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Abstract. Recently Alon and Shapira [Every monotone graph property is
testable, Proceedings of the thirty-seventh annual ACM symposium on Theory
of computing, ACM Press, 2005, pp. 128–137] have established that every
monotone graph property is testable. They raised the question whether their
results can be extended to hypergraphs. The aim of this paper is to address this
problem. Based on the recent regularity lemma of the last two authors [Regular
partitions of hypergraphs, Combin. Probab. Comput., to appear.] we prove
that any monotone property of 3-uniform hypergraphs is testable answering
in part a question of Alon and Shapira. Our approach is similar to the one
developed by Alon and Shapira for graphs. The authors believe that based on
the general version of the hypergraph regularity lemma the proof presented in
this article extends to k-uniform hypergraphs.

1. Introduction

1.1. Basic definitions. Let k ≥ 2 be an integer and A a property of k-uniform
hypergraphs. In other words, A is a (possibly infinite) family of k-uniform hy-
pergraphs and we say that a given hypergraph H satisfies A if H ∈ A . In this
paper we only consider decidable properties A , which are those for which there is
an algorithm that decides if H ∈ A or H 6∈ A in finite time (depending on the size
of H) for every k-uniform hypergraph H.

For a given constant η > 0, we say a k-uniform hypergraph H on n ver-
tices is η-far from A if no k-uniform hypergraph G on the same vertex set with
|E(G)4E(H)| ≤ ηnk satisfies A . This is a natural measure of how far the given
hypergraph H is from satisfying the property A .

We consider randomized algorithms which for an input hypergraph H on the
vertex set {1, 2, . . . , n} = [n] are able to make queries whether a given k-tuple of
vertices spans an edge in H. For a property A and a constant η > 0, such an
algorithm will be called a tester for A if it can distinguish with, say probability
2/3, whether H satisfies A or is η-far from it. If a property A has for every η > 0
a tester whose query complexity (i.e., number of queries) is bounded by a function
of η and A but is independent of the number of vertices of the input hypergraph H,
the property is called testable.

One can observe that some simple properties as connectivity or containing a
copy of some fixed hypergraph F are not testable. Perhaps surprisingly, many
other properties, e.g. being F-free, are testable.

1.2. Testable graph properties. The general notion of property testing was in-
troduced by Rubinfeld and Sudan in [26]. In [14], Goldreich, Goldwasser and Ron
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initiated the study of property testing for combinatorial structures. In the present
paper the combinatorial structures we focus on are hypergraphs. Our work builds
on some of the earlier work of Alon et al. In a series of papers [1, 2, 3, 6, 4, 5]
Alon and his co-authors investigated testability of graph properties. This line of
research culminated in the recent result of Alon and Shapira [4] asserting that every
hereditary property A , i.e., A is closed under taking induced subgraphs, is testable
(see also Lovász and Szegedy [19] for an alternative proof). A central tool in the
work for graphs is Szemerédi’s regularity lemma (see Theorem 4) for graphs [28].

Some ideas of property testing for graphs were already present before the notion
of a tester was developed. For example if A consists of all graphs not containing
a fixed graph F (as a not necessarily induced subgraph), then the existence of a
tester for A follows from the so-called removal lemma for graphs. The removal
lemma asserts that for every graph F and every η > 0 there exists a c > 0 such
that if G is an n-vertex graph which is η-far from being F -free, then G contains at
least cn|V (F )| copies of F . This result was first obtained for F being the triangle K3

by Ruzsa and Szemerédi [27] and later extended to arbitrary graphs F by Erdős,
Frankl, and Rödl [12]. Those results can straightforwardly be generalized to prove
the testability of properties A , which can be defined by a finite collection F of
forbidden subgraphs, i.e.,

A = Forb(F ) := {G : F * G for every F ∈ F} (1)

with |F | <∞ (see discussion in Section 3.1).
For infinite families F it follows for example from a result of Bollobás, Erdős,

Simonovits, and Szemerédi [7] that being bipartite is a testable graph property.
In [10] answering a question of Erdős (see, e.g., [11]) Duke and Rödl generalized
the result from [7] and proved that being h-colorable is a testable for any h ≥ 2.
The proof in [10] is also based on Szemerédi’s regularity lemma. Later this result
and related results were established by Goldreich, Goldwasser, and Ron [14] and
subsequently improved by Alon and Krivelevich [3]. The authors of [14] and [3]
could avoid using Szemerédi’s regularity lemma and, consequently, obtained much
better bounds on the query complexity for the testers.

The general problem for monotone graph properties, which are those properties
as described in (1) with a possibly infinite forbidden family F , was solved by Alon
and Shapira [5]. They showed that every monotone graph property is testable and
asked if the same holds for hypergraphs. In this paper we answer their question
positively for 3-uniform hypergraphs (see Theorem 2 below). Our proof uses the
ideas of Alon and Shapira and is based on the recent hypergraph extensions of
Szemerédi’s regularity lemma [13, 15, 21, 23, 24, 29]. The transition from graphs to
hypergraphs leads, however, to some technical difficulties. In this paper we restrict
ourself to 3-uniform hypergraphs. This case already reflects the main differences
between the graphs and the general case of k-uniform hypergraphs, but allows us to
simplify the notation and to improve the presentation of the proof. We believe that
the argument can be extended with no major conceptual modification to k-uniform
hypergraphs (see also Section 5).

The main result of the present paper is the first general result for 3-uniform
hypergraphs which establishes testability for a fairly natural and general class of
properties. A few other hypergraph results were already known before, e.g., h-
colorability [9], not containing one fixed induced sub-hypergraph [17], and not con-
taining one fixed non-induced sub-hypergraph [20, 21].
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1.3. Main result. We now state the main result of the paper. A 3-uniform hy-
pergraph H on the vertex set V is some family of 3-element subsets of V , i.e.,
H ⊆

(
V
3

)
. Note that we identify hypergraphs with its edge set and we write V (H)

for the vertex set. We recall that a property A of 3-uniform hypergraphs is mono-
tone if H ∈ A implies that every (not necessarily induced) sub-hypergraph G ⊆ H
exhibits property A as well. In other words, A is closed under removal of vertices
and edges. Note that if A is a monotone property and the hypergraph H does
not satisfy A then no hypergraph obtained by adding edges to H will satisfy A .
Consequently, for monotontone properties the definition of η-far given earlier is
equivalent to the following.

Definition 1. For a monotone property A we say an n-vertex 3-uniform hyper-
graph H is η-far from A if every sub-hypergraph G of H with |H \ G| ≤ ηn3

satisfies G 6∈ A .

We say a tester has one-sided error if it confirms with probability 1 that H ∈
A . In other words, whenever H satisfies A , the algorithm will be correct with
probability equal to 1. Moreover, a property A is testable with one-sided error, if
for every η > 0 there exists a tester with one-sided error.

In [5] Alon and Shapira proved that for any (decidable) monotone graph prop-
erty A and any η > 0 there exists a tester which after a bounded number of random
edge queries comes to the following conclusion:

• If H ∈ P, then the tester confirms it with probability 1.
• If H is η-far from A , then the tester outputs with probability 2/3 that
H /∈ P.

• Otherwise, if H 6∈ A and H is not η-far from A , then there are no guar-
antees for the output of the tester.

In this paper we generalize this result from graphs to 3-uniform hypergraphs.

Theorem 2. Every decidable and monotone property A of 3-uniform hypergraphs
is testable with one-sided error.

As discussed earlier, monotone properties can be described by a (possibly infi-
nite) family of forbidden hypergraphs, i.e, for every monotone property A there
exists a family of hypergraphs F such that A = Forb(F ) where Forb(F ) is the
family of those hypergraphs not containing any element of F as a (not necessarily
induced) sub-hypergraph. Theorem 1 is then a consequence of the following result,
as we will show momentarily.

Theorem 3. Let F be a family of 3-uniform hypergraphs and A = Forb(F ). For
all η > 0 there exists c = c(A , η) > 0 and there are positive integers C = C(A , η)
and n0 = n0(A , η) such that the following holds.

If H is a 3-uniform hypergraph on n ≥ n0 vertices which is η-far from satisfy-
ing A , then there exists a hypergraph F0 ∈ F on f0 ≤ C vertices such that the
number of copies of F0 in H is at least cnf0 .

