

2

)
d9

2n
3 ≥ d3

2n
3

fd3
3d

3
2δ

1/10
3

128
− 8f 2d6

2

 .

Inserting the value f = 128δ
2/5
3 /(d3

3d
3
2) from (25), we infer the further lower

bound

∣∣∣K(2)
3 (Qhij)

∣∣∣ ≥ d3
2n

3

(
δ
1/2
3 − 217

d6
3

δ
4/5
3

)
= δ

1/2
3 d3

2n
3

(
1− 217

d6
3

δ
3/10
3

)

≥ 1

2
δ
1/2
3 d3

2n
3, (34)

where the last inequality follows from the fact that δ3 � d3 from (2). On the
other hand, since δ2 � d2 in (2), we conclude from Fact 2, the counting lemma

‡ These two facts will also be useful in our proof of Claim 18, as will the inclusion-
exclusion of (33).
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for graphs, that ∣∣∣K(2)
3

(
P hi ∪ P ij ∪ P hj

)∣∣∣ ≤ 2d3
2n

3.

Comparing this inequality against (34) proves Claim 17. 2

Thus, it remains to verify Facts 19 and 20.

PROOF of Fact 19. Fix a vertex v ∈ Chij. Observe from (32) that

∣∣∣⋃{
K(2)

3 (Qhij
vabc(p)) : (a, b, c) ∈ LH−(v) and p = 1, . . . , r

}∣∣∣
=

∑
(a,b,c)∈LH−(v)

∣∣∣∣∣∣
r′⋃

p=1

K(2)
3

(
Qhij

vabc(p)
)∣∣∣∣∣∣

(23)

≥
∑

(a,b,c)∈LH−(v)

δ
1/20
3

∣∣∣K(2)
3

(
Lhij

v [a, b, c]
)∣∣∣ . (35)

We further estimate (35) by appealing to Fact 2.

Fix (a, b, c) ∈ LH−(v) ⊆ Lhij
good(v) (see (27)). By the definition of Lhij

good(v), each

of the three bipartite graphs Lhi
v [W v,h

a , W v,i
b ], Lij

v [W v,i
b , W v,j

c ], and Lhj
v [W v,h

a , W v,j
c ],

is ε0-regular with density d3d2(1± δ
1/4
3 ), where ε0 � d2d3 from (2). Applying

Fact 2 to Lhij
v [a, b, c], we therefore conclude

∣∣∣K(2)
3

(
Lhij

v [a, b, c]
)∣∣∣ ≥ 1

2

(
d3d2

(
1− δ

1/4
3

))3
|W v,h

a ||W v,i
b ||W v,j

c |

≥ (d3d2)
3

16
|W v,h

a ||W v,i
b ||W v,j

c | ≥ d3
3d

6
2

128

n3

t3v
(36)

where the last inequality follows from the fact that v ∈ V ′
1 (see (7)). Applying

(36) to (35), we conclude

∣∣∣⋃{
K(2)

3 (Qhij
vabc(p)) : (a, b, c) ∈ LH−(v) and p = 1, . . . , r

}∣∣∣
≥ δ

1/20
3

128

d3
3d

6
2

t3v
n3 |LH−(v)|

(30)

≥ δ
1/10
3

128
d3

3d
6
2n

3,

as claimed. 2

PROOF of Fact 20 Let two distinct vertices v and v′ ∈ Chij be fixed. We use
the notation P hi

vv′ for the subgraph of P hi induced on NP 1h(v, v′) ∪NP 1i(v, v′)
where, for example, NP 1h(v, v′) = NP 1h(v) ∩ NP 1h(v′). Define P ij

vv′ and P hj
vv′

20



similarly. Then,∣∣∣⋃{
K(2)

3

(
Qhij

vabc(p)
)
∩ K(2)

3

(
Qhij

v′a′b′c′(p
′)
)

: (a, b, c) ∈ LH−(v), (37)

(a′, b′, c′) ∈ LH−(v′), and p, p′ = 1, . . . , r′
}∣∣∣ ≤ ∣∣∣K(2)

3

(
P hi

vv′ ∪ P ij
vv′ ∪ P hj

vv′

)∣∣∣ .

To bound the right hand side of (37), we apply Fact 2 to the graph P hi
vv′ ∪

P ij
vv′ ∪ P hj

vv′ , but first check that it is appropriate to do so.

To see that Fact 2 applies to the graph P hi
vv′ ∪ P ij

vv′ ∪ P hj
vv′ , we claim that each

of P hi
vv′ , P ij

vv′ and P hj
vv′ is (d2, δ

1/2
2 )-regular, and check this assertion for P hi

vv′ .
Recall from (26) that each of |NP 1h(v, v′)|, |NP 1i(v, v′)| = (d2 ± δ2)

2n � δ2n.
Since P hi is (d2, δ2)-regular, and since P hi

vv′ is the subgraph of P hi induced

on NP 1h(v, v′) ∪ NP 1i(v, v′), we have that P hi
vv′ inherits § (d2, δ

1/2
2 )-regularity

from P hi.

