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Abstract

We consider edge colourings of the complete r-uniform hypergraph K
(r)
n on n vertices. How many colours may

such a colouring have if we restrict the number of colours locally? The local restriction is formulated as follows:
for a fixed hypergraph H and an integer k we call a colouring (H, k)-local if every copy of H in the complete

hypergraph K
(r)
n receives at most k different colours.

We investigate the threshold for k that guarantees that every (H, k)-local colouring of K
(r)
n must have

a globally bounded number of colours as n → ∞, and we establish this threshold exactly. The following
phenomenon is also observed: for many H (at least in the case of graphs), if k is a little over this threshold,
the unbounded (H, k)-local colourings exhibit their colourfulness in a “sparse way”; more precisely, a bounded
number of colours are dominant while all other colours are rare. Hence we study the threshold k0 for k that

guarantees that every (H, k)-local colouring γn of K
(r)
n with k ≤ k0 must have a globally bounded number

of colours after the deletion of up to εnr edges for any fixed ε > 0 (the bound on the number of colours is
allowed to depend on H and ε only); we think of such colourings γn as “essentially finite”. As it turns out,
every essentially infinite colouring is closely related to a non-monochromatic canonical Ramsey colouring of
Erdős and Rado. This second threshold is determined up to an additive error of 1 for every hypergraph H. Our
results extend earlier work for graphs by Clapsadle and Schelp [Local edge colorings that are global, J. Graph
Theory 18 (1994), no. 4, 389–399] and by the first two authors and Schelp [Essentially infinite colourings of
graphs, J. London Math. Soc. (2) 61 (2000), no. 3, 658–670]. We also consider a related question for colourings
of the integers and arithmetic progressions.

1. Introduction

For an integer r ≥ 2, let K
(r)
n be the complete r-uniform hypergraph with vertex set [n] =

{1, . . . , n}. We identify hypergraphs with their edge sets, e.g., K
(r)
n =

(
[n]
r

)
, the family of all

subsets of [n] with cardinality r. In the following, we consider colourings γn : K
(r)
n → Z and the

set of all such colourings will be denoted by C(r)
n . For a given colouring, we say that a vertex

x sees colour i in this colouring if x is contained in an edge of colour i.
Fix an r-uniform hypergraph H and a positive integer k. A colouring γn ∈ C(r)

n of K
(r)
n is

called (H, k)-local if every copy of H in K
(r)
n has its edges coloured with at most k different

colours. Local colourings were introduced by Truszczyński [14]. We shall denote the set of all
such colourings by L(r)

n (H, k).
We are interested in the structure of the colourings in L(r)

n (H, k). In particular, we investigate
what one can say about the total number of colours used in a colouring in L(r)

n (H, k). It turns
out that this total number is uniformly bounded (as n → ∞) as long as k is less than or
equal to a certain threshold Fin(H). Our first main result gives a simple, explicit expression
for Fin(H) (see Theorem 2 below). This result generalizes a result of Clapsadle and Schelp [2],
who investigated this problem for graphs, that is, the case r = 2.
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By definition, the (H, k)-local colourings γn of K
(r)
n with k just above the threshold Fin(H)

may use an unbounded number of colours (as n →∞). However, for many H, for k just a little
above Fin(H), it turns out that only a uniformly bounded number of colours occur a large
number of times in γn: if we restrict γn to some (1 − o(1))

(
n
r

)
edges of K

(r)
n , we again have

only a uniformly bounded number of colours. We call such colourings γn “essentially finite”.
To be precise, we call a family of colourings {γn} essentially finite if for any ε > 0 there is an
integer T such that all but at most ε

(
n
r

)
edges of K

(r)
n are coloured by at most T colours by

all colourings γn in the family.
We investigate a second threshold, which we denote by EssFin(H), related to essential

finiteness of colourings. We have EssFin(H) = k0 if and only if k0 is the maximal integer
such that every (H, k)-local colouring γn of K

(r)
n with k ≤ k0 is essentially finite. In what

follows, we determine EssFin(H) up to an additive error of 1 (see Theorem 5). This result
generalizes a result of the first and second authors together with Schelp [1], who investigated
the parameter EssFin(H) for graphs H. As in that previous paper, most of the work will
lie in identifying certain unavoidable substructures in essentially infinite colourings, that is,
colourings that are not essentially finite. The main result that we obtain in this direction
has, unfortunately, a somewhat technical look; see Theorem 8 in Section 2.3. Our estimate
for EssFin(H) follows directly from Theorem 8 (see Section 4.4).