Theorem 1 easily follows from Theorem 2.

Proof: Theorem 3 =⇒ Theorem 2. Let a decidable and monotone property A =
Forb(F ) and some η > 0 be given. By Theorem 2, there is some c > 0 and there
are integers C and n0 ∈ N such that any 3-uniform hypergraph on n ≥ n0 vertices,
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which is η-far from exhibiting A contains at least cn|V (F0)| copies of some F0 ∈ F
with |V (F0)| ≤ C.

Let s ∈ N be such that (1 − c)s/C < 1/3 and set m0 = max{s, n0}. We claim
that there exists a one-sided tester with query complexity

(
m0
3

)
for A . For that

let H be a 3-uniform hypergraph on n vertices. If n ≤ m0, then the tester simply
queries all edges of H and since A is decidable, there is an exact algorithm with
running time only depending on the fixed m0, which determines correctly if H ∈ A
or not.

Consequently, let n > m0. Then we choose uniformly at random a set S of s
vertices from H. Consider the hypergraph H[S] = H ∩

(
S
3

)
induced on S. If H[S]

has A , then the tester says “yes” and otherwise “no.” Since A is decidable and s is
fixed the algorithm decides whether or not H[S] is in A in constant time (constant
only depending on s and A ).

Clearly, if H ∈ A or n ≤ m0, then this tester outputs correctly and hence it
is one-sided. On the other hand, if H is η-far from A and n > m0, then due to
Theorem 3 the random set S spans a copy of F0 for some F0 ∈ F on f0 ≤ C
vertices, with probability at least

cnf0/
(
n
f0

)
≥ c. (2)

Hence the probability that S does not span any copy of F0 is at most (1− c)s/f0 ≤
(1−c)s/C < 1/3. In other words, S spans a copy of F0 with probability at least 2/3,
which shows that the tester works as specified. �

From now on we are only concerned with the proof of Theorem 3. The main
philosophy of the proof of Theorem 3 is similar to the corresponding statement
for graphs in [5], which was originally obtained by Alon, Fischer, Krivelevich, and
Szegedy in [2]. The proof requires a strengthening of the hypergraph regularity
lemma analogous to the modification of Szemerédi’s regularity lemma proved in [2].
A similar lemma for 3-uniform hypergraphs was already proved by Kohayakawa,
Nagle, and Rödl [17] based on the regularity lemma for 3-uniform hypergraphs
of Frankl and Rödl [13] (see also [24]). We give here a different (and simpler)
proof, based on a “cleaner” version of the regularity lemma from [13], which was
obtained for general k-uniform hypergraphs by the last two authors [23]. We call
this auxiliary result the representative lemma (see Lemma 16 below).

This paper is organized as follows. In Section 2, we develop the necessary defi-
nitions for the regularity method of 3-uniform hypergraphs. In particular we state
the hypergraph regularity lemma (Theorem 13), the corresponding counting lemma
(Theorem 8), and the representative lemma (Lemma 16). Section 3 is devoted to
the proof of Theorem 3 and in Section 4 we prove the representative lemma.

2. Regularity method for hypergraphs

In this section we recall some definitions of the hypergraph regularity method
following the approach from [13].

2.1. Szemerédi’s regularity lemma. We start the discussion with graphs. Given
a graph G and disjoint subsets X, Y ⊆ V (G), the density of the pair (X,Y ) is

dG(X,Y ) =
eG(X,Y )
|X||Y |

, (3)
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where eG(X,Y ) denotes the number of edges in G with one vertex in X and one
vertex in Y . The pair (X,Y ) will be called (ε, d)-regular if for every X ′ ⊆ X and
Y ′ ⊆ Y such that |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y | we have

|dG(X ′, Y ′)− d| < ε . (4)

We also say (X,Y ) is ε-regular if it is (ε, d)-regular for some d. Roughly speaking,
an (ε, d)-regular pair (X,Y ) behaves in a similar way as a random bipartite graph
on the same vertex sets, where each edge appears with probability d. Szemerédi’s
regularity lemma [28] states that for every ε > 0, we can partition the vertex set
of any large graph into a bounded number (only depending on ε) of sets such that
almost all bipartite graphs between the partition classes are ε-regular.

Theorem 4 (Szemerédi’s regularity lemma [28]). For any ε > 0 and any integer t0,
there are positive integers T0 = T0(ε, t0) > t0 and n0 = n0(ε, t0) such that for every
graph G = (V,E) with |V | = n ≥ n0 there exists a partition P(1) = {V1, V2, . . . , Vt}
of V such that

(i ) t0 ≤ t ≤ T0,
(ii ) ||Vi| − |Vj || ≤ 1 for all 1 ≤ i < j ≤ t, and
(iii ) all but εt2 pairs (Vi, Vj) are ε-regular, where 1 ≤ i < j ≤ t.

This lemma is a powerful tool in extremal graph theory (see [18] for a survey or
many of its applications). It is often used in conjunction with the so-called counting
lemma for graphs. We will later need the simplest form of that lemma for triangles.

Lemma 5 (Triangle counting lemma [18]). For all constants γ > 0 and d > 0 there
exists εtcl = εtcl(γ, d) > 0 and mtcl = mtcl(f, γ, d) ∈ N such that the following holds.
If P is a tripartite graph with vertex classes V1, V2, and V3, of size |V1| = |V2| =
|V3| = m ≥ mtcl and if, moreover, (Vi, Vj) is (εtcl, d)-regular for all 1 ≤ i < j ≤ 3,
then the number of triangles K3 in P is in the interval (1± γ)d3m3.

An extension of Szemerédi’s regularity lemma for 3-uniform hypergraphs has
been developed in [13]. More recently extensions to k-uniform hypergraphs were
obtained by several authors in [15, 16, 24] and subsequently in [23, 29]. The key
feature of all those extensions of Theorem 4 to hypergraphs mentioned above, is
that it allows to prove a corresponding extension of the counting lemma, Lemma 5,
as shown in [13, 15, 16, 20, 21, 23, 29].

In our proof we will use the regularity lemma and the counting lemma for hy-
pergraphs from [23]. Since, in this paper, we only focus on 3-uniform hypergraphs,
we develop the definitions only for that case, following the approach from [13].
Moreover, from now on, by a hypergraph we mean a 3-uniform hypergraph.

2.2. Regular hypergraphs and the counting lemma for hypergraphs. Let
V1, V2, and V3 be mutually disjoint subsets of some vertex set V . We call a triple
Q̂ = (Q12, Q13, Q23) of bipartite graphs with vertex sets V1 ∪ V2, V2 ∪ V3 and
V1 ∪V3 a triad. Usually, we will think of a triad Q̂ = (Q12, Q13, Q23) as a tripartite
graph with vertex set V1 ∪ V2 ∪ V3 and edge set E(Q12) ∪ E(Q13) ∪ E(Q23). For
the regularity of hypergraphs, triads play the same role as pairs of vertex sets in
Szemerédi’s regularity lemma.

For a triad Q̂ = (Q12, Q13, Q23) with vertex set V1 ∪ V2 ∪ V3 we define Tr(Q̂) as
the set of triples of vertices of Q̂ each inducing a triangle in Q̂

Tr(Q̂) =
∣∣{{v1, v2, v3} : vi ∈ Vi and vivj ∈ E(Qij) for all 1 ≤ i < j ≤ 3

}∣∣ .
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For a hypergraph H on some vertex set V and a triad Q̂ with vertex classes V1, V2,
and V3 ⊂ V we define the density of H on the triad Q̂ as

dH(Q̂) =

{
|H∩Tr(Q̂)|
|Tr(Q̂)| if |Tr(Q̂)| > 0 ,

0 otherwise .
(5)

This is a natural extension of the notion of density from graphs with respect to
pairs (see (3)) to hypergraphs w.r.t. triads. We generalize the last definition to
the density of an r-tuple of sub-triads of a given triad. We say a tripartite graph
X̂ = (X12, X13, X23) with vertex sets W1, W2, and W3 is a sub-triad of a triad
Q̂ = (Q12, Q13, Q23) with vertex sets V1 ⊇ W1, V2 ⊇ W2, and V3 ⊇ W3 if for every
1 ≤ i < j ≤ 3 we have E(Xij) ⊆ E(Qij). For a given triad Q̂ = (Q12, Q13, Q23) and
a family of (not necessarily disjoint) sub-triads X̂ = {X̂s = (X12

s , X
13
s , X

23
s ) : s =

1, . . . , r} we define

Tr(X̂ ) =
r⋃
i=1

Tr(X̂i)

and extend (5) by setting

dH(X̂ ) =

{
|H∩Tr(X̂ )|
|Tr(X̂ )| if |Tr(X̂ )| > 0 ,

0 otherwise .

