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Abstract. We consider a hypergraph generalization of a conjecture of Burr
and Erdős concerning the Ramsey number of graphs with bounded degree. It
was shown by Chvátal, Rödl, Trotter, and Szemerédi [The Ramsey number
of a graph with bounded maximum degree, J. Combin. Theory Ser. B 34
(1983), no. 3, 239–243] that the Ramsey number R(G) of a graph G of bounded
maximum degree is linear in |V (G)|. We derive the analogous result for 3-
uniform hypergraphs.

1. Introduction

For an r-graph (or r-uniform hypergraph) F (r), the Ramsey number R(F (r)) is
the smallest integer N so that every 2-coloring of the complete r-graph K

(r)
N yields a

copy of F (r) as a monochromatic sub-hypergraph. When r = 2, Burr and Erdős [2]
stated the conjecture that for each ∆, every graph F = F (2) with maximum degree
at most ∆ satisfies R(F ) ≤ C|V (F )| where C = C(∆) is a constant depending only
on ∆. This conjecture was proven by Chvátal, Rödl, Szemerédi and Trotter [4].
Further results on more general linear Ramsey conjectures of Burr and Erdős were
later considered in [1, 3, 10, 11, 13, 18].

While there are several results on Ramsey numbers on various classes of graphs
(see, e.g., [7] and the references therein), not much is known about the related prob-
lem for hypergraphs. Basically the only hypergraphs known to have linear Ramsey
numbers are paths and cycles (see Haxell et al. [8]). A result concerning arbitrary
hypergraphs of bounded maximum degree was recently obtained by Kostochka and
Rödl. In [12] these authors proved that for each ∆, every r-graph with maximum
degree at most ∆ satisfies

R(F (r)) ≤ |V (F (r))|1+o(1) , (1)

where o(1) → 0 as |V (F (r))| → ∞. In this paper, we sharpen (1) to a linear bound
for 3-graphs.

Theorem 1. For all integers ∆, there exists C = C(∆) so that, for every 3-graph F
with maximum degree at most ∆, R(F) ≤ C|V (F)|.

Our proof of Theorem 1 is similar, in spirit, to the proof given in [4], where the
analogous graph result is proved. The proof in [4] is based on Szemerédi’s regularity
lemma for graphs. Here, we use a 3-graph regularity lemma (Theorem 5) from [15].
In addition, we use a so-called embedding lemma (Lemma 8), which is, in fact, the
main work of this paper.
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In the course of writing this paper, we learned that Cooley, Fountoulakis, Kühn
and Osthus [5] independently obtained a proof of Theorem 1. Their proof is also
based on a 3-graph regularity lemma and an embedding lemma. However, the proof
of the respective embedding lemma is different.

We would also like to mention that, in an earlier version of our paper, we em-
ployed a proof of the embedding lemma different from our current proof (which
was also different from that of [5]). This proof, which is conceptually similar to the
original approach used for graphs in [4], can be found in the Master’s thesis [16] of
the second author.

2. The regular approximation lemma and the embedding lemma

The objective of this section is to state the two main tools in our proof of The-
orem 1; the regular approximation lemma (Theorem 5) and the embedding lemma
(Lemma 8). The regular approximation lemma (from [15]) is a variant of the orig-
inal 3-graph regularity lemma from [6]. The embedding lemma shall be proved in
this paper. To proceed, we require some definitions.

2.1. Notation. In this paper, the notion of ε-regularity (for graphs) plays an im-
portant role. Let G be a graph and X∪̇Y be two disjoint, non-empty sets of vertices.
Write eG(X, Y ) = |{{x, y} ∈ G : x ∈ X, y ∈ Y }| for the number of edges of G be-
tween X and Y and define dG(X, Y ) = eG(X, Y )/(|X||Y |) for the density of G.
For d, ε > 0, we say that the induced bipartite subgraph G[X, Y ] is (d, ε)-regular if
for all X ′ ⊆ X, |X ′| > ε|X|, and Y ′ ⊆ Y , |Y ′| > ε|Y |, we have |d(X ′, Y ′)− d| < ε.
We say that G[X, Y ] is ε-regular if it is (d, ε)-regular for some 0 ≤ d ≤ 1.

The definitions which follow (hypergraph density, regularity and partitions) em-
anate from the paper of Frankl and Rödl [6]. For a graph P with vertex set V ,
let K3(P ) denote the family of triangles K3 of P , i.e.,

K3(P ) =
{
{x, y, z} ∈

(
V
3

)
: {x, y}, {x, z}, {y, z} ∈ E(P )

}
.

For a 3-graph H with vertex set V , we define the (relative) density dH(P ) of H
w.r.t. P as

dH(P ) =

{
|H∩K3(P )|
|K3(P )| if |K3(P )| > 0

0 otherwise.

Note that we identify the 3-graph H with its edge set. The following definition
generalizes the notion of ε-regularity from graphs to 3-graphs.

Definition 2. Let constants d, δ > 0 be given as well as a 3-partite 3-graph H and
a 3-partite graph P on common vertex partition V1∪̇V2∪̇V3 = V . We say that H
is (d, δ)-regular w.r.t. P if for any subgraph Q ⊆ P ,

|K3(Q)| > δ|K3(P )| =⇒ |dH(Q)− d| < δ.

We say that H is δ-regular w.r.t. P if it is (d, δ)-regular for some constant d.

Note that if H is (d, δ)-regular w.r.t. P , then for every subgraph Q ⊆ P we have∣∣∣|H ∩ K3(Q)| − d|K3(Q)|
∣∣∣ < max

{
δ
∣∣K3(P )

∣∣, δ
∣∣K3(Q)

∣∣} ≤ δ|K3(P )| . (2)

We now consider a specific type of partition.
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Definition 3 ((`, t, δ)-partition). Let integers ` and t and constant δ > 0 be
given. For a vertex set V , an (`, t, δ)-partition P of V consists of a vertex parti-
tion V0∪̇V1∪̇ . . . ∪̇Vt = V and, for each 1 ≤ i < j ≤ t, a partition of pairs⋃

1≤α≤`

P ij
α = K(Vi, Vj) ,

of the complete bipartite graph K(Vi, Vj) with vertex classes Vi and Vj so that the
following conditions hold:

(1 ) |V1| = · · · = |Vt| and |V0| < t;
(2 ) for each 1 ≤ i < j ≤ t and each 1 ≤ α ≤ `, the bipartite graph P ij

α

is (1/`, δ)-regular.

For an (`, t, δ)-partition P of V and indices 1 ≤ i < j < k ≤ t and 1 ≤
α, β, γ ≤ `, we shall refer to the 3-partite graph P ij

α ∪ P jk
β ∪ P ik

γ (which has vertex
3-partition Vi∪̇Vj∪̇Vk) as a triad of P . Let Triad(P ) denote the collection of triads
of P , i.e.,

Triad(P ) =
{

P ij
α ∪ P jk

β ∪ P ik
γ : 1 ≤ i < j < k ≤ t, 1 ≤ α, β, γ ≤ `

}
.

We close this section with the definition of a regular partition.

Definition 4. Let 3-graph H have vertex set V with (`, t, δ)-partition P . For δ > 0,
we say that H is δ-regular w.r.t. P if for each triad P ∈ Triad(P ), H is δ-regular
w.r.t. P .

2.2. The regular approximation lemma. We now present the so-called regular
approximation lemma. This lemma appeared for 3-graphs in [15] and was general-
ized to k-graphs in [17].

Theorem 5 (Regular approximation lemma). For all µ > 0, integers t0 and func-
tions δ : N → (0, 1], there exist integers L0, T0 and N0 so that for every 3-graph G
with vertex set V of size |V | = N > N0, there exist an (`, t, δ(`))-partition P of V ,
where 1 ≤ ` ≤ L0 and t0 ≤ t ≤ T0, and a 3-graph H with vertex set V so that the
following conditions hold:

(1 ) H is δ(`)-regular w.r.t. P ;
(2 ) for all but at most µ

(
t
3

)
`3 triads P ∈ Triad(P ), we have |(G4H)∩K3(P )| <

µ|K3(P )|.

For our purposes in this paper, we shall need a version of Theorem 5 suited
for 2-colorings. For a 2-coloring K

(3)
V = Gr∪̇Gb we will find Hr∪̇Hb = K

(3)
V such

that (1 ) and (2 ) of Theorem 5 hold for Hr and Gr and Hb and Gb, respectively.