By definition, we have

Fin(H) ≤ EssFin(H). (1.1)

We shall show that, at least in the case of graphs, we have strict inequality in (1.1) in most
cases (we also exhibit examples of graphs H for which equality holds). See Corollary 6.

We also consider essentially infinite colourings of the integers, and we prove that they
necessarily contain arbitrarily long ‘rainbow’ (totally multicoloured) arithmetic progressions;
see Theorem 10. It turns out that this result is of a much simpler form than the results for
essentially infinite colourings of hypergraphs, and the proof is correspondingly more pleasant.
In fact, we close this paper with a short section, Section 5, in which Theorem 10 is proved.

In the next section, we shall give a detailed account of our results, together with the necessary
definitions, some of which will be introduced rather gently, as they do require some getting used
to. Most of the work will be in the two sections that follow. In Section 3, we shall prove our
explicit formula for Fin(H), and in Section 4 we shall investigate essentially infinite colourings
of hypergraphs and prove our estimate on EssFin(H).

2. Statement of the main results

2.1. Warm-up

Suppose one tries to colour the edges of K
(r)
n using as many colours as possible, and the only

restriction is that it has to be an (H, k)-local colouring. Let us denote the maximum number
of colours that one can achieve by

t(H, k, n) := max
{
| im(γ)| : γ ∈ L(r)

n (H, k)
}

.

For given H and k, we are interested in how t(H, k, n) behaves as a function in n.
To warm up, consider the following example. Let r = 2 and H = K5. We have that

t(K5, 1, n) = 1 and t(K5, 2, n) = 2 . (2.1)

Indeed, the former is trivial and the latter is immediately verified as follows. Suppose for a
contradiction that a colouring γ ∈ L(2)

n (K5, 2) uses three different colours c1, c2, and c3 on the
edges {x1, y1}, {x2, y2}, and {x3, y3}. If these six vertices are not pairwise distinct, then they
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are contained in a copy of K5 picking up 3 colours, which is forbidden. Also, the edge {x1, x2}
cannot have colour c3, so w.l.o.g. it has colour c1. But then the vertices x1, x2, y2, x3, y3 span
a K5 with 3 colours. This shows that indeed t(K5, 2, n) = 2.

Next we claim that

t(K5, 3, n) ≥
⌊n

2

⌋
+ 1 .

This can be verified by considering the colouring γmatch,n ∈ C(2)
n , which assigns to each edge

of a fixed matching of size bn/2c a new colour and colours all the other edges with an extra
colour 0. It is clear that γmatch,n ∈ L(2)

n (K5, 3), because any copy of a K5 can contain at most
two matching edges, whereas | im(γmatch,n)| = bn/2c+1. Thus, when we move from t(K5, 2, n)
to t(K5, 3, n), the function suddenly changes from bounded to unbounded.

2.2. Finite local colourings

One of the aims of this paper is to determine, for a given r-uniform hypergraph H, the
maximal integer k for which t(H, k, n) is bounded. Formally, we are interested in

Fin(H) := max
{
k ∈ N : ∃T ∈ N such that for every n ∈ N

every γ ∈ L(r)
n (H, k) is such that | im(γ)| ≤ T

}
.

The earlier discussion shows that Fin(K5) = 2. A theorem by Clapsadle and Schelp gives a
simple and elegant description of Fin(H) for any graph H.

Theorem 1 (Clapsadle & Schelp [2]). Let H be a graph with at least two edges. Let ν(H)
denote the cardinality of a maximum matching in H and ∆(H) the maximum degree of a
vertex in H. Then

Fin(H) = min{ν(H),∆(H)} .

Clapsadle and Schelp were especially interested in the situation when t(H, k, n) = k. They
observed that in that case H must contain every graph on k edges as a subgraph and conjectured
that the converse is also true.

One of the aims of this paper is to generalize Theorem 1 to hypergraphs. For this we introduce
the following definitions. An r-uniform sunflower (or ∆-system) with core L is an r-uniform
hypergraph with set of edges {e1, . . . , es} such that ei∩ej = L for all i 6= j. We allow L = ∅; in
that case, a sunflower is simply a matching. The sets ei are the edges and the sets pi := ei \L
are the petals. The cardinality of the core |L| is the type and s, the number of edges (or petals),
is the size of the sunflower. If ` = |L| is the type and s is the size of the sunflower, we shall
speak of an (`, s)-sunflower and we shall denote it by S = (L, p1, . . . , ps).