We now proceed to a central definition and extend the notion of a regular pair
to a regular triad.

Definition 6 ((δ, d, r)-regularity). Let δ > 0, d > 0 and r ∈ N. We say a hyper-
graphH is (δ, d, r)-regular with respect to a triad Q̂ = (Q12, Q13, Q23) on the vertex
sets V1, V2, and V3 ⊆ V (H) if for any family of r sub-triads X̂ = {X̂s : s = 1, . . . , r}
satisfying

|Tr(X̂ )| > δ|Tr(Q̂)|
we have

|dH(X̂ )− d| < δ .

This notion was introduced in [13] and similarly as Szemerédi’s regularity lemma
decomposes every graph in a bounded number of “mostly” regular pairs, the hyper-
graph regularity lemma (upcoming Theorem 13) will partition the edge set of any
given hypergraph into “triads” in such a way that most of them are regular in the
sense of Definition 6. In order to simplify the notation we sometimes do not specify
the density d. We will say a hypergraph is (δ, ∗, r)-regular if it is (δ, d, r)-regular
for some density d.

The counting lemma for hypergraphs is a crucial tool in our proof of Theorem 3.
It ensures the existence of many copies of a fixed small hypergraph inside a larger,
dense and “sufficiently regular” hypergraph H. We need a few more definitions
before we give the precise statement.

Let V1 ∪ V2 ∪ · · · ∪ Vf be a partition of some vertex set V . We denote by
Kf (V1, . . . , Vf ) the complete f -partite graph on that partition. Let R be any f -
partite subgraph of Kf (V1, . . . , Vf ) on the same vertex partition and as above, let
Tr(R) be the set of those 3-element subsets of V , which span a K3 in R. We say
R underlies a hypergraph H on the same vertex set V if H ⊆ Tr(R). This leads to
the notion of a regular complex.
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Definition 7 (regular complex). Let positive integers f , m, and r ∈ N and positive
constants δ2, δ3, d2, d3 > 0 be given. Suppose F is a hypergraph with vertex
set [f ] = {1, 2, . . . , f}, V1 ∪ V2 ∪ · · · ∪ Vf is a partition of some vertex set V ,
R ⊆ Kf (V1, . . . , Vf ) and R underlies a hypergraph H with vertex set V (H) = V .
We say the pair (R,H) is a (δ2, δ3, d2, d3, r)-regular (m,F)-complex if the following
holds

(i ) |Vi| = m for all i = 1, . . . , f ,
(ii ) for every 1 ≤ i < j ≤ f such that {i, j, k} ∈ F for some k ∈ [f ] the

induced subgraph Rij = R[Vi, Vj ] of R on the vertex sets Vi and Vj is
(δ2, d2)-regular, and

(iii ) for every {i, j, k} ∈ F the hypergraph H is (δ3, dijk, r)-regular w.r.t. the
triad R̂ = (Rij , Rik, Rjk) for some dijk ≥ d3.

The counting lemma for hypergraphs extends Lemma 5 and gives a bound on
the number of copies of a fixed hypergraph F in H for sufficiently (δ2, δ3, d2, d3, r)-
regular (m,F)-complexes (R,H).

Theorem 8 (Counting lemma for 3-uniform hypergraphs [20]). For every f ∈ N
and constants γ > 0 and d3 > 0, there exist δ3 = δ3(f, γ, d3) > 0 such that for every
d2 > 0 there exist δ2 = δ2(f, γ, d3, d2) > 0 and positive integers r = r(f, γ, d3, d2)
and m0 = m0(f, γ, d3, d2) ∈ N such that the following holds.

Suppose F is a hypergraph with vertex set [f ] = {1, . . . , f}, V1∪V2∪· · ·∪Vf is a
partition of some vertex set V , R ⊆ Kf (V1, . . . , Vf ) and R underlies a hypergraph H
with vertex set V (H) = V . If, moreover, (R,H) is a (δ2, δ3, d2, d3, r)-regular (m,F)-
complex with m ≥ m0, then the number of copies of F in H is at least

(1− γ)d|∆(F)|
2 d

|F|
3 mf , (6)

where ∆(F) is the shadow of F , i.e.,

∆(F) =
{
{i, j} : 1 ≤ i < j ≤ f so that there exists k ∈ [f ] with {i, j, k} ∈ F

}
.

A generalization of this counting lemma to k-uniform hypergraphs can be found
in [21] and [23].

2.3. Regularity lemma for hypergraphs. In this section we state a variant of
the regularity for 3-uniform hypergraphs [13], which was obtained by the last two
authors for general k-uniform hypergraphs in [23]. First we generalize the concept
of vertex partition present in Szemerédi’s regularity lemma.

Definition 9 ((t, `)-partition). Let V be a vertex set, let P(1) = {V1, V2, . . . , Vt}
be a partition of V , and let P(2) = {P ijα : 1 ≤ i < j ≤ t and 1 ≤ α ≤ `} be
a family of

(
t
2

)
` bipartite graphs. We say the pair P = {P(1),P(2)} is a (t, `)-

partition1 on V if for every 1 ≤ i < j ≤ t the family {E(P ij1 ), E(P ij2 ), . . . , E(P ij` )}
is a partition of the edge set of the complete bipartite graph K2(Vi, Vj).

We say a (t, `)-partition is T -bounded if max{t, `} ≤ T . Moreover, for a (t, `)-
partition P, we denote by P̂ the set of all triads of the form (P ijα , P

ik
β , P

jk
γ ) with

1 ≤ α, β, γ ≤ ` and 1 ≤ i < j < k ≤ t.

1Note that while P(1) is a partition of the V , the family of bipartite graphs P(2) is not a

partition of
`V

2

´
, but a partition of the edge set of the complete t-partite graph Kt(V1, . . . , Vt).
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We consider such (t, `)-partitions for which the bipartite graphs P ijα are µ-regular.
Moreover, similarly as in Szemerédi’s regularity lemma we will require the vertex
partition classes to have almost the same size. This leads us to the following
definition.

Definition 10 ((µ, t, `)-equitable). We say a (t, `)-partition P = {P(1),P(2)} is
(µ, t, `)-equitable if

(i ) P(1) = {V1, V2, . . . , Vt} is equitable, i.e., for all 1 ≤ i < j ≤ t we have
||Vi| − |Vj || ≤ 1 and

(ii ) for every 1 ≤ i < j ≤ t and 1 ≤ α ≤ ` the bipartite graph P ijα ∈ P(2) is
(µ, 1/`)-regular on the pair (Vi, Vj).

The regularity lemma from [23] guarantees the existence of a T -bounded (µ, t, `)-
equitable partition P (where µ = µ(t, `) is any function of t and `) for any hyper-
graph H where T is independent of the number of vertices of H. Moreover, the
hypergraph H will be (δ, ∗, r)-regular with respect to almost all triads of P̂.

Theorem 11 (Regularity lemma for 3-uniform hypergraphs [23]). For every integer
t0 ∈ N, every constant δP > 0 and all functions µP : N2 → (0, 1] and rP : N2 → N
there exist positive integers T0 = T0(t0, δP , µP , rP) and n0 = n0(t0, δP , µP , rP)
such that for every hypergraph H with n ≥ n0 vertices V there exists a partition
P and there are positive integers tP and `P such that for µP = µP(tP , `P) and
rP = rP(tP , `P) the following holds

(i ) P is (µP , tP , `P)-equitable and T0-bounded partition on V and
(ii ) H is (δP , ∗, rP)-regular w.r.t. all but at most δPt3P`3P triads P̂ ∈ P̂.

In our proof we will use the regularity lemma twice. First we use it in the form
as stated above and in the second application we will refine the given partition P
to obtain a partition Q with respect to which H will be “more regular.” To state
that version we need the notion of a refinement of a partition.