Corollary 6. For all µ > 0, integers t0 and functions δ : N → (0, 1], there exist
integers L0, T0 and N0 so that for every 2-coloring K

(3)
V = Gr∪̇Gb of the 3-uniform

clique on vertex set V , |V | = N > N0, there exist an (`, t, δ(`))-partition P of V ,
where 1 ≤ ` ≤ L0 and t0 ≤ t ≤ T0, and a 2-coloring K

(3)
V = Hr∪̇Hb so that the

following conditions hold:
(1) both Hr and Hb are δ(`)-regular w.r.t. P ;
(2) for all but at most µ

(
t
3

)
`3 triads P ∈ Triad(P ),

|(Gr4Hr) ∩ K3(P )| = |(Gb4Hb) ∩ K3(P )| < µ|K3(P )| .

The proof of Corollary 6 is straightforward, and we sketch it for completeness.
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Proof (Sketch). Given K
(3)
V = Gr∪̇Gb and given input parameters, apply Theorem 5

to Gr to obtain Hr and a regular partition P so that (1 ) and (2 ) of Theorem 5
hold.

It follows immediately from the definitions that P is also a regular partition for
Hb = K

(3)
V \ Hr and, consequently (1 ) of Corollary 6 holds. Moreover, note that

Gb4Hb = (K(3)
V \ Gb)4(K(3)

V \ Hb) = Gr4Hr .

Consequently, for any triad P ∈ Triad(P ) we have

(Gb4Hb) ∩ K3(P ) = (Gr4Hr) ∩ K3(P ) ,

and so (2 ) of Corollary 6 follows from (2 ) of Theorem 5. �

2.3. The embedding lemma. We now state the embedding lemma, the second
main tool in our proof of Theorem 1. The embedding lemma will take place in the
following environment. (For a brief motivation of this environment, see Remark 9
below.)

Setup 7. Let integers k and n and constants d3, µ, d2, δ > 0 be given. Suppose
graph P and 3-graph H = G∪̇B have common vertex set V where the following
conditions are satisfied:

(1 ) V = V1∪̇ . . . ∪̇Vk is a k-partition, where |V1| = · · · = |Vk| = n;
(2 ) P =

⋃
1≤i<j≤k P ij is a k-partite graph with k-partition above, where each

induced bipartite subgraph P ij = P [Vi, Vj ], 1 ≤ i < j ≤ k, is (d2, δ)-regular;
(3 ) H =

⋃
1≤h<i<j≤k Hhij ⊆ K3(P ) is a k-partite 3-graph with k-partition

above, where each induced 3-partite sub-hypergraph Hhij = H[Vh, Vi, Vj ],
1 ≤ h < i < j ≤ k, is (d3, δ)-regular w.r.t. Phij = Phi ∪ Phj ∪ P ij;

(4 ) B =
⋃

1≤h<i<j≤k Bhij ⊆ H is a sub-hypergraph of H where each Bhij =
B[Vh, Vi, Vj ], 1 ≤ h < i < j ≤ k, satisfies |Bhij | ≤ µ|K3(Phij)|.

Lemma 8 (Embedding lemma). For all integers ∆ ≥ 1 and all d3 > 0, there
exists µ > 0 so that for all d2 > 0, there exist δ > 0, c > 0 and n0 so that for
all n ≥ n0, the following holds. Suppose

(i ) V , P and H = G∪̇B are as in Setup 7 with the constants k ≥ (2∆)2, d3, µ
d2, δ, and n;

(ii ) F0 is a 3-graph on m ≤ cn vertices which has maximum degree ∆(F0) ≤ ∆.
Then, there exists a copy of F0 appearing as a sub-hypergraph of G = H \ B.

We prove Lemma 8 in Section 4. (In fact, we prove a stronger version of Lemma 8
(see Proposition 13).)

We mention that the role of the hypergraph B (seen above) may not become
clear until a few pages into the proof of Theorem 1. As such, we make the following
remark on how, in general, Theorem 5 (the regular approximation lemma) and
Lemma 8 (the embedding lemma) may be jointly applied. (Joint applications of
Corollary 6 and Lemma 8 are analogous.)

Remark 9. In context, the hypergraph G′ of Lemma 8 will be a sub-hypergraph of
the input hypergraph G of Theorem 5. The hypergraph H′ of Lemma 8 will be a sub-
hypergraph of the output hypergraph H of Theorem 5. Theorem 5 creates the ‘very
regular’ H′ by combining G′ (‘good’ triples) with a small number of artificial triples
B (‘bad’ triples). Lemma 8 finds a copy of F0 which lies within the very regular H′

and which misses all unwanted (but rare) triples B. This places F0 within G′ ⊆ G.
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3. Proof of main result

Let integer ∆ be given. To prove Theorem 1, we must first define the con-
stant C = C(∆) promised by Theorem 1. We do so now.

3.1. Constants. We define C in terms of constants given by the regular approxi-
mation lemma (Corollary 6) and the embedding lemma (Lemma 8). Our definition
of C = C(∆) will appear in (12) below.

We first define the auxiliary constants

k = (2∆)2 and d3 =
1
2

. (3)

Let
R = R(K(3)

k ) (4)

be the Ramsey number for the 3-uniform clique K
(3)
k on k vertices. We continue

by defining auxiliary constants in terms of the embedding lemma. Recall the quan-
tification of Lemma 8: ∀∆, d3 ∃µ∀d2 ∃δ, c, n0. With ∆ given and d3 already fixed
in (3), we now let

µ′ = µ(∆, d3) > 0 (5)

be the constant guaranteed by Lemma 8. Let ` be an integer variable and consider
functions δ : N → (0, 1], c : N → (0, 1], and n0 : N → N defined by

δ(`) = δ(∆, d3, µ
′, d2 = 1/`) (6)

c(`) = c(∆, d3, µ
′, d2 = 1/`) (7)

n0(`) = n0(∆, d3, µ
′, d2 = 1/`) (8)

guaranteed by Lemma 8 (for the choice of density d2 = 1/`).
We continue by defining auxiliary constants in terms of the regular approxima-

tion lemma. Corollary 6 is quantified: ∀µ, t0, δ : N → (0, 1] ,∃L0, T0, N0. We first
fix µ and t0 by setting

µ = min
{

1
2

(
R
3

)−1
, µ′

}
and t0 = R . (9)

With µ and t0 fixed above and δ : N → (0, 1] given in (6), let

L0 = L0(µ, t0, δ(·)), T0 = T0(µ, t0, δ(·)), N0 = N0(µ, t0, δ(·)) (10)

be the constants given by Corollary 6 for constants µ and t0 and function δ(·).
We now use the constants above to define the promised constant C = C(∆). To

this end, set

cmin = min
`=1,...,L0

c(`) , n0,max = max
`=1,...,L0

n0(`) , and N1 = max{n0,max, N0} , (11)

where c(`) and n0(`) are the functions defined in (7) and (8) and L0 and N0 are
the constants given in (10). Finally, we define

C =
2
c
T0N1 . (12)

Note that all constants above were defined after displaying ∆ only, hence, the
constant C = C(∆) depends only on ∆. We now prove Theorem 1 for this choice of
C, i.e., we verify that R(F0) ≤ C|V (F0)| for any 3-graph F0 of maximum degree ∆.
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3.2. Proof of Theorem 1. Let F0 be a 3-graph on m vertices with maximum
degree ∆(F0) ≤ ∆. We have to show R(F0) ≤ Cm where C = C(∆) is the
constant defined in (12). For that, let

N = Cm (13)

and let V be an arbitrary set of N vertices. We will show that for every 2-coloring
K

(3)
V = Gr∪̇Gb of the 3-uniform clique K

(3)
V on vertex set V ,

F0 ⊆ Gr or F0 ⊆ Gb. (14)

To prove (14), our first step is to apply Corollary 6 to the 2-coloring K
(3)
V =

Gr∪̇Gb. To that end, let constants µ and t0 be given in (9) and let function δ : N →
(0, 1] be given in (6). With these parameters, apply Corollary 6 to the 2-coloring
K

(3)
V = Gr∪̇Gb to obtain (`, t, δ(`))-partition P and 2-coloring K

(3)
V = Hr∪̇Hb (as

described by Corollary 6) where 1 ≤ ` ≤ L0 and t0 ≤ t ≤ T0, for the constants
L0 and T0 given in (10). (Note that we may apply Corollary 6 to K

(3)
V = Gr∪̇Gb

since, by (12) and (13), |V | = N = Cm = (2/c)T0N1m > N0.) Let partition
P have vertex partition V0∪̇V1∪̇ . . . ∪̇Vt = V and system of bipartite graphs P ij

α ,
1 ≤ i < j ≤ t, 1 ≤ α ≤ `, as described by Corollary 6.