Furthermore, for ` = 0, . . . , r we denote by ∆`(H) the maximum size of a sunflower of type `
in a hypergraph H. Obviously if H is a graph, i.e., r = 2, then we have ∆1(H) = ∆(H) and
∆0(H) = ν(H). Consequently, the following theorem is an extension of Theorem 1 from graphs
to r-uniform hypergraphs.

Theorem 2. For any r-uniform hypergraph H with at least two edges we have

Fin(H) = min
0≤`<r

∆`(H) . (2.2)

The upper bound, Fin(H) ≤ min0≤`<r ∆`(H), is easy to verify and we give the proof below.
The lower bound is harder to obtain; its proof will be given in Section 3.
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Proof of the upper bound in Theorem 2. Suppose H is an r-uniform hypergraph with at
least two edges. We shall show that

Fin(H) < min
0≤`<r

∆`(H) + 1 =: k . (2.3)

In order to verify (2.3) we give an example of a sequence of (H, k)-local colourings γn ∈ C(r)
n

such that | im(γn)| is unbounded.
By definition of k in (2.3) there is some `0 ∈ {0, . . . , r − 1} so that k > ∆`0(H). Fix in

K
(r)
n an (`0, n̄)-sunflower S = (L, p1, . . . , pn̄), with n̄ := b(n− `0)/(r − `0)c. Now consider the

following colourings γn ∈ C(r)
n : colour the edges of S with colours 1, . . . , n̄ and colour all other

edges with colour 0. As H contains no (`0, k)-sunflower, every copy of H in K
(r)
n cannot see

more than k − 1 colours from those appearing in S, and thus at most k different colours in
total. Hence γn is (H, k)-local, but obviously | im(γn)| → ∞ as n →∞.

2.3. Essentially finite colourings

Let us return to our warm-up example. Notice that in the (K5, 3)-local colouring γmatch,n

all but one colour was in fact only used once. In other words, γmatch,n did use an unbounded
number of colours, but only in a very sparse way. We would like to know how large we can
make k before there exists a colouring in L(r)

n (H, k) that uses a lot of colours in an “essential
way”, by which we mean that there are still unboundedly many colours after removing, say,
some f(n) edges.

For a moment suppose f(n) is of order o(n2). We modify the colouring γmatch,n and consider
γ′match,n ∈ C(2)

n , where we have n2/(8f(n)) vertex disjoint copies of the complete bipartite
graph K4f(n)/n,4f(n)/n, each of its own colour, and the other edges receive colour 0. It is easy
to check that γ′match,n uses an unbounded number of colours, even after the deletion of any
f(n) edges. On the other hand, γ′match,n is still (K5, 3)-local. Summarizing the above, we note
that while the original colouring γmatch,n was an example of a (K5, 3)-local colouring which
remains unbounded after deleting up to cn edges for any c < 1

2 , the modified colouring γ′match,n

witnesses that the same remains true if we remove up to o(n2) edges. Hence, if we want to
guarantee that our colouring γ uses boundedly many colours after deleting up to o(n2) edges,
we cannot allow more colours locally. Hence for r = 2 let us consider functions f(n) = ε

(
n
2

)
for

some ε > 0 and, more generally, we allow the deletion of up to ε
(
n
r

)
edges in K

(r)
n .

Definition 3. Let r ≥ 2 be an integer, t ∈ N and ε > 0. We say a colouring γ ∈ C(r)
n is

(ε, t)-bounded if there exists a subgraph G ⊆ K
(r)
n such that |G| ≥ (1− ε)

(
n
r

)
and |γ(G)| ≤ t.

Moreover, we say that a family of colourings {γn ∈ C(r)
n : n ∈ N} is essentially finite if for

every ε > 0 there is an integer T such that any γn in the family is (ε, T )-bounded. Otherwise,
we say that the family is essentially infinite. When there is no danger of confusion, we refer to
the colourings themselves as essentially finite and essentially infinite.

For a given r-uniform hypergraph H, we are interested in the maximum integer k that
guarantees that every (H, k)-local colouring is (ε, T )-bounded for every ε > 0 and T = T (ε).
More precisely, we define

EssFin(H) := max
{

k ∈ N : ∀ε > 0∃T ∈ N such that for every n ∈ N

every γ ∈ L(r)
n (H, k) is (ε, T )-bounded

}
.