Definition 12 (refinement). We say a partition Q = {Q(1),Q(2)} on V refines a
partition P = {P(1),P(2)} on V and write Q ≺ P if

(i ) for every vertex set U ∈ Q(1) there exists W ∈ P(1) such that U ⊆W and
(ii ) for every bipartite graph Q ∈ Q(2) there exists P ∈ P(2) such that Q is a

subgraph of P .

We now state that “refinement version” of Theorem 11. In fact, Theorem 11 is
a simple corollary of the refinement version and a proof of that stronger version
can be found in [23]. The lemma roughly states that given a (µ, tP , `P)-equitable
partition P (with (µ, 1/`P)-regular auxiliary graphs P ijα ∈ P(2) for sufficiently
small µ) any hypergraph H admits a partition Q ≺ P for which H is (δ, ∗, r)-
regular on most triads Q̂ ∈ Q̂.

Theorem 13 (Refinement version of the regularity lemma [23]). For all positive
integers tP , `P ∈ N, every constant δQ > 0, and all functions εQ : N2 → (0, 1] and
rQ : N2 → N there exist µhrl = µhrl(tP , `P , δQ, εQ, rQ) > 0 and positive integers
Thrl = Thrl(tP , `P , δQ, εQ, rQ) and nhrl = nhrl(tP , `P , δQ, εQ, rQ) such that the
following holds. If

(a ) H is a hypergraph with n ≥ nhrl vertices V and
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(b ) P is a (µhrl, tP , `P)-equitable (and hence max{tP , `P}-bounded) partition
on V ,

then there exists a partition Q and there are positive integers tQ and `Q such that
the following holds for tPQ = tPtQ, `PQ = `P`Q, εQ = εQ(tPQ, `PQ) and
rQ = rQ(tPQ, `PQ)

(i ) Q is (εQ, tPQ, `PQ)-equitable and Thrl-bounded partition on V ,
(ii ) Q ≺ P, and
(iii ) H is (δQ, ∗, rQ)-regular w.r.t. all but at most δQt3PQ`

3
PQ triads Q̂ ∈ Q̂.

2.4. Statement of the representative lemma for hypergraphs. We now turn
to the key definition of a representative of a (t, `)-partition P. Roughly speaking,
a representative is a sub-object of a (t, `)-partition P reflecting the structure of P.

Definition 14 (representative). Let P = {P(1),P(2)} be a (t, `)-partition on V
with vertex partition P(1) = {V1, V2, . . . , Vt} and P(2) = {P ijα : 1 ≤ i < j ≤
t and 1 ≤ α ≤ `}. We say R = {R(1),R(2)}, where R(1) = {W1,W2, . . . ,Wt}
and R(2) = {Rijα : 1 ≤ i < j ≤ t and 1 ≤ α ≤ `} is a representative of P (or R
represents P) if

(i ) Wi ⊆ Vi for every 1 ≤ i ≤ t and
(ii ) Rijα is a (bipartite) subgraph of P ijα with vertex classes Wi and Wj for every

1 ≤ i < j ≤ t and 1 ≤ α ≤ `.

Moreover, we define for every triad P̂ = (P ijα , P
ik
β , P

jk
γ ) ∈ P̂ the corresponding

triad R̂(P̂) = (Rijα , R
ik
β , R

jk
γ ) and we let R̂ = {R̂(P̂) : P̂ ∈ P̂} be the family of

triads of the representative.

In our proof of Theorem 3 the representative R of the partition P will be
appropriately chosen from an equitable refinement Q of P (cf. Theorem 13) and,
hence, R will be equitable in the following sense.

Definition 15 ((εR, tR, `R)-representative). Let εR > 0 and positive integers tR
and `R ∈ N be given. We say a representative R = {R(1),R(2)} of a (tP , `P)-
partition P on n vertices is an (εR, tR, `R)-representative if

(i ) |W | = n/(tPtR) for every W ∈ R(1) and
(ii ) R is (εR, 1/(`P`R))-regular for every R ∈ R(2).

We say the (εR, tR, `R)-representative R of a (tP , `P)-partition P is T -bounded
for some T ∈ N if max{tP , tR, `P , `R} ≤ T .

Recall that due to the quantification of the regularity lemma (Theorem 11),
which states that for every δP there exists T0, the resulting T0-bounded parti-
tion P may satisfy tP , `P � 1/δP . This would, however, not suffice to count
hypergraphs F of size comparable to tP or `P , the number of the blocks in the
partition P. That is due to the quantification of the counting lemma (Theorem 8),
which for a given hypergraph F of size f ensures the existence of sufficiently small
δ � 1/f (δ3 in the statement).

To circumvent a similar problem arising in the graph case, Alon and Shapira [5]
used an iterated version of Szemerédi’s regularity lemma, which was first obtained
and used by Alon, Fischer, Krivelevich, and Szegedy in [2]. This iterated regularity
lemma yields for a given graph G a vertex partition P(1) = {V1, V2, . . . , Vt} and a
“representative” R(1) = {W1,W2, . . . ,Wt} with Wi ⊆ Vi for every i = 1, 2, . . . , t. In
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that lemma the representative R(1) resembles “typically” the density of G w.r.t. P,
i.e., dG(Wi,Wj) ∼ dG(Vi, Vj) for “most” pairs 1 ≤ i < j ≤ t. Moreover, the graphG
is ε-regular on every pair (Wi,Wj) of the representative, and (most importantly) ε
can be chosen as an arbitrary function of t, e.g., on the representative one can count
graphs of order t, i.e., the size of the partition P(1).

The representative lemma, Lemma 16 below, is an analogous statement for 3-
uniform hypergraphs. For a given hypergraph H it asserts the existence of a parti-
tion P = {P(1),P(2)} and of a representative R = {R(1),R(2)} of P, so thatH is
(δR(tP , `P), ∗, rR(tP , tR, `P , `R))-regular on every triad of the representative (see
(iv ) in Lemma 16). Note that the number of “partition blocks” in R, which is the
same as that in the partition P, depends on tP and `P only, and here δR(tP , `P) is
a function of those parameters. On the other hand, the functions rR(tP , tR, `P , `R)
and εR(tP , tR, `P , `R) can depend on tP , tR, `P , and `R, so, in particular, they
can depend on `P`R, which is the reciprocal of the densities of R ∈ R(2). Choosing
δR(tP , `P) and rR(tP , tR, `P , `R) appropriately as functions of tP , `P , tR, and
`R will allow us to satisfy the quantification of the counting lemma, Theorem 8,
for counting hypergraphs F whose size depends on tP and `P . Additionally, we
will also ensure that dH(R̂(P̂)) ∼ dH(P̂) for “most” triads P̂ ∈ P̂ (see (iii ) in
Lemma 16).

Lemma 16 (Representative lemma). For every t1 ∈ N and δ > 0 and all functions
εP : N2 → (0, 1] δR : N2 → (0, 1], εR : N4 → (0, 1], and rR : N4 → N there exist
positive integers TP , TPR and n1 ∈ N such that the following holds.

If H is a hypergraph on at least n1 vertices, then there exist positive integers tP
and `P and a TP-bounded (tP , `P)-partition P = {P(1),P(2)} with t1 ≤ tP and
there is representative R = {R(1),R(2)} of P such that

(i ) every graph in P ∈ P(2) is (εP(tP , `P), 1/`P)-regular,
(ii ) R is a TPR-bounded (εR(tP , tR, `P , `R), tR, `R)-representative of P for

some positive integers tR and `R,
(iii ) for all but at most δt3P`3P triads P̂ ∈ P̂ we have |dH(P̂)−dH(R̂(P̂))| ≤ δ,

and
(iv ) H is (δR(tP , `P), ∗, rR(tP , tR, `P , `R))-regular with respect to R̂(P̂) ∈ R̂

for every triad P̂ ∈ P̂.

A similar lemma was proved by Kohayakawa, Nagle, and Rödl [17]. We give a
different proof of the representative lemma based on Theorem 13 in Section 4.

3. Proof of Theorem 3

A weakened version of Theorem 3 is obtained by restricting to finite forbidden
families F . In that case the corresponding statement of Theorem 3 has essentially
been proved for k-uniform hypergraphs in [15, 21, 25]. We briefly outline that proof
in Section 3.1 and discuss its limitations with respect to infinite families F . The
representative lemma, Lemma 16, will allow us to overcome those difficulties and
in Section 3.2 we give a proof of Theorem 3 based on Lemma 16 and the counting
lemma, Theorem 8.