We are going to use the partition P obtained above, together with Lemma 8, to
prove (14). For that, we need to first locate an appropriate region of P to which
to apply Lemma 8 (which will satisfy the assumptions of Lemma 8). This will be
done in the following three steps.

Recall that, for every 1 ≤ i < j ≤ t, the partition P admits ` graphs P ij
α with

1 ≤ α ≤ `, while in Lemma 8, we need just a single such graph (see Setup 7). In
the first step, we will select, for every 1 ≤ i < j ≤ t, a graph P ij in such a way
that in most of the resulting triads the hypergraph Hr and Gr are “essentially the
same.” We will make this more precise now.

For a function λ :
({1,...,t}

2

)
→ {1, . . . , `} and indices 1 ≤ i < j ≤ t, we shall

write P ij(λ) = P ij
λ({i,j}) for the bipartite graph P ij

α (from the partition P ) satisfy-
ing α = λ({i, j}). We then write

Triadλ(P ) =
{
Phi(λ) ∪ P ij(λ) ∪ Phj(λ) : 1 ≤ h < i < j ≤ t

}
⊆ Triad(P ).

Let
Triadbad(P ) =

{
P ∈ Triad(P ) : |(Gr4Hr) ∩ K3(P )| ≥ µ|K3(P )|

}
.

Due to property (2 ) of Corollary 6, we have |Triadbad(P )| ≤ µ
(

t
3

)
`3 . Consequently,

a simple averaging argument yields that there exists a function λ0 :
({1,...,t}

2

)
→

{1, . . . , `} such that

|Triadλ0(P ) ∩ Triadbad(P )| ≤ µ
(

t
3

)
. (15)

(See, e.g., [14, Fact 4.1] for a similar argument.) In the remainder of our proof,
we shall only work with bipartite graphs P ij(λ0), 1 ≤ i < j ≤ t. For simplicity of
presentation, we shall now set P ij = P ij(λ0) (although, we will not drop the λ0

from Triadλ0(P )).
We now come to the second step. To each 1 ≤ h < i < j ≤ t, we have associated

precisely one triad in Triadλ0(P ), and by the choice of µ in (9) and the inequality
in (15), at most µ

(
t
3

)
<

(
t
3

)
/
(
R
3

)
of these triads are in Triadbad(P ). Consequently,
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there exists an R-tuple of vertex classes Vi, w.l.o.g. V1, . . . , VR, so that for every
1 ≤ h < i < j ≤ R,

Phij = Phi ∪ P ij ∪ Phj satisfies Phij 6∈ Triadbad(P ) . (16)

(Here, we used ex(t, K(3)
R ) ≤ (1− 1/

(
R
3

)
)
(

t
3

)
, where ex(t, K(3)

R ) is the Turán number
of K

(3)
R .)

In the third and last step, we consider the densities of Hr and Hb for each
triad selected in the previous two steps. Since K

(3)
V = Hr∪̇Hb, we have, for every

1 ≤ h < i < j ≤ R, either

dHr (P
hij) ≥ 1

2 or dHb
(Phij) ≥ 1

2 .

Consequently, by the choice of R in (4), there exists a k-tuple of vertex classes Vi, say
w.l.o.g. V1, . . . , Vk, and a color from {r, b}, say r, so that for every 1 ≤ h < i < j ≤ k

dHr (P
hij) ≥ 1

2 (17)

holds.
This defines the location of the region of P to which we want to apply Lemma 8.

Set

H = Hr∩
⋃

1≤h<i<j≤k

K3(Phij) , G = Gr∩
⋃

1≤h<i<j≤k

K3(Phij) , and B = Hr\Gr.

Note that, due to (16) and (17), H = G∪̇B defined above and V1∪̇ . . . ∪̇Vk satisfy
Setup 7 for constants k, d3, µ′ (chosen in (3) and (9)), d2 = 1/` and δ(`) (chosen
in (6)) and n = bN/tc. Moreover, it is easy to check that all constants were
appropriately chosen so that we can apply Lemma 8. Lemma 8 then yields a copy
of F0 in G ⊆ Gr, which concludes the proof of Theorem 1. �

4. Proof of the 3-graph embedding lemma

In this section we reduce the proof of the 3-graph embedding lemma (Lemma 8)
to a statement for embeddings of graphs (see Proposition 11 below). The proof of
this reduction is similar to the proof of the counting lemma in [19, Lemma 3.4]. We
first state the graph embedding lemma.

4.1. Statement of the graph embedding lemma. Let P be a k-partite graph
with vertex partition V1∪̇ . . . ∪̇Vk = V = V (P ) and let J0 be k-partite graph with
vertex partition U1∪̇ . . . ∪̇Uk = U = V (J0). We are interested in labeled embeddings
(or copies) of J0 in P . For a copy J of J0 in P and a vertex u ∈ U we denote by J(u)
the vertex v ∈ V (J) ⊆ V which corresponds to the vertex u in J0. Alternatively,
we may view J as a injective mapping from V (J0) to V (P ) which preserves edges.
We say a copy J of J0 is a partite embedding if for every i ∈ [k] and every u ∈ Ui

we have J(u) ∈ Vi. For the rest of the paper we restrict our attention to labeled,
partite embeddings of J0 and denote by J = J (J0, P ) a family of (not necessarily
all) partite embeddings of J0 in P .

We also consider partial partite embeddings of induced subgraphs of J0 in P .
Let X ⊆ U be fixed and write J0[X] for the subgraph of J0 induced on the set X.
Denote by J |X the partial embedding of J0[X]. We define the family of all partial
embeddings of J0[X] in J by

J [X] =
{
J |X : J ∈ J

}
.
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For a given partial embedding J̃ of J0[X], we want to control the number of ex-
tensions of that particular copy to a full copy of J0 in J . With this in mind, we
define

extJ (J̃) =
∣∣{J ∈ J : J |X = J̃ }

∣∣ .

Note, that extJ (J̃) = 0 if J̃ 6∈ J [X], i.e., if there is no extension of J̃ to a full
copy J ∈ J . We now arrive at a crucial definition we use for the remainder of the
paper.

Definition 10. Let d > 0 and ε > 0 and let P be a k-partite graph with vertex
partition V1∪̇ . . . ∪̇Vk = V and |V1| = · · · = |Vk| = n. Let J0 be a k-partite graph
on m = |V (J0)| vertices and let J be a family of labeled, partite embeddings of J0

in P .
We say J is (d, ε)-extendable if for every X ⊆ V (J0) and every J̃ ∈ J [X] we

have
extJ (J̃) = (d± ε)e(J0)−e(J0[X])nm−|X| .

Note that a (d, ε)-extendable family must be “large”. Indeed, applying the defini-
tion for X = ∅ gives

|J | = |J [∅]| = (d± ε)e(J0)nm.

The next lemma ensures the existence of (d, ε)-extendable families if P is suffi-
ciently regular and J0 is a graph of bounded maximum degree and size c|V (P )| for
sufficiently small c > 0. For the statement of the lemma, we also need the following
concept. For a vertex u ∈ U = V (J0), let N2(u) be the set of all vertices of distance
at most 2 from u, other than u itself, i.e.,

N2(u) =
(

N(u) ∪
⋃

u′∈N(u)

N(u′)
)
\ {u} . (18)

Proposition 11. For every integer k ≥ 2 and all d > 0 and ε > 0 there exist
δ > 0, c > 0 and n0 so that the following holds for every n ≥ n0.

Let P =
⋃

1≤i<j≤k P ij be a k-partite graph with vertex partition V1∪̇ . . . ∪̇Vk =
V = V (P ), |V1| = · · · = |Vk| = n ≥ n0, where P ij is (d, δ)-regular for every
1 ≤ i < j ≤ k. Moreover, let J0 be a k-partite graph on m ≤ cn vertices with vertex
partition U1∪̇ . . . ∪̇Uk = U = V (J0) such that for every u ∈ U and every i ∈ [k] we
have |(N2(u) ∪ {u}) ∩ Ui| ≤ 1.

Then there exists a (d, ε)-extendable family J = J (J0, P ) of labeled, partite
embeddings of J0 in P . In particular, |J | = (d± ε)e(J0)nm.