Although the definition of EssFin(H) looks a little overwhelming at first, observe that it is
similar to that of Fin(H), except that we are now allowed to remove ε

(
n
r

)
edges before we
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count the colours. This way we may be able to allow for a larger number of colours locally
while remaining essentially finite globally.

In order to get used to EssFin(H), we return to our example H = K5 and show that

EssFin(K5) = 3 . (2.4)

For that we consider the following two colourings γmin,n and γbip,n ∈ C(2)
n . For every edge

e = {x, y} ∈
(
[n]
2

)
with x < y, let

γmin,n(e) := x,

γbip,n(e) :=

{
x if x ≤ n

2 < y ,

0 otherwise .

Observe that both {γmin,n : n ∈ N} and {γbip,n : n ∈ N} are essentially infinite. Moreover,
γmin,n is (K5, 4)-local, but not (K5, 3)-local; γbip,n is not even (K5, 4)-local. Therefore, γmin,n

shows that EssFin(K5) < 4.
On the other hand, let us sketch the proof of EssFin(K5) ≥ 3. We need to show that for

every ε > 0 there exists an integer T so that every (K5, 3)-local colouring γ is (ε, T )-bounded.
So suppose {γn ∈ C(r)

n : n ∈ N} is essentially infinite. Then it follows from the results in [1]
that for sufficiently large n the colouring γn must exhibit a “local spot” that is (in some sense)
at least as rich in colours as either γmin,n or γbip,n. But then γn cannot be (K5, 3)-local, as
neither γmin,n nor γbip,n are, which yields EssFin(K5) ≥ 3.

In order to formalize this for arbitrary hypergraphs, we generalize the colourings γmin,n and
γbip,n and describe a family CEIC(r)

n ⊆ C(r)
n of canonical essentially infinite colourings of K

(r)
n ,

which turn out to be unavoidable for every essentially infinite colouring.

Definition 4. Let r ≥ 2 and ` ∈ [r]. A vector τ = (τ1, . . . , τ`) ∈ N`
0 of non-negative

integers is an `-type if
∑

i∈[`] τi = r. We call τ degenerate if τi = 0 for some i ∈ [l] and
non-degenerate otherwise. We denote the set of all non-degenerate types by

T (r) =
⋃

`∈[r]

{
τ = (τ1, . . . , τ`) :

∑
i∈[`]

τi = r and τi > 0 for all i ∈ [`]
}

For a family of mutually disjoint sets W1, . . . ,W` ⊆ [n] and an `-type τ we say an edge e ∈ K
(r)
n

has type τ if |e ∩ Wi| = τi for every i ∈ [`]. We denote the family of all edges of type τ by
(W1, . . . ,W`)〈τ〉.

For fixed integers r and n we consider for every ` ∈ [r] a partition Π` of [n] with ` partition
classes Ii(`, n) for i ∈ [`] defined by

Ii(`, n) :=
{⌊

(i− 1)n
`

⌋
+ 1, . . . ,

⌊
in

`

⌋}
1 ≤ i ≤ ` ≤ r .

Now we define the canonical essentially infinite colourings χ
(r)
τ,j1,n for every non-degenerate

`-type τ = (τ1, . . . , τ`) and j1 ∈ [τ1] by setting, for every e = {v1 < · · · < vr} ∈ K
(r)
n ,

χ
(r)
τ,j1,n(e) :=

{
vj1 if e ∈ (I1(`, n), . . . , I`(`, n))〈τ〉 ,
0 otherwise .

(2.5)

We let
CEIC(r)

n :=
{
χ

(r)
τ,j1,n : τ ∈ T (r) and j1 ∈ [τ1]

}
.

Note that for example γmin,n = χ
(2)
τ,j1,n for the 1-type τ = (2) with j1 = 1 ∈ [2], and γbip,n

corresponds to χ
(2)
τ,j1,n for the 2-type τ = (1, 1) with j1 = 1 ∈ [1].
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It is easy to see that for any τ ∈ T (r) and j1 ∈ [τ1] the family {χ(r)
τ,j1,n : n ∈ N} is essentially

infinite. (Note that τ ∈ T (r) yields τ1 > 0 here.) Consequently,

EssFin(H) < max
{∣∣χ(r)

τ,j1,n(H0)
∣∣ : H0 is a copy of H in K(r)

n

}
(2.6)

for any τ ∈ T (r), j1 ∈ [τ1], and n ≥ r · vH . Let us set

Ξ(H) := min
τ, j1

max
H0

∣∣χ(r)
τ,j1,r·vH

(H0)
∣∣,

where the minimum is taken over all τ ∈ T (r) and j1 ∈ [τ1] and the maximum is taken over all
copies H0 of H in K

(r)
r·vH . The following theorem states that the upper bound in (2.6) is almost

tight.