Returning to (37), we apply Fact 2 (with δ
1/2
2 � d2) to obtain∣∣∣K(2)

3

(
P hi

vv′ ∪ P ij
vv′ ∪ P hj

vv′

)∣∣∣ ≤ 2d3
2 |NP 1h(v, v′)| |NP 1i(v, v′)| |NP 1j(v, v′)| ,

from which it follows (via (26)) that∣∣∣K(2)
3

(
P hi

vv′ ∪ P ij
vv′ ∪ P hj

vv′

)∣∣∣ ≤ 16d9
2n

3. (38)

Combining (37) and (38) proves Fact 20. 2

5.4 Proof of Claim 18

The proof of Claim 18 follows largely from work of the proof of Claim 17.
First, observe that

∣∣∣Hhij ∩ K(2)
3 (Qhij)

∣∣∣ ≤ ∑
v∈Chij

∑
(a,b,c)∈LH−(v)

∣∣∣∣∣Hhij ∩
r′⋃

p=1

K(2)
3

(
Qhij

vabc(p)
) ∣∣∣∣∣

(31)

<
(
d3 − δ

1/20
3

) ∑
v∈Chij

∑
(a,b,c)∈LH−(v)

∣∣∣∣∣
r′⋃

p=1

K(2)
3

(
Qhij

vabc(p)
) ∣∣∣∣∣

=
(
d3 − δ

1/20
3

) ∑
v∈Chij

∣∣∣∣∣ ⋃
(a,b,c)∈LH−(v)

r′⋃
p=1

{
K(2)

3

(
Qhij

vabc(p)
)} ∣∣∣∣∣ .

§ As one may show, in fact, P hi
vv′ inherits (2δ2/d2

2)-regularity from P hi.
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Recall that we saw the right-most sum above in our inclusion-exclusion of (33).
In particular, we may use (33) and Fact 20 to obtain the further upper bound∣∣∣Hhij ∩ K(2)

3 (Qhij)
∣∣∣ < (

d3 − δ
1/20
3

) (∣∣∣K(2)
3 (Qhij)

∣∣∣+ 16
(

f
2

)
d9

2n
3
)
.

As such, we use Fact 19 and the definition of Qhij in (32) to infer

dH(Qhij) <
(
d3 − δ

1/20
3

)1 +
16
(

f
2

)
d9

2n
3

fδ
1/10
3 d3

3d
6
2n

3/128


≤
(
d3 − δ

1/20
3

)(
1 +

210fd3
2

δ
1/10
3 d3

3

)
.

Using the value f = 128δ
2/5
3 /(d3

3d
3
2) (see (25)), we obtain further upper bound

dH(Qhij) <
(
d3 − δ

1/20
3

)1 +
217δ

3/10
3

d6
3

 < d3 − δ3,

where the last inequality follows from δ3 � d3 in (2). This proves Claim 18.
2

5.5 Proof of Fact 15

The proof depends only on the hypotheses that the bipartite graphs P 1h,
P 1i, and P 1j are each (d2, δ2)-regular and that |Ahij| > δ

1/4
2 n (as we assumed

in (21)). In particular, the hypothesis in (22) will play no rôle in what follows.

We shall apply Turán’s theorem [21] to the auxiliary graph Γ = (V (Γ), E(Γ))
whose vertices are given by V (Γ) = Ahij ⊆ V ′

1 and whose edges are given by

E(Γ) =

{
{v, v′} ∈

(
Ahij

2

)
: |NP 1q(v, v′)| = (d2 ± δ2)

2n, q ∈ {h, i, j}
}

(where, for vertices v, v′ and index q ∈ {h, i, j}, NP 1q(v, v′) = NP 1q(v) ∩
NP 1q(v′)). Indeed, with f = 128δ

2/5
3 /(d3

3d
3
2) given in (25), note that we may

take the desired set Bhij ⊂ Ahij as the vertex set of any clique K2f in Γ. Sup-
pose, on the contrary, that Γ contains no cliques K2f . Then Turán’s theorem
ensures

|E(Γ)| ≤
(

1− 1

2f − 1
+ o(1)

)(
|Ahij|

2

)
where o(1) → 0 as |Ahij| → ∞. Since |Ahij| > δ

1/4
2 n, where (2) ensures n may

be taken as large as we need, we infer

|E(Γ)| ≤
(

1− 1

2(2f − 1)

)(
|Ahij|

2

)
≤
(

1− 1

8f

)(
|Ahij|

2

)
. (39)
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We now show that (39) leads to a contradiction with our choice of constants
in (2).

Indeed, for an index q ∈ {h, i, j}, the (d2, δ2)-regularity of the graph P 1q

implies that all but 4δ2n
2 pairs of vertices {v, v′} ∈

(
V1

2

)
satisfy |NP 1q(v, v′)| =

(d2 ± δ2)
2n. As such,

|E(Γ)| ≥
(
|Ahij|

2

)
− 12δ2n

2 ≥
(

1− 24δ2n
2

|Ahij|2

)(
|Ahij|

2

)
(21)

≥
(
1− 24δ

1/2
2

)(|Ahij|
2

)
. (40)

Now, comparing (39) and (40) and using f = 128δ
2/5
3 /(d3

3d
3
2) from (25) yields

d3
3d

3
2

210δ
2/5
3

=
1

8f
≤ 24δ

1/2
2

contradicting (2). 2
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lemma and its applications in graph theory, Theoretical aspects of computer

23



science (Tehran, 2000), Lecture Notes in Comput. Sci., vol. 2292, Springer,
Berlin, 2002, pp. 84–112.
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[13] B. Nagle, V. Rödl, and M. Schacht, The counting lemma for regular k-uniform
hypergraphs, Random Structures Algorithms 28 (2006), no. 2, 113–179.
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