Proposition 11 can be considered a strengthened version of the graph embedding
lemma of Chvátal et al. [4] (which found at least one embedding into P of any
graph J0 with maximum degree ∆). Indeed, for a graph J0 of maximum degree ∆,
one obtains the partition U = U(J0) = U1 ∪ · · · ∪ Uk satisfying the hypothesis of
Proposition 11 by coloring the square J2

0 of J0 using k = ∆(∆ − 1) + 1 colors.
We give the proof of Proposition 11 in Section 6 and first deduce Lemma 8 from
Proposition 11.

4.2. Proof of Lemma 8. We are going to prove Lemma 8 by induction on the
number of hyperedges in F0. For inductive purposes we will generalize Lemma 8
and prove a stronger statement (see Proposition 13 below). We will work with the
following setup.
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Setup 12. Let integers k and m be given. Suppose a k-partite graph J0 on vertex
set U and 3-graph F0 with V (F0) ⊆ U satisfy the following:

(a ) U = U1∪̇ . . . ∪̇Uk is a k-partition and |U | = m;
(b ) for every u ∈ U and every i ∈ [k] we have |(N2

J0
(u) ∪ {u}) ∩ Ui| ≤ 1;

(c ) F0 ⊆ K3(J0).

In context, the graph J0 will be the ‘shadow’ ∂F0 of F0, which consists of all pairs
from U covered by a triple of F0 (cf. (19) below).

Note that if a graph J0 and a 3-graph F0 satisfy Setup 12, then from (b ) and (c )
we infer ∆(F0) ≤ ∆(J0) ≤ maxu∈U |N2

J0
(u)| < k. In other words, F0 and J0 have

bounded maximum degree.
Consider V , P and H = G∪̇B as in Setup 7 and U , J0, and F0 as in Setup 12.

Moreover, let J be a family of labeled, partite embeddings of J0 in P . This will
be the environment of upcoming Proposition 13 (see (i )–(iii ) in Proposition 13).
For the statement of Proposition 13 we need some further definitions.

In Proposition 13, we are interested in labeled, partite embeddings of F0 in G.
We will also consider embeddings of F0 in H. As before, for a copy F of F0 in
H and u ∈ V (F0), we denote by F(u) the vertex v ∈ V that corresponds to u
(in the copy F). We restrict our attention to copies F of F0 with the additional
properties that there exists a copy J ∈ J of J0 in P such that F ⊆ K3(J) and that
F(u) = J(u) for every u ∈ V (F0). Note that since J is a labeled, partite copy of
J0, there exists at most one copy F of F0 for every J ∈ J and each such F must
be a partite copy of F0. We denote the family of all those partite embeddings by

(P,H)(J0,F0)
J =

{
(J,F) : J ∈ J and F is a copy of F0 such that

F ⊆ K3(J) ∩H and F(u) = J(u) for every u ∈ V (F0)
}

.

More generally, for a set X ⊆ U = V (J0), the induced subgraph J̃0 = J0[X] and a
3-graph F̃0 ⊆ K3(J̃0) we write

(P,H)(J̃0,F̃0)
J =

{
(J̃ , F̃) : J̃ ∈ J [X] and F̃ is a copy of F̃0 such that

F̃ ⊆ K3(J̃) ∩H and F̃(u) = J̃(u) for every u ∈ V (F̃0)
}

.

The following lemma can be viewed as the induction statement for the proof of
Lemma 8 on the number of edges of F0.

Proposition 13. For all integers k ≥ 1 and all d3 > 0 and γ ∈ (0, d3), there
exists µ > 0 so that for all d2 > 0 and ε ∈ (0, d2/2], there exist δ > 0, c > 0 and n0

so that for all n ≥ n0 the following holds. Suppose
(i ) V , P and H = G∪̇B are as in Setup 7 for constants k, d3, µ, d2, δ, and n;
(ii ) U , J0, and F0 are as in Setup 12 for k and m ≤ cn;
(iii ) J is a (d2, ε)-extendable family of labeled, partite embeddings of J0 in P .

Then, for every e0 ∈ F0 we have∣∣∣(P,G)(J0,F0)
J

∣∣∣ = (d3 ± γ)
∣∣∣(P,G)(J0,F0\e0)

J

∣∣∣ .

We defer the proof of Proposition 13 to Section 5 in favor of first deducing
Lemma 8 from Proposition 11 and Proposition 13. We first make the following
remark regarding notation.
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Remark 14. In the remainder of this paper we will use the following conventions.
Recall that J0 (resp. F0) is a graph (3-graph) which we want to embed. We will
denote by J and F embedded copies of J0 and F0. We also consider embeddings of
various sub-(hyper)graphs J̃0, J

∗
0 ⊆ J0 and F̃0,F∗

0 ,F−
0 ⊆ F0. For embedded copies

of those sub-(hyper)graphs we will use the same notation and drop the zero in the
subscript.

Proof of Lemma 8. First, we determine the constants involved in the proof. For
that, recall the quantification of Lemma 8, Proposition 11, and Proposition 13. As
in Lemma 8, let ∆ ≥ 1 and d3 > 0 be given. We set k = (2∆)2 and γ = d3/2.
For the fixed k, d3, and γ, Proposition 13 yields µ > 0. This is the µ we define for
Lemma 8. Now, let d2 > 0 be given. We then apply Proposition 11 with k, d2, and
ε = d2/2 and obtain δ′, c′ > 0 and n′0. Moreover, we apply Proposition 13 for d2

and ε = d2/2 and get δ′′, c′′ > 0 and n′′0 . Finally, we fix the promised constants for
Lemma 8 by setting δ = min{δ′, δ′′}, c = min{c′, c′′} and n0 = max{n′0, n′′0}.

Now, let V , P , H = G∪̇B and F0 satisfying (i ) and (ii ) of Lemma 8 be given.
Set J0 = ∂F0, the shadow of F0, defined as the graph with the same vertex set
U = V (J0) = V (F0) and with edge set

E(J0) = {{u, v} ⊆ U : there is w ∈ U such that {u, v, w, } ∈ F0} . (19)

Since ∆(F0) ≤ ∆, the maximum degree in J0 is bounded by 2∆. Therefore,
maxu∈U |N2

J0
(u)| ≤ 2∆(2∆ − 1) < (2∆)2 and hence, for k ≥ (2∆)2, there ex-

ists a k-partition of U1∪̇ . . . ∪̇Uk = U such that property (b ) of Setup 12 holds
(see the discussion after Proposition 11). Therefore, by (i ) of Lemma 8, V , P ,
and J0 satisfy the assumptions of Proposition 11 and we infer that there exists a
(d2, ε)-extendable family J of labeled, partite embeddings of J0 in P where

|J | = (d2 ± ε)e(J0)nm ≥ (d2/2)e(J0)nm . (20)

We now appeal to Proposition 13, and first check that its hypothesis is met.
Clearly, by the definition of J0, we have F0 ⊆ K3(J0) and J0 and F0 satisfy part (c )
of Setup 12, and hence, assumption (ii ) of Proposition 13. Assumption (i ) is
satisfied since V , P , H = G∪̇B and F0 are given by Lemma 8, and the family J
yields assumption (iii ). Therefore, we can apply Proposition 13 for any e0 ∈ F0.
Moreover, we can apply Proposition 13 with F0 replaced by F0 \ e0 and some
e′0 ∈ F0 \ e0. Hence, after |F0| applications of Proposition 13, we have∣∣∣(P,G)(J0,F0)

J

∣∣∣ = (d3 ± γ)|F0|
∣∣∣(P,G)(J0,∅)

J

∣∣∣ ≥ (d3/2)|F0|
∣∣∣(P,G)(J0,∅)

J

∣∣∣ .

Noting that
∣∣(P,G)(J0,∅)

J

∣∣ = |J |, we obtain from (20)∣∣∣(P,G)(J0,F0)
J

∣∣∣ ≥ (d3/2)|F0|(d2/2)e(J0)nm .

Since
∣∣(P,G)(J0,F0)

J

∣∣ is a lower bound on the number of copies of F0 in G = H \ B,
this concludes the proof of Lemma 8 based on Propositions 11 and 13. �

5. Proof of Proposition 13

Recall the quantification of Proposition 13:

∀ k, d3 > 0, γ ∈ (0, d3), ∃µ > 0 : ∀ d2 > 0, ε ∈ (0, d2/2], ∃ δ > 0, c > 0, n0 .
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In order to simplify the presentation, we will not calculate estimates on the con-
stants µ, δ, c, and n0. Instead, we will verify Proposition 13 under the assumption
that those constants were chosen in such a way that

max{ 1
n0

, c, δ} � min{ε, d2, µ} ≤ µ � min{γ, d3,
1
k} , (21)

where a � b means that a was chosen sufficiently smaller than a function of b (and
possibly other variables to the “right” of b).