Theorem 5. For every r-uniform hypergraph H on vH vertices with at least two edges

Ξ(H)− 2 ≤ EssFin(H) ≤ Ξ(H)− 1. (2.7)

Moreover, if r = 2, then

EssFin(H) = min
{

max
H0

{
|γmin,2vH

(H0)|
}

, max
H0

{
|γbip,2vH

(H0)|
}}

− 1 , (2.8)

where the maxima are taken over all copies H0 of H in K
(2)
r·vH .

By definition EssFin(H) ≥ Fin(H) for every hypergraph H. The next corollary says that,
in fact, the inequality is strict for “most” graphs (r = 2). For an integer ` ≥ 2 we denote by
MC ` the “matched clique” of order `, i.e., the graph with 2` vertices {v1, . . . , v`, u1, . . . , u`}
with v1, . . . , v` spanning a complete graph K` and additional matching edges {vi, ui} for every
i ∈ [`].

Corollary 6. Suppose H is a connected graph with at least two edges and vH ≥ 6
vertices. If, moreover, one of the following holds:
(i ) max{ν(H),∆(H)} ≥ min{ν(H) ,∆(H)}+ 2, or
(ii ) vH is odd, or
(iii ) vH is even, but H is not a subgraph of MC vH/2,
then EssFin(H) > Fin(H).

On the other hand, EssFin(MC `) = Fin(MC `) for every ` ≥ 2.

Corollary 6 follows from Theorems 1 and 5. While (i ) and the last statement are immediate,
(ii ) and (iii ) require some additional arguments, which will be omitted.

Recall from the short discussion about EssFin(K5) = 3 (see (2.4)) that the main work in
determining EssFin(H) and thus in establishing Theorem 5 is needed for the lower bound, and
that our approach is to show that any essentially infinite colouring must exhibit a local spot
that is at least as colourful as a colouring in CEIC(r)

m for some sufficiently large m. To make this
precise, we need a few more definitions. For any edge e = {v1, . . . , vr} ⊆ [n] with v1 < · · · < vr

and any set of indices J = {j1, . . . , j`} ⊆ [r] we let e[J ] := {vj1 , . . . , vj`
}. Moreover, if J = ∅,

then e[J ] = ∅. With that notation a classical theorem of Erdős and Rado may be stated as
follows.

Theorem 7 (Erdős & Rado [5]). For all integers q ≥ r ≥ 2, there exists an integer n =
n(q, r) so that for every colouring γ ∈ C(r)

n there is a set W ⊆ [n] with |W | = q and there is a
set J ⊆ [r] such that

γ(e) = γ(e′) ⇔ e[J ] = e′[J ]
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for all edges e, e′ ∈
(
W
r

)
.

In this context, Ramsey’s theorem [12] says that if the total number of colours used by γ is
bounded, then one can ask for J = ∅ or, equivalently, for a monochromatic complete subgraph
of order q. With the aim of proving Theorem 5, among others, we shall prove a complementary
result: if γ is sufficiently rich in colours, then we can ask for J 6= ∅ or, equivalently, for a
multicoloured subgraph. As we shall see in Section 4.4, Theorem 5 is a simple consequence of
the following theorem, which is one of the main results of this paper.

Theorem 8. For all integers q ≥ r ≥ 2 and for every ε > 0, there are integers T and n0

so that for every n ≥ n0 and every colouring γ ∈ C(r)
n that is not (ε, T )-bounded, there exist

an integer ` ∈ [r], a non-degenerate `-type τ = (τ1, . . . , τ`), a set ∅ 6= J1 ⊆ [τ1], and a family
W = {W1, . . . ,W`} of mutually disjoint sets, each of cardinality q, such that for all edges e,
e′ ∈ (W1, . . . ,W`)〈τ〉

γ(e) = γ(e′) ⇒ (e ∩W1)[J1] = (e′ ∩W1)[J1] .