3.1. The finite case. We now sketch a (straightforwardly adjusted) proof of the
removal lemma [15, 21, 25], based on the regularity and the counting lemma for
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hypergraphs, which yields the restricted version of Theorem 3 for finite forbidden
families F .

Let F be a finite family of hypergraphs and η > 0 be given and consider an
n-vertex hypergraph H which is η-far from A = Forb(F ). We apply Theorem 11
with appropriately chosen parameters δP and functions µP and rP (discussed
below). This way we obtain a partition P = {P(1),P(2)}. We then delete those
edges H of H which satisfy one of the following conditions

(a ) H is non-crossing in P, i.e., there exist Vi ∈ P(1) so that |H ∩ Vi| ≥ 2, or
(b ) H belongs to a sparse triad, i.e., dH(P̂) < η/3 for the unique P̂ ∈ P̂ with

H ∈ Tr(P̂), or
(c ) H belongs to a (δP , ∗, rP(tP , `P))-irregular triad, i.e., the hypergraphH is

not (δP , ∗, rP(tP , `P))-regular w.r.t. the unique P̂ ∈ P̂ with H ∈ Tr(P̂).
We call the resulting hypergraph H′. Choosing δP < η/3 and provided the regular
partition has sufficiently many vertex classes (which implies that only a few tuples,
e.g., less than ηn3/3, are deleted because of (a )) one can show that at most ηn3

edges ofH were deleted. Since by assumptionH is η-far from A , the hypergraphH′

still does not satisfy A . Consequently, H′ contains a sub-hypergraph F0 isomorphic
to some forbidden hypergraph from F . Due to the construction ofH′ all edges of F0

are crossing w.r.t. the vertex partition P(1) and belong to dense and regular triads
from P̂. Suppose now that the entire copy F0 is crossing w.r.t. P(1), i.e., V (F0)
intersects each vertex partition class Vi ∈ P(1) in at most one vertex. (The case
when F0 is not crossing can be handled similarly, as we will show in the general
proof for not necessarily finite families F .)

Since each edge of F0 belongs to a dense and regular triad, the union of those
triads defines a dense and regular (m,F0)-complex (see Definition 7) with m =
n/tP . Moreover, maxF∈F |V (F)| exists since |F | < ∞. In other words, we can
“forecast” the maximum possible size of F0 we may encounter and we can choose
δP and functions µP and rP at the beginning of the proof appropriately so that
the (m,F0)-complex from above is ready for an application of the counting lemma,
Theorem 8. The counting lemma then guarantees Ω(n|V (F0)|) copies of F0 in the
(m,F0)-complex, and, consequently, in H′ ⊆ H, which concludes the proof.

Clearly, this argument breaks down for infinite families F , as we cannot forecast
an upper bound on the size of F0. The representative lemma, Lemma 16, allows us
to get around this issue. Given a hypergraphH we apply Lemma 16 and delete non-
crossing edges and edges belonging to triads P̂ for which R̂(P̂) is sparse, similarly,
as in the discussion above (using additionally (iii ) of Lemma 16), we will be left
with a hypergraph H′ which again contains a hypergraph F0 from the forbidden
family F . In this (infinite) case we have no upper bound on the size of F0. However,
since all edges of F0 belong to triads of the (tP , `P)-partition P we will argue that
H′ also contains some other forbidden hypergraph F1 of F , whose edges belong
to the same triads as the edges of F0 and, more importantly, the size of F1 will
be bounded by a function only depending on tP and `P . (Roughly speaking,
the F0 and F1 can both be homomorphically mapped in the “cluster-structure”
of the partition P and the size of F1 only depends on the number of partition
blocks of P.) This will allow us, with appropriately chosen functions δR(tP , `P)
and rR(tP , tR, `P , `R) for the regularity of the representative to find (using the
counting lemma) Ω(n|V (F1)|) copies of F1 in H′ ⊆ H. We now give the details of
this outline.
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3.2. The general case. In this section we make the ideas presented in the outline
above precise. For that we need a few more definitions. For positive integers t
and ` we denote by M(t, `) the complete multigraph with vertex set [t] = {1, . . . , t}
and edge multiplicity `. We can view edges as ordered pairs ({i, j}, α), where
1 ≤ i < j ≤ t and α ∈ [l]. Denote by Tr(M(t, `)) the set of all

(
t
3

)
`3 triangles

of M(t, `). We will identify a triangle on the vertices 1 ≤ i < j < k ≤ t and edges
({i, j}, α), ({i, k}, β), ({j, k}, γ) with the 6-tuple ((i, j, k), (α, β, γ)) and set

Tr
(
M(t, `)

)
=

{(
(i, j, k), (α, β, γ)

)
: 1 ≤ i < j < k ≤ t and α, β, γ ∈ [l]

}
.

We also consider homomorphisms into sub-multihypergraphs of Tr(M(t, `)). Recall
that for a hypergraph F we denote by ∆(F) the shadow of F , i.e., the family of all
pairs of vertices contained in an edge of F .

Definition 17. Let t and ` be integers and let S ⊆ Tr(M(t, `)) be a multi-
hypergraph. For a 3-uniform hypergraph F on f vertices, we say a pair of mappings
(ϕ,ψ)

ϕ : V (F) → V (S) ⊆ [t] and ψ : ∆(F) → [`]

is a homomorphism from F to the multi-hypergraph S if ϕ is onto and if there
exists a labeling of V (F) = {v1, . . . , vf} such that for every edge {vx, vy, vz} ∈ F
with 1 ≤ x < y < z ≤ f we have ϕ(vx) < ϕ(vy) < ϕ(vz) and((

ϕ(vx), ϕ(vy), ϕ(vz)
)
,
(
ψ(vx, vy), ψ(vx, vz), ψ(vy, vz)

))
∈ S .

We will abbreviate the existence of a homomorphism from F to S by F � S.

Proof of Theorem 3. Let A = Forb(F ) for a (possibly infinite) family of forbidden
hypergraphs F and η > 0 be a positive constant. We need a few auxiliary functions,
before we reveal the promised constants c > 0, C and n0 (see (13) below). Given
two positive integers t and ` and a multi-hypergraph S ⊆ Tr(M(t, `)) we set

FS = {F ∈ F : F � S}

and

CS =

{
min{|V (F)| : F ∈ FS} if FS 6= ∅,
0 otherwise.

(7)

Let Ψ: N2 → N ∪ {0} be defined for two positive integers t and ` as

Ψ(t, l) = max
{
CS : S ⊆ Tr(M(t, `))

}
.

The function Ψ(t, `) is designed to “forecast” the maximal size of a witness from
F we may encounter after application of the representative lemma, Lemma 16.
Next we introduce the parameters δ and t1 and the functions εP , δR, εR, and
rR with which we are going to apply Lemma 16. Recall the functions δ3(f, γ, d3),
δ2(f, γ, d3, d2), r(f, γ, d3, d2), and m0(f, γ, d3, d2) from Theorem 8 and εtcl(γ, d) and
mtcl(γ, d) from Theorem 5. For the given η from above we set

δ =
η

3
and t1 =

⌈
4
η

⌉
(8)
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and define functions in integer variables t, t′, `, and `′

εP(t, `) = εtcl(γ = 1/2, d = 1/`) (9)

δR(t, `) = δ3
(
f = Ψ(t, `), γ = 1/2, d3 = η/3

)
(10)

εR(t, t′, `, `′) = δ2
(
f = Ψ(t, `), γ = 1/2, d3 = η/3, d2 = 1/(``′)

)
(11)

rR(t, t′, `, `′) = r
(
f = Ψ(t, `), γ = 1/2, d3 = η/3, d2 = 1/(``′)

)
. (12)

For that choice of δ, t1, εP , δR, εR, and rR Lemma 16 yields constants

TP , TPR , and n1 .

Now we define the constants c, C, and n0 promised by Theorem 3 and we set

C = Ψ(TP , TP) , c =
1

4C!
×

(
1

TPTPR

)(C
2)
×

(η
3

)(C
3)

(
1

TPTPR

)C
and

n0 = max
{
n1, TP ×mtcl(γ = 1/2, d = 1/TP), C2/c,

TPTPR ×m0(f = C, γ = 1/2, d3 = η/3, d2 = 1/(TPTPR))
}
.