Let V , P and H = G∪̇B satisfying (i ) of Proposition 13 and U , J0, and F0 satis-
fying (ii ) be given. Moreover, let J be a (d2, ε)-extendable family of embeddings
of J0 in P , i.e., part (iii ) of Proposition 13 holds. We prove Proposition 13 by
induction on |F0|. If F0 contains no edges then there is nothing to show. So let F0

with at least one edge be given and assume Proposition 13 holds for 3-graphs F ′
0

which have at most |F0| − 1 edges and which satisfy property (ii ) of the proposi-
tion for the chosen constants. Note that since J0 and F0 satisfy assumption (ii ) of
Proposition 13 we have

∆(F0) ≤ ∆(J0) ≤ k − 1 . (22)

Fix an edge e0 ∈ F0. We denote by F−
0 = F0 \ e0 the sub-hypergraph of F0 on

the same vertex set which we obtain by removing e0 from F0. For a labeled copy
F− of F−

0 in H, we denote by ηF− the set of those three vertices which correspond
to e0 in F0. In other words, if e0 = {x0, y0, z0} then

ηF− =
{
F−(x0), F−(y0), F−(z0)

}
.

Note that ηF− is not necessarily an edge in H. Let 1H :
(
V
3

)
→ {0, 1} be the

indicator function for edges in H.
Our first step will be to prove the following estimate for the number of copies F of

F0 inH for which F− is contained in G (in other words, only the edge corresponding
to e0 ∈ F0 is allowed to be in B = H \ G):∣∣∣{(J,F) ∈ (P,H)(J0,F0)

J : F− ⊆ G
}∣∣∣ = (d3 ±

√
δ)

∣∣∣(P,G)(J0,F−
0 )

J

∣∣∣ . (23)

Before we prove (23), note that it yields the upper bound in the statement of
Proposition 13, since G ⊆ H and δ � γ (see (21)) (in fact, since δ � γ, this upper
bound is stronger than what we promised). Shortly, we will also use (23) to prove
the lower bound in the statement of Proposition 13, but first proceed to prove (23).

Proof of (23). Observe∣∣∣{(J,F) ∈ (P,H)(J0,F0)
J : F− ⊆ G

}∣∣∣ =
∑ {

1H(ηF−) : (J,F−) ∈ (P,G)(J0,F−
0 )

J

}
=

∑ {
d3 + 1G(ηF−)− d3 : (J,F−) ∈ (P,G)(J0,F−

0 )
J

}
(24)

= d3

∣∣∣(P,G)(J0,F−
0 )

J

∣∣∣± ∣∣∣∣ ∑ {
1H(ηF−)− d3 : (J,F−) ∈ (P,G)(J0,F−

0 )
J

}∣∣∣∣.
We will bound the contribution of the “±-term” in the last inequality by using
the regularity of the hypergraph H (cf. (3 ) in Setup 7). For that, consider the
induced sub-hypergraphs J∗0 = J0[U \ e0] and F∗

0 = F0[U \ e0] of J0 and F0 on
U \ e0. In other words, we obtain J∗0 from J0 (resp. F∗

0 from F0) by removing the
vertices of e0. For a copy (J∗,F∗) ∈ (P,G)(J

∗
0 ,F∗

0 )
J , let EXTR(J∗,F∗) be the set of

all triples η ∈
(
V
3

)
such that V (J∗) ∪ η = V (F∗) ∪ η extends J∗ (resp. F∗) to a
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copy J ∈ J (resp. copy F− ⊆ G of F−
0 ) such that (J,F−) ∈ (P,G)(J0,F−

0 )
J . Since

F0 ⊆ K3(J0), e0 induces a triangle in J0 and hence EXTR(J∗,F∗) ⊆ K3(Phij)
for some 1 ≤ h < i < j ≤ k. Moreover, as we now show, there exists a subgraph
Q(J∗,F∗) ⊆ Phij for which K3(Q(J∗,F∗)) = EXTR(J∗,F∗).

Indeed, let (J∗,F∗) be fixed and suppose e0 = {x0, y0, z0} with x0 ∈ Uh, y0 ∈
Ui, and z0 ∈ Uj . For a vertex v ∈ V (H) let Hv be the link-graph of v, i.e.,
V (Hv) = V (H) \ {v} and E(Hv) = {{v′, v′′} : {v, v′, v′′} ∈ H}. We also write
NH(v′, v′′) for the set of vertices v ∈ V (H) which form an edge with v′ and v′′ in
H, i.e., NH(v′, v′′) = {v ∈ V (H) : {v, v′, v′′} ∈ H}. Before we define Q(J∗,F∗), we
consider an auxiliary 3-partite graph R = R(J∗,F∗) defined as follows

V (R) = Vh∪̇Vi∪̇Vj and E(R) = E(Rhi)∪̇E(Rhj)∪̇E(Rij)

where

E(Rhi) =
⋂ {

E(HF∗(u)[Vh, Vi]) : u ∈ U \ e0 and {x0, y0, u} ∈ F0

}
,

E(Rhj) =
⋂ {

E(HF∗(u)[Vh, Vj ]) : u ∈ U \ e0 and {x0, u, z0} ∈ F0

}
,

and

E(Rij) =
⋂ {

E(HF∗(u)[Vi, Vj ]) : u ∈ U \ e0 and {u, y0, z0} ∈ F0

}
.

Since H ⊆ K3(P ), we have R ⊆ Phij . We then set Q(J∗,F∗) to be the induced
subgraph of R defined by

Q(J∗,F∗) = R[X, Y, Z] ,

where

X = (Vh \ V (J∗)) ∩
⋂ {

NP (J∗(u)) : {x0, u} ∈ E(J0) and u ∈ U \ e0

}
∩

⋂ {
NH(F∗(u),F∗(u′)) : {x0, u, u′} ∈ F0 and u, u′ ∈ U \ e0

}
,

Y = (Vi \ V (J∗)) ∩
⋂ {

NP (J∗(u)) : {y0, u} ∈ E(J0) and u ∈ U \ e0

}
∩

⋂ {
NH(F∗(u),F∗(u′)) : {y0, u, u′} ∈ F0 and u, u′ ∈ U \ e0

}
,

and

Z = (Vj \ V (J∗)) ∩
⋂ {

NP (J∗(u)) : {z0, u} ∈ E(J0) and u ∈ U \ e0

}
∩

⋂ {
NH(F∗(u),F∗(u′)) : {z0, u, u′} ∈ F0 and u, u′ ∈ U \ e0

}
.

Clearly Q(J∗,F∗) ⊆ Phij and, by construction, K3(Q(J∗,F∗)) = EXTR(J∗,F∗).
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Hence, we can now rewrite the “±-term” of (24) by considering copies (J∗,F∗) ∈
(P,G)(J

∗
0 ,F∗

0 )
J :∣∣∣∣ ∑ {

1H(ηF−)− d3 : (J,F−) ∈ (P,G)(J0,F−
0 )

J

}∣∣∣∣
=

∑ {∣∣∣∣ ∑
η∈EXTR(J∗,F∗)

(1H(η)− d3)
∣∣∣∣ : (J∗,F∗) ∈ (P,G)(J

∗
0 ,F∗

0 )
J

}

=
∑ {∣∣∣∣ ∑

η∈K3(Q(J∗,F∗))

(1H(η)− d3)
∣∣∣∣ : (J∗,F∗) ∈ (P,G)(J

∗
0 ,F∗

0 )
J

}
.