Moreover, if e ∈ (W1, . . . ,W`)〈τ ′〉 for a degenerate `-type τ ′, then

γ(e) 6∈
{
γ(f) : f ∈ (W1, . . . ,W`)〈τ〉

}
. (2.9)

Theorem 8 extends earlier results of Bollobás, Kohayakawa, and Schelp [1] from graphs
to hypergraphs. For the proof of Theorem 8, presented in Section 4, we shall develop a
partite version of the result of Erdős and Rado, which might be of independent interest (see
Theorem 24). Theorem 5 may be deduced from Theorem 8; see Section 4.4.

2.4. Rainbow colourings of arithmetic progressions

We also obtain a very much related result for arithmetic progressions. The following result
of Erdős and Graham (see also [11] for an elementary proof) may be viewed as an analogue of
Theorem 7 for arithmetic progressions.

Theorem 9 (Erdős & Graham [4]). For every integer k ≥ 3 there exists an integer n0

such that for every n ≥ n0 and every colouring γ : [n] → Z there exists a k-term arithmetic
progression A ⊆ [n] which is either monochromatic or injective, i.e., |γ(A)| is either 1 or k.

This may be viewed as a canonical version of van der Waerden’s theorem [15], which says
that if | im(γ)| is bounded (independent of n), then one is guaranteed to have a monochromatic
arithmetic progression. Following the approach in the preceding section, we wish to obtain a
condition on the colouring that guarantees an injective arithmetic progression.

Let us first observe that it is not enough to simply require that the colouring should use an
unbounded number of colours. Consider the colouring γAP

n : [n] → Z, which assigns colour i
to every integer m = 3ix, where x is not divisible by 3. Clearly, | im γAP

n | → ∞ as n → ∞.
Moreover, let us observe that γAP

n yields no 3-term arithmetic using three colours. Indeed
suppose for a contradiction that the integers 3ax < 3by < 3cz receive the three distinct
colours a, b, and c and form a 3-term arithmetic progression. Suppose first that a < c. Then
2 · 3by = 3ax + 3cz = 3a(3c−az + x). As y and x are not divisible by 3, this implies that b = a.
The same argument works for the case a > c.

Hence, similarly to the graph and hypergraph cases, we need a condition that guarantees
that the colouring uses a lot of colours in an “essential way”. Following our previous approach,
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we introduce the following definition. A colouring γ : [n] → Z is (ε, t)-bounded if there exists
a set X ⊆ [n] with |X| ≥ n − εn, such that |γ(X)| ≤ t. This may be viewed as a natural
extension of Definition 3 to “1-uniform hypergraphs”.

Theorem 10. For every integer k ≥ 3 and for every real ε > 0, there exist integers n0

and T such that for every n ≥ n0 and every colouring γ : [n] → Z the following holds. If γ is
not (ε, T )-bounded, then there exists an injective k-term arithmetic progression in [n].

Notice that for every function f(n) of order o(n) and X ⊆ [n] with |X| ≥ n− f(n) we have
that the colouring γAP

n defined above satisfies |γAP
n (X)| ≥ T for any fixed T as long as n is

sufficiently large. Consequently, the hypothesis on γ in Theorem 10 is best possible. The proof
of Theorem 10, to be presented in Section 5, is based on a quantitative version of Szemerédi’s
theorem [13].

3. Globally bounded local colourings

In this section we prove Theorem 2. We split this section in a few subsections to make the
reading a little easier. In Section 3.1, we give some further definitions and state the auxiliary
lemmas that we shall need. In particular, we state Lemmas 14 and 16, which are central to
the proof. In this section, we also sketch the approach we take in the proof of Theorem 2. The
actual proof of this theorem is given in Section 3.2. Finally, we give the proofs of Lemmas 14
and 16 in Section 3.3.

3.1. Auxiliary lemmas

We first recall and extend some of the definitions given earlier. A sunflower with core L is
an r-uniform hypergraph whose edges e1, . . . , es satisfy the property ei ∩ ej = L for all i 6= j.
The sets pi := ei \ L are the petals, |L| is the type, and the number of edges (or petals) is the
size of the sunflower. If ` = |L| is the type and s is the size of the sunflower, we shall speak
of an (`, s)-sunflower and we shall denote it by S = (L, p1, . . . , ps). Observe that we shall be
talking about sunflowers both in K

(r)
n and in H. To differentiate between those two kinds of

sunflowers, we shall follow the convention that sub-hypergraphs of H will have dashes, e.g.,
S′ = (L′, p′1 . . . , p′s). Moreover, the letter k (as well as k̂, k̃, k̄) will denote bounds on the local

number of colours in sunflowers contained in K
(r)
n , whereas T will give bounds on the global

number of colours used in K
(r)
n , i.e., | im(γ)|.