(13)

This concludes the definition of all constants and functions involved in the proof.
Let H be a hypergraph on n ≥ n0 vertices which is η-far from A . Due to

Lemma 16 the hypergraph H admits a (tP , `P)-partition P (where tP ≥ t1) with
a representative R and there are integers tR and `R such that (i )–(iv ) of the lemma
hold. We formally fix

εP = εP(tP , `P), δR = δR(tP , `P),

εR = εR(tP , tR, `P , `R), and rR = rR(tP , tR, `P , `R) .

Now we delete all edges H of H which satisfy at least one of the two properties
below

(a ) H is non-crossing w.r.t. the vertex partition P(1), i.e., there is some Vi ∈
P(1) (1 ≤ i ≤ tP) such that |H ∩ Vi| ≥ 2 or

(b ) H ∈ Tr(P̂) for which dH(R̂(P̂)) < 2η/3.
We call the resulting sub-hypergraph H′ ⊆ H. Next we estimate H \ H′. We first
consider the edges deleted due to (a ). Recalling the definition of t1 in (8) and
tP ≥ t1 we get that the number of non-crossing triples in H is at most

2
(
tP
2

)(
n/tP

2

)
n

tP
+ tP

(
n/tP

3

)
≤ n3

tP
≤ η

4
n3 . (14)

Next we estimate the number of edges deleted because of (b ). By property (i )
of Lemma 16 all graphs P ijα ∈ P(2) are (εP , 1/`P)-regular and, consequently,
Lemma 5 applies to every triad P̂ ∈ P̂ (with γ = 1/2 and d = 1/`P). We
consider two sub-cases. First, the edge H could belong to a triad P̂ ∈ P̂ which is
exceptional in the sense of (iii ) of Lemma 16. However, the number of those edges
cannot exceed∣∣∣ ⋃ {

Tr(P̂) : P̂ ∈ P̂ and |dH(P̂)− dH(R̂(P̂))| > δ
}∣∣∣

≤ δt3P`3P × max
P̂∈P̂

∣∣ Tr(P̂)
∣∣ ≤ δt3P`3P ×

(
1 +

1
2

)
n3

t3P`3P
≤ η

2
n3 .

(15)
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Finally, the number of edges of H in triads P̂ which are not exceptional in the sense
of part (iii ) of Lemma 16, but satisfy (b ) is at most(

2η
3

+ δ

)
× max
P̂∈P̂

∣∣ Tr(P̂)
∣∣× (

tP
3

)
`3P ≤ η × 3

2
n3

t3P`3P
× t3P

6
`3P ≤ η

4
n3 . (16)

It follows from the considerations above and (14)–(16) that

|H \ H′| ≤ ηn3 .

Hence, by assumption on H the hypergraph H′ 6∈ A and contains some copy F0

of some forbidden hypergraph from F . Note that since H′ contains only crossing
edges in P, the existence of F0 ⊆ H′ yields the existence of some homomorphism
to Tr(M(tP , `P)). Let S ⊆ Tr(M(tP , `P)) be a homomorphic image of such a
homomorphism. In particular, FS 6= ∅, since F0 ∈ FS . We denote by F1 some
hypergraph in FS with the minimum number CS of vertices (see (7)) and let (ϕ,ψ)
be the homomorphism from F1 to S. Let

f1 = CS = |V (F1)| ≤ C

and let V (F1) = {v1, . . . , vf1}. We are going to show that the number of copies of
F1 in H′ will satisfy

#{F1 ⊆ H′} ≥ cnf1 , (17)
which clearly implies Theorem 3.

We define the graph
RS =

⋃
({i,j},α)∈S

Rijα ,

where Rijα ∈ R(2) are graphs of the representative. Assume w.l.o.g. that V (S) =
{1, 2, . . . , s} for some s ≤ tP and thus V (RS) = W1 ∪W2 ∪ · · · ∪Ws with Wi ∈
R(1). If f = s, then (RS ,H′ ∩ Tr(RS)) is a (n/(tPtR),F1)-complex (since by
definition ϕ is onto) and we could invoke the counting lemma, Theorem 8, which
would yield (17). However, since this does not have to be the case, we will define
an auxiliary (n/(tPtR),F1)-complex (G,G) which will satisfy the assumptions of
Theorem 8 and due to its construction we will infer (17) from it.

We first define the vertex set of (G,G). For each x = 1, 2, . . . , f1 let Yx be a copy
of Wϕ(x) such that for all 1 ≤ x < y ≤ f1 we have Yx ∩Yy = ∅. Moreover, for every
x = 1, 2, . . . , f1 let ϑx : Wϕ(x) → Yx be a bijection. Note that if {x, y} ∈ ∆(F1),
then ϕ(x) 6= ϕ(y) and, consequently, ({ϕ(x), ϕ(y)}, ψ(x, y)) ∈ S and R

ϕ(x)ϕ(y)
ψ(x,y) ∈

R2. Hence, we can define for every {x, y} ∈ ∆(F1) with x < y a bipartite graph
Gxy with vertex classes Yx and Yy and edge set

E(Gxy) =
{
{ϑ(w), ϑ(w′)} : {w,w′} ∈ E(Rϕ(x)ϕ(y)

ψ(x,y) )
}
.

It follows from that definition that Gxy is an isomorphic copy of Rϕ(x)ϕ(y)
ψ(x,y) and that

G = (Y,EG) defined by

Y = Y1 ∪ · · · ∪ Yf1 and EG =
⋃ {

E(Gxy) : {x, y} ∈ ∆(F1)
}

is an f1-partite graph satisfying (i ) and (ii ) of Definition 7 with m = n/(tPtR),
δ2 = εR, and d2 = 1/(`P`R). Similarly, for every edge {x, y, z} ∈ F1 there is a
triad R(x, y, z) ∈ R̂ defined by

R(x, y, z) = (Rϕ(x)ϕ(y)
ψ(x,y) , R

ϕ(x)ϕ(z)
ψ(x,z) , R

ϕ(y)ϕ(z)
ψ(y,z) ) .
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We set
Gxyz =

{
{w,w′, w′′} : {w,w′, w′′} ∈ H′ ∩ Tr(R(x, y, z))

}
and

G =
⋃ {

Gxyz : {x, y, z} ∈ F1

}
.

Again it follows from the definition that G satisfies (iii ) of Definition 7 with δ3 = δR,
d3 ≥ η/3, and r = rR. Summarizing, (G,G) is an (εR, δR, 1/(`P`R), η/3, rR)-
regular (n/(tPtR),F1)-complex. By the choices in (10)–(12), and (13) we can
apply the counting lemma, Theorem 8, and, hence,

#{F1 ⊆ G} ≥
(

1− 1
2

) (
1

`P`R

)|∆(F1)| (η
3

)|F1|
(

n

tPtR

)f1 (13)

≥ 2f1!cnf1 .

Observe that almost every copy of F1 in G corresponds to a labeled copy of F1 in H′

(with ϑx : Yx →Wϕ(x) defining the isomorphism). The only possible exceptions are
those copies of F1 with image of size less then f1. This may happen since although
for each x = 1, . . . , f1 the map ϑx is a bijection, but ϑ−1

x (u) = ϑ−1
y (w) for two

different vertices u and w of a copy of F1 in G if, e.g., x and y are such that Wϕ(x) =
Wϕ(y). The number of those copies of F1 in G is however bounded from above by(
f1
2

)
(n/tPtR)f1−1. Consequently, we can find 2f1!cnf1−

(
f1
2

)
(n/tPtR)f1−1) labeled

copies of F1 in H′ and by the choice of n0 ≥ C2/c at least cnf1 unlabeled copies.
Hence, we verified (17), which concludes the proof of Theorem 3. �

4. Proof of the Representative Lemma

The proof of Lemma 16 is based on two successive applications of the regularity
lemma (first in form of Theorem 11 and the second time in form of Theorem 13).

Proof of Lemma 16. First we recall the quantification of the representative lemma,
Lemma 16. Let constants t1 ∈ N and δ > 0 and functions εP : N2 → (0, 1],
δR : N2 → (0, 1], εR : N4 → (0, 1], and rR : N4 → N be given. We are supposed to
define positive integers TP , TPR, and n1 and we are going to define them in (23).
First, however, we need some preparations.