Since Q(J∗,F∗) ⊆ K3(Phij) for every (J∗,F∗) ∈ (P,G)(J
∗
0 ,F∗

0 )
J , we can use the

(d3, δ)-regularity of H w.r.t. Phij to bound the inner sum by δ|K3(Phij)| ≤ δn3

(see (2)) and obtain∣∣∣∣ ∑ {
(1H(ηF−)− d3) : (J,F−) ∈ (P,G)(J0,F−

0 )
J

}∣∣∣∣ ≤ δn3 ×
∣∣∣(P,G)(J

∗
0 ,F∗

0 )
J

∣∣∣ . (25)

Since J is (d2, ε)-extendable, every J∗ ∈ J [U \ e0] extends to at least (d2 −
ε)e(J0)−e(J∗0 )n3 copies J of J0 in J ; this holds, in particular, for any copy J∗

contained in a pair (J∗,F∗) ∈ (P,G)(J
∗
0 ,F∗

0 )
J . Consequently,

δn3 ×
∣∣∣(P,G)(J

∗
0 ,F∗

0 )
J

∣∣∣ ≤ δ ×
∣∣∣(P,G)(J0,F∗

0 )
J

∣∣∣
(d2 − ε)e(J0)−e(J∗0 )

. (26)

Now, we apply the induction assumption |F−
0 | − |F∗

0 | times and obtain

δ ×
∣∣∣(P,G)(J0,F∗

0 )
J

∣∣∣
(d2 − ε)e(J0)−e(J∗0 )

≤
δ ×

∣∣∣(P,G)(J0,F−
0 )

J

∣∣∣
(d2 − ε)e(J0)−e(J∗0 )(d3 − γ)|F

−
0 |−|F∗

0 |

(21)

≤
√

δ
∣∣∣(P,G)(J0,F−

0 )
J

∣∣∣ ,

where we used (22) (which combined with |V (J∗0 )| = |V (F∗
0 )| = m − 3 yields

max{e(J0) − e(J∗0 ), |F−
0 | − |F∗

0 |} < 3k) in the last inequality. Combining, the last
estimate with (24)–(26) renders (23). �

We will now derive the lower bound on
∣∣(P,G)(J0,F0)

J

∣∣ from (23). For that, we
will estimate the contribution of edges in H (in fact, edges in B = H\G) contained
in copies of F0 in (P,G)(J0,F0)

J . More precisely, for any η ∈ K3(Phij), we consider

deg(η) =
∣∣∣{(J,F−) ∈ (P,G)(J0,F−

0 )
J : η = ηF−

}∣∣∣ ,

and shall derive an upper bound on deg(η) for η ∈ K3(Phij). In particular, we will
prove that for each η ∈ K3(Phij),

deg(η) ≤ 1
√

µ
×

∣∣∣(P,G)(J0,F−
0 )

J

∣∣∣
|K3(Phij)|

. (27)
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This allows us to derive the required lower bound on
∣∣(P,G)(J0,F0)

J

∣∣. Indeed, we
have∣∣∣(P,G)(J0,F0)

J

∣∣∣ =
∣∣∣{(J,F) ∈ (P,H)(J0,F0)

J : F− ⊆ G
}∣∣∣− ∑

η∈K3(P hij)∩B

deg(η)

(23)

≥ (d3 −
√

δ)
∣∣∣(P,G)(J0,F−

0 )
J

∣∣∣− ∑
η∈K3(P hij)∩B

deg(η)

(27)

≥ (d3 −
√

δ)
∣∣∣(P,G)(J0,F−

0 )
J

∣∣∣− ∣∣K3(Phij) ∩ B
∣∣× 1

√
µ

∣∣∣(P,G)(J0,F−
0 )

J

∣∣∣
|K3(Phij)|

≥ (d3 −
√

δ −√µ)
∣∣∣(P,G)(J0,F−

0 )
J

∣∣∣ ,

where the last inequality follows from (i ) of Proposition 13, i.e., that part (4 )
of Setup 7 holds. The required lower bound on

∣∣(P,G)(J0,F0)
J

∣∣ now follows from
δ � µ � γ.

All that remains is to prove (27), for which we use the following notation. Con-
sider the graph J0 and suppose e0 = {x0, y0, z0} ⊂ U . Let

NJ0(e0) =
(
NJ0(x0) ∪NJ0(y0) ∪NJ0(z0)

)
\ e0

be the neighbors of the vertices in e0 in J0. Let J̃0 = J0[U \ (e0 ∪ NJ0(e0))] be
the induced subgraph of J0, which we obtain after removing all vertices contained
in e0 ∪ NJ0(e0). Similarly, we define F̃0 = F0[U \ (e0 ∪ NJ0(e0))] as the induced
sub-hypergraph after removing the same vertices.

We now prove (27). For a copy J̃ of J̃0 and a set of three vertices η which is
disjoint from V (J̃) and which spans a triangle in P , we denote by J̃ +η the union of
the graph J̃ with that triangle. In particular, J̃ +η is then a copy of J0[U \NJ0(e0)].
With this notation, we have, for every η ∈ K3(Phij),

deg(η) ≤
∑ {

extJ (J̃ + η) : (J̃ , F̃) ∈ (P,G)(J̃0,F̃0)
J

}
.

Since J is a (d2, ε)-extendable family, we can bound

extJ (J̃ + η) ≤ (d2 + ε)e(J0)−e(J̃0)−3n|NJ0 (e0)|

and, therefore,

deg(η) ≤ (d2 + ε)e(J0)−e(J̃0)−3n|NJ0 (e0)| ×
∣∣∣(P,G)(J̃0,F̃0)

J

∣∣∣ . (28)

Repeating similar arguments as for (26), we can again use the property that J is
(d2, ε)-extendable to show

∣∣∣(P,G)(J̃0,F̃0)
J

∣∣∣ ≤
∣∣∣(P,G)(J0,F̃0)

J

∣∣∣
(d2 − ε)e(J0)−e(J̃0)n|NJ0 (e0)|+3

(29)

Continuing similarly as before (see paragraph after (26)), i.e., applying the induc-
tion assumption |F−

0 | − |F̃0| times, we obtain

∣∣∣(P,G)(J0,F̃0)
J

∣∣∣ ≤
∣∣∣(P,G)(J0,F−

0 )
J

∣∣∣
(d3 − γ)|F

−
0 |−|F̃0|

. (30)
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Combining (28)–(30) with ε ≤ d2/2 (which yields (d2 + ε)/(d2− ε) ≤ 3), we get for
every η ∈ K3(Phij)

deg(η) ≤ 3e(J0)−e(J̃0)

(d3 − γ)|F
−
0 |−|F̃0|

×

∣∣∣(P,G)(J0,F−
0 )

J

∣∣∣
(d2 + ε)3n3

(21)

≤ 1
√

µ
×

∣∣∣(P,G)(J0,F−
0 )

J

∣∣∣
(d2 + ε)3n3

,

where we used (22) (which yields |NJ0(e)| ≤ 3k − 3 and hence max{e(J0) −
e(J̃0), |F−

0 | − |F̃0|} < 3k2) for the last inequality, in addition to (21). Moreover,
we infer from the folklore “triangle counting lemma” for (d2, δ)-regular graphs (see,
e.g., [6, Fact A]), that |K3(Phij)| ≤ (d2+ε)3n3 for sufficiently small δ � min{ε, d2}.
Therefore, we can rewrite the last estimate in the form

deg(η) ≤ 1
√

µ
×

∣∣∣(P,G)(J0,F−
0 )

J

∣∣∣
|K3(Phij)|

,

which is (27). �

6. Proof of the graph embedding lemma

The proof of the graph embedding lemma, Proposition 11, presented in this
section, is an adaptation of the proof from [4]. In Section 6.1 we introduce the
concepts used in the proof and review a few auxiliary facts concerning (d, δ)-regular
graphs. The proof of Proposition 11 then follows in Section 6.2.

6.1. Preparations. In Proposition 11 we consider a given a k-partite graph P =⋃
1≤i<j≤k P ij with vertex partition V1∪̇ . . . ∪̇Vk = V = V (P ), |V1| = · · · = |Vk| = n,

where P ij is (d, δ)-regular for every 1 ≤ i < j ≤ k. Later we will embed a given
graph J0 with bounded maximum degree into P . In order to obtain an extendable
family of embeddings J (see Definition 10) we will try to avoid sets of vertices
which have the “wrong” number of joint neighbors. For that we first define sets of
“bad” vertices.

In what follows, we abuse cross-product notation and write, for a set I ⊆ [k],∏
i∈I Vi = {{vi}i∈I : vi ∈ Vi for all i ∈ I} for the set of all unordered |I|-tuples of

vertices which are transversal to
⋃

i∈I Vi.

Definition 15. For ε > 0 and P as above set B[k](P, ε) = ∅ and for every proper
subset ∅ 6= I ( [k] define recursively

BI(P, ε) =
{
{vi}i∈I ∈

∏
i∈I

Vi : ∃ ` ∈ [k] \ I s.t.
∣∣∣ ⋂

i∈I

N(vi) ∩ V`

∣∣∣ 6= (d± ε)|I|n

or
∣∣{v` ∈ V` : {vi}i∈I∪{`} ∈ BI∪{`}(P, ε)}

∣∣ ≥ εn

}
.