Definition 11. For a given colouring γ ∈ C(r)
n , an (`, k)-sunflower S(L, p1, . . . , pk) ⊆ K

(r)
n

will be called injective if all its k edges receive different colours. We say γ is (`, k)-local if it
yields no injective (`, k+1)-sunflower in K

(r)
n . In other words, γ is (`, k)-local if it is (S`, k)-local

for every sunflower S` of type `. Moreover, if γ is (`, k)-local for every ` = 0, . . . , r− 1, then it
will be called k-local.

To prove Theorem 2, it suffices to verify the lower bound in (2.2). (For the proof of the
upper bound, see the paragraph following Theorem 2 in Section 2.2.) In other words, we have
to show that for every r-uniform hypergraph H with at least two edges

Fin(H) ≥ min
0≤`<r

∆`(H) =: sH , (3.1)

where ∆`(H) is the maximum size of a sunflower of type ` in H. This means we have to show
that for every n, every (H, sH)-local colouring γ ∈ C(r)

n is T -bounded, i.e., | im(γ)| ≤ T for
some constant T = T (H) independent of n. The next proposition shows that it is sufficient to
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show that every (H, sH)-local colouring γ is k-local for some constant k = k(H), i.e, it does
not yield an injective (`, k + 1)-sunflower for all 0 ≤ ` < r.

Proposition 12. For all integers k, r ≥ 2 there exists an integer T = T (k, r) such that

for every n and every k-local colouring γ ∈ C(r)
n we have | im(γ)| ≤ T .

We easily deduce Proposition 12 from the following theorem of Erdős and Rado.

Theorem 13 (Erdős & Rado [6]). If an r-uniform hypergraph contains more than r!kr

edges, then it contains an (`, k + 1)-sunflower for some 0 ≤ ` < r.

In fact for k = 3 Erdős offered $1000 for the proof that r! can be replaced by cr for some
constant c independent of r. This conjecture is still open and currently the best bound for
k = 3 is due to Kostochka [9].

Proof of Proposition 12. Let integers k, r ≥ 2 be given. Set T = r!kr and suppose that
γ ∈ C(r)

n is k-local, but fails to satisfy | im(γ)| ≤ T . Then Theorem 13 immediately implies that
any collection of | im(γ)| mutually different coloured hyperedges of K

(r)
n contains an injective

(`, k + 1)-sunflower for some 0 ≤ ` < r, which is a contradiction to the assumption that γ is
k-local.

We deduce (3.1) from Lemmas 14 and 16. Before we formally state these somewhat “dry”
lemmas let us briefly describe them and discuss their relevance for the proof of (3.1) under
the assumption sH ≥ 2. Recall that L(r)

n (H, sH) denotes the set of all (H, sH)-local colourings
of K

(r)
n . In view of Proposition 12 it suffices to show that every colouring γ ∈ L(r)

n (H, sH) is
k-local for some constant k = k(H). Lemma 14 roughly says that if γ ∈ L(r)

n (H, sH) is such
that it yields an injective (i, ki)-sunflower in K

(r)
n for some “large” ki, then it either admits

an injective (j, ki − r)-sunflower with j > i (see part (a ) of Lemma 14) or we infer that H
contains a subhypergraph H ′ with a special structure (see part (b )). The structure of H ′ and
the existence of a “large” injective (i, ki)-sunflower in K

(r)
n under γ, then (see Lemma 16) also

imply that there is an injective (j, k̄)-sunflower with j > i, where k̄ is of similar order as k.
In other words, Lemmas 14 and 16 show that if an (H, sH)-local colouring γ is not k-local for

some “large” k, i.e., γ admits a “large” injective sunflower of type i for some i = 0, . . . , r−1, then
it necessarily admits a similarly “large” sunflower of type j > i and, consequently, by repeated
application of both lemmas, a “large” sunflower of type r − 1. On the other hand, Lemma 14
also bounds the maximum size of an injective sunflower of type r−1 for any γ ∈ L(r)

n (H, sH) by
some constants k̃r−1 = k̃r−1(H). Hence, it follows that every γ ∈ L(r)

n (H, sH) must be k-local
for some k = k(H).