Our proof of Lemma 16 will rely on the regularity lemma for hypergraphs in form
of Theorem 13 and Theorem 11 and the counting lemma for graphs, Lemma 5. Be-
low we will use the functions µhrl(tP , `P , δQ, εQ, rQ), Thrl(tP , `P , δQ, εQ, rQ), and
nhrl(tP , `P , δQ, εQ, rQ) given by Theorem 13, the functions T0(t0, δP , µP , rP) and
n0(t0, δP , µP , rP) given by Theorem 11, and the functions εtcl(γ, d) and mtcl(γ, d)
given by the triangle counting lemma, Lemma 5.

We define auxiliary functions µaux : N2 → (0, 1], Taux : N2 → N, and naux : N2 →
N and we set for positive integers t and ` and x ∈ {µ, T, n}

xaux(t, `) = xhrl

(
tP = t, `P = `, δQ = min

{
δR(t, `), (t`)−3/3

}
,

εQ(t′, `′) = min
{
εR(t, t′, `, `′), εtcl

(
γ = 1

2 , d = 1
``′

)}
,

rQ(t′, `′) = rR(t, t′, `, `′)
)
.

(18)

In other words, for fixed t and ` the values µaux(t, `), Taux(t, `), and naux(t, `) are
defined by the corresponding constants µhrl, Thrl, and nhrl given by Theorem 13
for those parameters tP , `P , δQ and functions εQ and rQ displayed in (18). Note
that the choice in (18) is such that for fixed integers t and `, the parameters tP ,



16 C. AVART, V. RÖDL, AND M. SCHACHT

`P , and δQ are constants, while εQ : N2 → (0, 1] and rQ : N2 → N are functions in
the variables t′ and `′, which matches the quantification of Theorem 13.

With those auxiliary functions at hand, we define the parameters and constants
with which we will apply the “simple” regularity lemma, Theorem 11, later. For
that we fix constants

t0 = t1 and δP =
δ

9
(19)

and functions µP : N2 → (0, 1] and rP : N2 → N defined for all positive integers t
and ` by

µP(t, `) = min
{
µaux(t, `), εP(t, `), εtcl(γ = 1/2, d = 1/`)

}
, (20)

rP(t, `) =
(
Taux(t, `)

)6
, (21)

where t1, δ, and εP are input parameters of Lemma 16. Given t0, δP , µP , and rP
from above, Theorem 11 yields positive integers

T0 = T0(t0, δP , µP , rP) and n0(t0, δP , µP , rP) . (22)

Now we are able to determine the promised constants TP , TPR, and n1 of Lemma 16
and we set

TP = T0, TPR = max
1≤t,`≤T0

Taux(t, `)

and n1 = max
{

max
1≤t,`≤T0

naux(t, `), n0, TP ×mtcl(γ = 1
2 , d = 1

TP

)
,

TPTPR ×mtcl(γ = 1
2 , d = 1

TPTPR

)}
.

(23)

Having defined those constants, let H be a given hypergraph on n ≥ n1 vertices.
Since n1 ≥ n0 we can apply Theorem 11 with constants t0 and δP and functions
µP and rP defined in (19)–(21). Theorem 11 yields a partition P = {P(1),P(2)}
and positive integers tP and `P such that (i ) and (ii ) of Theorem 11 hold, i.e.,

(P1 ) P is (µP(tP , `P), tP , `P)-equitable, T0-bounded, and tP ≥ t0, and
(P2 ) H is (δP , ∗, rP(tP , `P))-regular w.r.t. all but at most δPt3P`3P triads

P̂ ∈ P̂.
Next we will apply the “refining version” of the regularity lemma, Theorem 13 to H
and P, with parameters tP , `P , δQ = min{δR(tP , `P), (3t3P`3P)−1)}, εQ(t′, `′) =
min{εR(tP , t′, `P , `′), εtcl(γ = 1

2 , d = 1
`P`′ )}, and rQ(t′, `′) = rR(tP , t′, `P , `′). In

other words, we will apply Theorem 13 with precisely the same parameters as
those in (18). Therefore, we have to check that H and P satisfy the assump-
tions (a ) and (b ) of Theorem 13 for naux(tP , `P) and µaux(tP , `P). However,
due to (23) and (P1 ) we have n ≥ naux(tP , `P) and due to the choice in (20)
we have µP(tP , `P) ≤ µaux(tP , `P). Consequently, assumptions (a ) and (b ) of
Theorem 13 hold and Theorem 13 yields a partition Q = {Q(1),Q(2)} and positive
integers tQ and `Q such that with

δQ = min{δR(tP , `P), (tP`P)−3/3} , (24)

εQ = min{εR(tP , tQ, `P , `Q), εtcl(γ = 1
2 , d = 1

`P`Q
)} , (25)

and

rQ = rR(tP , tQ, `P , `Q) . (26)

we have
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(Q1 ) Q is (εQ, tPtQ, `P`Q)-equitable and Taux(tP , `P)-bounded partition on V ,
(Q2 ) Q ≺ P, and
(Q3 ) H is (δQ, ∗, rQ)-regular w.r.t. all but at most δQt3Pt3Q`

3
P`3Q triads Q̂ ∈ Q̂.

It follows directly from (P1 ), (20), and the choice of TP in (23) that

P is TP-bounded and satisfies (i ) of Lemma 16. (27)

Below we will select the representative R from the finer partition Q. For prop-
erty (iii ) of Lemma 16 the following claim will be useful.

Claim 18. If P̂ ∈ P̂ is such that H is (δP , ∗, rP(tP , `P))-regular w.r.t. P, then
all but at most 2δPt3Q`

3
Q triads Q̂ ∈ Q̂ with Q̂ ⊆ P̂ satisfy∣∣dH(P̂)− dH(Q̂)

∣∣ ≤ δ . (28)

Proof. Let P̂ ∈ P̂ as in the claim be given. We set

B+ = {Q̂ ∈ Q̂ : Q̂ ⊆ P̂ and dH(Q̂) > dH(P̂) + δ}

B− = {Q̂ ∈ Q̂ : Q̂ ⊆ P̂ and dH(Q̂) < dH(P̂)− δ} .

We first consider |B+|. Observe that by definition of B+

dH

( ⋃
Q̂∈B+

Q̂
)
> dH(P̂) + δ

(19)
> dH(P̂) + δP . (29)

On the other hand, recalling that by (Q1 ) every Q ∈ Q(2) is an (εQ, 1/(`P`Q))-
regular bipartite graph and that by (25) εQ ≤ εtcl(γ = 1

2 , d = 1
`P`Q

), we infer from
Lemma 5 that the total number of triangles contained in some Q̂ ∈ B+ ⊆ Q̂ does
not exceed

|B+| ×
3
2

(
1

`P`Q

)3 (
n

tPtQ

)3

. (30)

Since H is (δP , ∗, rP(tP , `P))-regular w.r.t. P̂ and by (21)

rP(tP , `P) ≥
(
Taux(tP , `P)

)6 (Q1 )

≥ t3Q`
3
Q ≥ |B+|

we infer from (29) that the quantity from (30) is smaller than

|B+| ×
3
2

(
1

`P`Q

)3 (
n

tPtQ

)3

≤ δP
∣∣ Tr(P̂)

∣∣ ≤ δP × 3
2

(
1
`P

)3 (
n

tP

)3

,

where we used the (µP(tP , `P), 1/`P)-regularity of the bipartite subgraphs of
every P̂ ∈ P̂ (see (P1 )), µP(tP , `P) ≤ εtcl(γ = 1

2 , d = 1
`P

) (see (20)), and
Lemma 5 for the last inequality. Consequently,

|B+| ≤ δPt3Q`
3
Q .