If P and ε are clear from context, we will simply write BI for BI(P, ε). We also
set B = B(P, ε) =

⋃
∅6=I([k] BI(P, ε).

It is a well known fact that if δ � min{ε, d, 1/k}, then the (d, δ)-regularity of P
implies that for every ∅ 6= I ( [k], all but at most εn|I| |I|-tuples {vi}i∈I ∈

∏
i∈I Vi

satisfy ∣∣∣ ⋂
i∈I

N(vi) ∩ V`

∣∣∣ = (d± ε)|I|n (31)
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for every ` ∈ [k] \ I (see, e.g., [9, Fact 1.4]). The following fact is a simple conse-
quence of (31).

Fact 16. For all integers k and d, ε > 0 there exists δ > 0 so that for every
graph P as above the following holds. For every proper subset ∅ 6= I ( [k] we have
|BI(P, ε)| ≤ εn|I|.

Proof. The proof is by induction on k−|I|. If |I| = k−1 then the statement follows
directly from (31), since B[k](P, ε) = ∅.

Let ∅ 6= I ( [k] be fixed. Fix ε′ > 0 such that ε′ + k
√

ε′ ≤ ε and let δ be small
enough so that (31) holds with ε replaced by ε′ and so that |BJ(P, ε′)| ≤ ε′n|J| for
all super-sets J ) I.

Note that (31) implies there are at most ε′n|I| |I|-tuples in
∏

i∈I Vi which belong
to BI(P, ε′) due to the first reason, i.e., they fail to satisfy (31) with ε replaced
by ε′. Moreover, by induction, |BI∪`(P, ε′)| ≤ ε′n|I|+1 for every ` ∈ [k] \ I. Hence,
there are at most (k − |I|)

√
ε′n|I| |I|-tuples in {vi}i∈I ∈

∏
i∈I Vi for which there

exist an ` ∈ [k] \ I so that∣∣{v` ∈ V` : {vi}i∈I∪{`} ∈ BI∪{`}(P, ε′)
}∣∣ ≥ √

ε′n .

Consequently, since ε′ ≤ ε we have

|BI(P, ε)| ≤ |BI(P, ε′)| ≤ ε′n|I| + (k − |I|)
√

ε′n|I| ≤ εn|I|

due to the choice of ε′. �

Next we consider |I|-tuples which contain no bad sub-tuple.

Definition 17. For ε′ > 0 and P as above, and for a proper subset ∅ 6= I ( [k],
set

ZI = ZI(P, ε′) =
{
{vi}i∈I ∈

∏
i∈I

Vi : {vi}i∈I′ 6∈ BI′(P, ε′) for all ∅ 6= I ′ ⊆ I

}
.

Set Z = Z(P, ε′) =
⋃
∅6=I([k] ZI(P, ε′).

The following fact is an immediate consequence of Fact 16.

Fact 18. For all integers k and d, ε′ > 0 there exists δ > 0 so that for every graph P
as above, and for every proper subset ∅ 6= I ( [k], we have |ZI(P, ε′)| ≥ (1−ε′)n|I|.

Proof. Let k and d, ε′ > 0 be given. Set ε′′ = ε′/(2k−1− 1) and let δ be sufficiently
small so that Fact 16 holds for k, d, and ε′′. Fix a proper subset ∅ 6= I ( [k]. By the
choice of δ, for every ∅ 6= I ′ ⊆ I we have |BI′(P, ε′′)| ≤ ε′′n|I

′|. Therefore, there are
at most ε′′n|I| |I|-tuples {vi}i∈I ∈

∏
i∈I Vi for which {vi}i∈I′ ∈ BI′(P, ε′′). Since

BI′(P, ε′) ⊆ BI′(P, ε′′), we see∣∣ZI(P, ε′)
∣∣ ≥ n|I| −

∑
∅6=I′⊆I

ε′′n|I| ≥ (1− ε′)n|I|,

where the last inequality holds due to the choice of ε′′. �

We close this section with the following simple observation.
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Fact 19. For all integers k and ε∗ > 0, there exists ε′ > 0 so that for every d and
δ > 0 and every graph P as above1 the following holds. For every proper subset
∅ 6= I ( [k], every {vi}i∈I ∈ ZI(P, ε′) and every ` ∈ [k] \ I, we have∣∣∣{v` ∈ V` : {vi}i∈I∪{`} 6∈ ZI∪{`}

}∣∣∣ ≤ ε∗n .

Proof. Let k and ε∗ > 0 be given and set ε′ = ε∗/(2k−1 − 1). Let ∅ 6= I ( [k],
{vi}i∈I ∈ ZI(P, ε′) and ` ∈ [k] \ I be given. By definition, we know {vi}i∈I′ 6∈
BI′(P, ε′) for every ∅ 6= I ′ ⊆ I, and hence,∣∣∣{v` ∈ V` : {vi}i∈I′∪{`} ∈ Bi∈I′∪{`}(P, ε′)

}∣∣∣ ≤ ε′n .

Applying this observation for all ∅ 6= I ′ ⊆ I, we obtain∣∣∣{v` ∈ V` : ∃ ∅ 6= I ′ ⊆ I s.t. {vi}i∈I′∪{`} ∈ Bi∈I′∪{`}(P, ε′)
}∣∣∣ ≤ (2|I| − 1)ε′n ≤ ε∗n

and the fact follows. �

6.2. Proof of Proposition 11. In this section, we prove Proposition 11. Our
proof is somewhat similar to the proof of the graph embedding lemma in [4] and
will be based on the concepts and observations from Section 6.1.

Proof of Proposition 11. First we recall the quantification of Proposition 11: ∀ k ≥
2, d > 0, ε > 0 ∃ δ > 0, c > 0, and n0. Again, instead of calculating somewhat
tedious estimates on the promised constants δ > 0, c > 0 and n0, we will simply
verify Proposition 11 under the assumption the constants were chosen to satisfy

max{ 1
n0

, c, δ} � ε′ � ε∗ � min{ε, d, 1
k} , (32)

for auxiliary constant ε′ given by Fact 19 applied with k and auxiliary constant
ε∗. Moreover, we will assume that δ is sufficiently small so that the conclusion of
Fact 18 holds for k, δ and ε′.

Let P =
⋃

1≤i<j≤k P ij be a k-partite graph with vertex partition V1∪̇ . . . ∪̇Vk =
V = V (P ), |V1| = · · · = |Vk| = n ≥ n0, where P ij is (d, δ)-regular for every
1 ≤ i < j ≤ k. Moreover, let J0 be a k-partite graph on m ≤ cn vertices with
vertex partition U1∪̇ . . . ∪̇Uk = U = V (J0) such that for every u ∈ U and every
i ∈ [k] we have |(N2

J0
(u)∪{u})∩Ui| ≤ 1, where N2

J0
(u) is the second neighborhood

of u in J0 (see (18)). We have to show that there exists a (d, ε)-extendable family
of J of labeled, partite embeddings of J0 in P (see Definition 10). We will now
define a family of embeddings J , and then show that this family is, in fact, a
(d, ε)-extendable family.

Roughly speaking, we let J be the family of all labeled, partite embeddings of
J0 in P for which the embedding of the second neighborhood N2(u) of any vertex
u ∈ U lies in Z(P, ε′). More precisely, let Z(P, ε′) be defined as in Definition 17.
Set

J =
{

J ⊂ P : J is a labeled, partite copy of J0 in P s.t.{
J(u′) : u′ ∈ N2

J0
(u)

}
∈ Z(P, ε′) for all u ∈ U

}
, (33)

1In fact, for the statement of this fact we don’t need the (d, δ)-regularity of P . However, we
keep the assumption to be consistent with the other facts in this section.
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where, as before, for a copy J of J0 in P and a vertex u′ ∈ U = V (J0), we denote by
J(u′) the vertex in V (J) ⊆ V (P ) which corresponds to u′ in J0. In what follows, we
verify that J , defined above, is indeed a (d, ε)-extendable family of embeddings.
Our proof is based on the following claim.

Claim 20. Suppose X ⊆ U = V (J0) and J̃ is a labeled, partite embedding of J0[X]
with the property

(* )
{
J̃(u′) : u′ ∈ N2

J0
(u) ∩X

}
∈ Z(P, ε′) for every u ∈ U \X

Then extJ (J̃) = (d± ε)e(J0)−e(J0[X])nm−|X|.

(Note, since J̃ satisfies both (* ) and, by Claim 20, extJ (J̃) ≥ 1, we have J̃ ∈
J [X].)