Repeating the same argument for |B−| yields |B+|+ |B−| ≤ 2δPt3Q`
3
Q and the claim

follows. �

In what follows we will select the representative R from Q randomly and show
that with positive probability such an R satisfies properties (ii )–(iv ) of Lemma 16.
For that the following notation will be useful. Recall that P(1) = {V1, V2, . . . , VtP}
and P(2) = {P ijα : 1 ≤ i < j ≤ tP , α ∈ [`P ]}, where V (P ijα ) = Vi ∪ Vj . Let the
vertex partition classes of Q(1) be labeled in such a way that Q(1) = {Wi,i′ : (i, i′) ∈
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[tP ]×[tQ]} and Vi = Wi,1∪Wi,2∪· · ·∪Wi,tQ for every i = 1, 2, . . . , tP . Furthermore,
let the graphs of Q

(2)
P = {Q ∈ Q(2) : Q ⊆ P for some P ∈ P(2)} be labeled

Q
(2)
P =

{
Q

(i,i′),(j,j′)
α,α′ : (α, α′) ∈ [`P ]× [`Q], (i, i′), (j, j′) ∈ [tP ]× [tQ], and i < j

}
such that for every (i, i′), (j, j′) ∈ [tP ]× [tQ] with i < j and (α, α′) ∈ [`P ]× [`Q]

V (Q(i,i′),(j,j′)
α,α′ ) = Wi,i′ ∪Wj,j′

E(P ijα [Wi,i′ ∪Wj,j′ ]) =
⋃

α′∈[`Q]

E(Q(i,i′),(j,j′)
α,α′ ) .

Now consider a pair of random mappings

ϕ : [tP ] → [tQ] and ψ :
(

[tP ]
2

)
× [`P ] → [`Q]

both mappings are chosen independently and uniformly at random from the set of

all ttPQ or `(
tP
2 )`P

Q mappings. To each such pair of mappings we associate a random
representative R = R(ϕ,ψ) = {R(1),R(2)} defined by

R(1) = {Wi,ϕ(i) : i ∈ [tP ]}

and

R(2) =
{
Q

(i,ϕ(i)),(j,ϕ(j))
α,ψ({i,j},α) : 1 ≤ i < j ≤ tP , α ∈ [`P ]

}
. (31)

It is easy to check that R(ϕ,ψ) indeed is a representative of P for every choice of
ϕ and ψ. Moreover, we infer from (Q1 ), (25) and the choice of TPR in (23) that
setting

tR = tQ and `R = `Q (32)

yields

R(ϕ,ψ) satisfies (ii ) of Lemma 16 for every choice of ϕ and ψ. (33)

We are going to show that there is a choice of mappings ϕ and ψ such that the
representative R = R(ϕ,ψ) satisfies properties (iii ) and (iv ) of Lemma 16, as well.

Due to Claim 18 we have that if P̂ ∈ P̂ is such that H is (δP , ∗, rP(tP , `P))-
regular w.r.t. P̂, then at most 2δPt3Q`

3
Q sub-triads Q̂ ⊆ P̂ from Q̂ violate (28).

Moreover, by (P2 ) the number of (δP , ∗, rP(tP , `P))-irregular triads P̂ ∈ P̂ does
not exceed δPt3P`3P and, consequently, the total number of sub-triads Q̂ ∈ Q̂ with
Q̂ ⊆ P̂ ∈ P̂, where P̂ is (δP , ∗, rP(tP , `P))-irregular is at most δPt3P`3P × t3Q`3Q.

We say a triad Q̂ ∈ Q̂ is bad if there exists some P̂ ∈ P̂ such that P̂ ⊇ Q̂ and
either (28) is violated or P̂ is (δP , ∗, rP(tP , `P))-irregular. From the discussion
above we clearly infer that∣∣{Q̂ ∈ Q̂ : Q̂ is bad}

∣∣ ≤ 2δPt3Q`
3
Q × |P̂|+ δPt3P`3Pt3Q`

3
Q ≤ 3δP(tP`PtQ`Q)3 .

Since each Q̂ ∈ Q̂ which is a sub-triad of some P̂ ∈ P̂ is contained in the same

number (ttP−3
Q `

(tP
2 )`P−3

Q ) of all representatives R(ϕ,ψ), the expected number of
bad triads contained in a random representative R(ϕ,ψ) is smaller than 3δPt3P`3P .
Let B1 be the event that the random representative contains more than 9δPt3P`3P =
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δt3P`3P (see (19)) bad triads Q̂ ∈ Q̂. From Markov’s inequality we infer P(R(ϕ,ψ) ∈
B1) ≤ 1/3. In other words,

P
(
R(ϕ,ψ) satisfies (iii ) of Lemma 16

)
≥ 2

3
. (34)

Similarly, due to (Q3 ) combined with (24), (26), and (32) we have that the
number of (δR(tP , `P), ∗, rR(tP , tR, `P , `R))-irregular triads Q̂ ∈ Q̂ is at most
δQt

3
Pt3Q`

3
P`3Q. Hence, the expected number of such irregular triads contained in

the random representative R(ϕ,ψ) is at most

δQt
3
P`3P

(24)

≤ 1
3
.

Let B2 be the event that the random representative R(ϕ,ψ) contains at least
one (δR(tP , `P), ∗, rR(tP , tR, `P , `R))-irregular triad. Thus again by Markov’s
inequality we infer P(R(ϕ,ψ) ∈ B2) ≤ 1/3, i.e.,

P
(
R(ϕ,ψ) satisfies (iv ) of Lemma 16

)
≥ 2

3
. (35)

Combining (34) and (35) implies that the probability that R(ϕ,ψ) satisfies (iii )
and (iv ) of Lemma 16 is at least 1/3. Hence, there exist a representative satisfying
properties (iii ) and (iv ) and Lemma 16 follows from (27) and (33). �

5. Concluding remarks

We close this paper with a few remarks concerning extensions of Theorem 2 to
monotone properties of general k-uniform hypergraphs and hereditary properties
of hypergraphs.

5.1. Monotone properties of k-uniform hypergraphs. As we mentioned ear-
lier, the proof of Theorem 2 presented in this paper extends without any major
modification from 3-uniform to k-uniform hypergraphs. This is because the two
main tools used in proof, namely the hypergraph regularity lemma (Theorem 11 and
Theorem 13) and the hypergraph counting lemma (Theorem 8), were already proved
for general k-uniform hypergraphs (see [23]). While the philosophy of the regularity
method for general uniform hypergraphs and its application in this context stays
the same, the general case of k-uniform hypergraphs brings a more complicated
and technical notation. For example the concept of a (t, `)-partition extends to a
family of partitions of the vertices, pairs, triples, . . . , and (k− 1)-tuples of vertices.
Due to this more complicated structure of the partition provided by the general
regularity lemma, the notion of an appropiate representative is more involved. In
particular, it cannot be described through such explicit labels as e.g. used in (ii )
of Definition 14 or (31).

We believe that the special (and more explicit) case of 3-uniform hypergraphs
provides a good balance between generality and clarity and that due to the less
complex notation, the proof is more readable. Therefore we restricted ourselves to
3-uniform hypergraphs here.

5.2. Hereditary properties of hypergraphs. Another interesting generaliza-
tion of Theorem 2 is the extension from monotone to hereditary properties. A
hypergraph property is called hereditary if it is closed under taking induced sub-
hypergraphs. Monotone properties are a special case of hereditary properties. Re-
cently Alon and Shapira [4] and later Lovász and Szegedy [19] (see also [8]) proved
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that every hereditary graph property is testable. In particular Alon and Shapira
use a strengthened version of Szemerédi’s regularity lemma from [2], which in some
sense corresponds to the representative lemma, Lemma 16, from our proof (see
also [17] for a similar lemma). We believe that the proof of Alon and Shapira can
be adapted to k-uniform hypergraphs by using the extension of the representative
lemma given in this paper. Here again the main obstacles seem to be of technical
order. In particular dealing with edges which are “not crossing” in the partition
seems to present additional problems of technical nature.

Inspired by the work of Lovázs and Szegedy, the last two authors [22] found
a way to merge some ideas from [19] with that of Alon et al. [2]. This yields a
somewhat different proof, which circumvents the technical issues mentioned above.
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12. P. Erdős, P. Frankl, and V. Rödl, The asymptotic number of graphs not containing a fixed
subgraph and a problem for hypergraphs having no exponent, Graphs Combin. 2 (1986), no. 2,
113–121. 1.2

13. P. Frankl and V. Rödl, Extremal problems on set systems, Random Structures Algorithms 20
(2002), no. 2, 131–164. 1.2, 1.3, 2, 2.1, 2.2, 2.3

14. O. Goldreich, S. Goldwasser, and D. Ron, Property testing and its connection to learning and
approximation, J. ACM 45 (1998), no. 4, 653–750. 1.2, 1.2

15. W. T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, submit-
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