Before we verify the claim, we observe that it immediately implies that J is
(d, ε)-extendable. In fact, for any X ⊆ U and J̃ ∈ J [X] it follows from the
definition of J in (33) and from the definition of Z(P, ε′) in Definition 17, that J̃

satisfies (* ) of Claim 20. Consequently, extJ (J̃) = (d ± ε)e(J0)−e(J0[X])nm−|X|.
Since this holds for any X ⊆ U and J̃ ∈ J [X] this shows that J is (d, ε)-
extendable and concludes the proof of Proposition 11, based on Claim 20. �

Proof of Claim 20. We prove Claim 20 by induction on m− |X|. If |X| = m, then
X = U and the conclusion of Claim 20 holds trivially for every copy J of J0 = J0[U ].

For an integer t ≥ 0, suppose Claim 20 holds for all sets X ′ ⊆ U for which
m − |X ′| = t ≥ 0. Let X ⊆ U be a set for which m − |X| = t + 1 ≥ 1. Fix some
copy J̃ of J0[X] satisfying (* ). Fix a vertex y ∈ U \X arbitrarily and let ` ∈ [k]
be such that y ∈ U`.

It follows from Definition 17 that since

J̃(NJ0(y) ∩X) : =
{
J̃(u) : u ∈ NJ0(y) ∩X

}
⊆

{
J̃(u) : u ∈ N2

J0
(y) ∩X

}
∈ Z(P, ε′),

we have J̃(NJ0(y) ∩ X) ∈ Z(P, ε′). Therefore, J̃(NJ0(y) ∩ X) 6∈ B(P, ε′), and
consequently, setting

C(y) = V` ∩
⋂ {

NP (v) : v ∈ J̃
(
NJ0(y) ∩X

)}
we infer

|C(y)| = (d± ε′)deg(y,X)n ,

where deg(y, X) = |NJ0(y) ∩X| = |J̃
(
NJ0(y) ∩X

)
|. We may think of C(y) as the

candidate set for y, i.e., the set of vertices which could extend J̃ from a labeled,
partite copy of J0[X] to a labeled, partite copy of J0[X ∪ {y}]. In order to extend
J̃ we have to ensure that we do not reuse any vertex from J̃ . Hence, we set
C ′(y) = C(y) \ V (J̃) and note

(d + ε′)deg(y,X)n ≥ |C(y)| ≥ |C ′(y)| ≥ (d− ε′)deg(y,X)n− cn . (34)

Note that by definition of C ′(y), every vertex v ∈ C ′(y) extends J̃ to a labeled,
partite copy of J0[X ∪ {y}]. For v ∈ C ′(y) we denote the particular such copy of
J0[X ∪{y}] by J̃ +v. In order to later appeal to the induction assumption, we shall
have to restrict our attention to those v ∈ C ′(y) for which J̃ + v satisfies (* ) with
X replaced by

X ′ := X ∪ {y} .



ON THE RAMSEY NUMBER OF SPARSE 3-GRAPHS 19

We will show that indeed (* ) holds for J̃ + v for “most” v ∈ C ′(y).
For that, let u ∈ U \X ′ be fixed and consider N2

J0
(u) ∩X ′. We say v ∈ C ′(y) is

Z-bad for u if {
(J̃ + v)(u′) : u′ ∈ N2

J0
(u) ∩X ′} 6∈ Z(P, ε′)

and we denote by Z -bad(u) the set of vertices v ∈ C ′(y) which are Z-bad for u.
Note that J̃ + v satisfies (* ) if and only if v ∈ C ′(y) and v is not Z-bad for any
u ∈ U \ X ′. Hence, we want to show that the number of Z-bad vertices is small.
More precisely, we are going to show that for all but at most k−1 vertices u ∈ U\X ′,
the set Z -bad(u) is empty, and for all other vertices u ∈ U \ X ′, it is very small.
We consider three cases of vertices u ∈ U ′ \X depending on the set N2

J0
(u) ∩X ′.

Case 1 (u satisfies that y 6∈ N2
J0

(u)∩X ′). By the assumption of this case, we have
N2

J0
(u) ∩X ′ = N2

J0
(u) ∩X, and since (* ) holds for J̃ , it is easy to check that for

every v ∈ C ′(y),{
(J̃ + v)(u′) = J̃(u′) : u′ ∈ N2

J0
(u) ∩X ′} = J̃(N2

J0
(u) ∩X) ∈ Z(P, ε′) ,

i.e., (* ) holds for u and X ′ and J̃ + v for any v ∈ C ′(y). In other words,

y 6∈ N2
J0

(u) ∩X ′ ⇒ Z -bad(u) = ∅ . (35)

Before we continue with the next case, we note that for all but at most k − 1
vertices u ∈ U \X ′, we are in Case 1. More precisely, let

W = {w ∈ U \X ′ : y ∈ N2
J0

(w)} .

Since, as is implied by the hypothesis (on J0 ) in Proposition 10, we know |N2
J0

(y)| <
k, and since y ∈ N2

J0
(w) if and only if w ∈ N2

J0
(y), we infer

|W | < k . (36)

Case 2 (u satisfies that {y} = N2
J0

(u)∩X ′). By Fact 18, applied with I = {`}, we
have |V` \ Z{`}| ≤ ε′n. Therefore, |C ′(y) \ Z{`}| ≤ ε′n and

{y} = N2
J0

(u) ∩X ′ ⇒ |Z -bad(u)| ≤ ε′n . (37)

In the final case, when y ∈ N2
J0

(u) ∩X ′, but {y} 6= N2
J0

(u) ∩X ′, we shall verify
a similar estimate on |Z -bad(u)|.

Case 3 (u satisfies that {y} ( N2
J0

(u) ∩X ′). By the assumption of this case, we
have N2

J0
(u) ∩X ′ = (N2

J0
(u) ∩X) ∪ {y} where N2

J0
(u) ∩X 6= ∅. Moreover, by the

assumption of the claim, i.e., by (* ) for J̃ , we have J̃(N2
J0

(u) ∩X) = {J̃(u′) : u′ ∈
N2

J0
(u) ∩X} ∈ Z(P, ε′). Consequently, Fact 19 implies∣∣∣{v ∈ V` : J̃(N2

J0
(u) ∩X) ∪ {v} 6∈ Z(P, ε′)

}∣∣∣ ≤ ε∗n ,

i.e.,
{y} ( N2

J0
(u) ∩X ′ ⇒ |Z -bad(u)| ≤ ε∗n . (38)

This concludes our cases.
Based on the observations (35)–(38), we now finish the proof of Claim 20. We

first refine the set C ′(y) and define

C ′′(y) = C ′(y) \
⋃

u∈U\X′

Z -bad(u) . (39)
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Due to (34), combined with (35)–(38), we obtain

(d + ε′)deg(y,X)n ≥ |C ′′(y)| ≥ (d− ε′)deg(y,X)n− cn− (k − 1)×max{ε′n, ε∗n} .

Since deg(y, X) < k, we infer from c � ε′ � ε∗ � min{ε, d, 1/k} that

|C ′′(y)| = (d± ε)deg(y,X)n . (40)

Finally, we observe that, by definition of the family J in (33), every extension
J ∈ J of J̃ must map y to a vertex v in C ′′(y), since otherwise either J̃+v would not
be a labeled, partite copy of J0[X ′] (if v 6∈ C ′(y)) or, for some u ∈ U \X ′, the second
neighborhood would not be embedded in a set from Z(P, ε′) (if v ∈ C ′(y) \C ′′(y)).
Consequently,

extJ (J̃) =
∑

v∈C′′(y)

extJ (J̃ + v) . (41)

For every v ∈ C ′′(y), we can apply induction to J̃ + v, since m − |X ′| = m −
|X| − 1 and, by definition of the set C ′′(y) in (39), the copy J̃ + v satisfies the
assumption (* ). Hence, we infer by induction, combined with (40) and (41), that

extJ (J̃) =
∑

v∈C′′(y)

extJ (J̃ + v)

= (d± ε)deg(y,X)n× (d± ε)e(J0)−e(J0[X
′])nm−|X′|

= (d± ε)e(J0)−e(J0[X])nm−|X| ,

which concludes the proof of Claim 20. �
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6. P. Frankl and V. Rödl, Extremal problems on set systems, Random Structures Algorithms 20
(2002), no. 2, 131–164. 2, 2.1, 5

7. R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey theory, second ed., Wiley-
Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons Inc., New
York, 1990, A Wiley-Interscience Publication. 1
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