Lemma 14. Let H be an r-uniform hypergraph and suppose 2 ≤ min0≤`<r ∆`(H) = sH =:
s. For every i = 0, . . . , r− 1 there exists an integer k̃i = k̃i(H) > r such that for every ki ≥ k̃i,

for every positive integer n, and for every colouring γ ∈ L(r)
n (H, s) that yields an injective

(i, ki)-sunflower Si in K
(r)
n , one of the following is true:

(a ) there exists j > i and an injective (j, ki − r)-sunflower Sj in K
(r)
n , or

(b ) there exists a subgraph H ′
i = S′ + e′ ⊆ H with the following properties:

(b1 ) S′ is an (i, s)-sunflower in H, and we write S′ = (L′, p′1, . . . , p
′
s),

(b2 ) e′ contains at least i vertices outside the petals of S′, i.e., |e′ \
⋃s

σ=1 p′σ| ≥ i, and
(b3 ) e′ intersects at least two petals, i.e., there are σ1 and σ2, 1 ≤ σ1 < σ2 ≤ s, so that

e′ ∩ p′σ1
6= ∅ and e′ ∩ p′σ2

6= ∅.
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In particular, for i = r − 1 the above k̃r−1 = k̃r−1(H) > r is such that for every positive

integer n every γ ∈ L(r)
n (H, s) is also (r − 1, k̃r−1 − 1)-local.

Remark 15. To see that the last part of Lemma 14 also holds, note that if i = r−1, then e′

(in part (b )) cannot have r− 1 vertices outside the petals and intersect two petals at the same
time. Furthermore, conclusion (a ) of Lemma 14 cannot hold either since kr−1 ≥ k̃r−1 > r.
Consequently, the assumptions of Lemma 14 can never hold for i = r − 1.

Lemma 16. Let H be an r-uniform hypergraph and suppose 2 ≤ min0≤`<r ∆`(H) = sH =:
s. For every 0 ≤ i ≤ r − 2 and every integer k̄ there exists a positive integer k̂i = k̂i(s, k̄) such
that the following is true for every positive integer n. If

(i ) H contains a subgraph H ′
i = S′ + e′ satisfying (b1 )–(b3 ) of Lemma 14 and

(ii ) γ ∈ L(r)
n (H, s) yields an injective (i, k̂i)-sunflower,

then γ gives rise to an injective (j, k̄)-sunflower in K
(r)
n for some j > i.

We defer the proofs of Lemmas 14 and 16 to Section 3.3. We close this section with the
following simple but useful observation, to be used in the proof of (3.1) in the next section.

Proposition 17. Suppose n ≥ 3r − 1 and γ ∈ C(r)
n is a colouring such that | im(γ)| ≥ 2.

Then for every i = 0, . . . , r − 1 there are two edges e1, e2 ∈ K
(r)
n satisfying

|e1 ∩ e2| = i and γ(e1) 6= γ(e2).

Proof. Let n ≥ 3r− 1 and γ ∈ C(r)
n be a colouring such that | im(γ)| ≥ 2. First we consider

the case i = 0. Since | im(γ)| ≥ 2, there are two edges e1 and e2 in K
(r)
n such that γ(e1) 6= γ(e2).

If e1 ∩ e2 = ∅ then we are done. On the other hand, if e1 ∩ e2 6= ∅ then |e1 ∪ e2| ≤ 2r− 1. Since
n ≥ 3r− 1 there is some edge e3 ∈ K

(r)
n disjoint from both e1 and e2 and either γ(e1) 6= γ(e3)

or γ(e2) 6= γ(e3), which concludes the case i = 0.
We now proceed by induction. Let 0 < i ≤ r − 1 be fixed. By induction assumption there

are two edges e1 and e2 in K
(r)
n such that |e1 ∩ e2| = i− 1 and γ(e1) 6= γ(e2). Let v1 ∈ e1 \ e2

and v2 ∈ e2 \ e1. Clearly, |(e1 ∩ e2) ∪ {v1, v2}| = i + 1 ≤ r. Now simply consider some edge
e3 ∈ K

(r)
n which contains (e1 ∩ e2) ∪ {v1, v2} and r − (i + 1) points from [n] \ (e1 ∪ e2). Then,

|e3 ∩ e1| = |(e1 ∩ e2) ∪ {v1}| = i and, similarly, |e3 ∩ e2| = |(e1 ∩ e2) ∪ {v2}| = i. (Such an edge
e3 exists indeed since (2r− (i− 1)) + (r− (i + 1)) = 3r− 2i < 3r− 1 ≤ n.) Clearly, γ(e3) must
differ from either γ(e1) or γ(e2), which finishes the proof.

We mention that a slightly more refined argument shows that the hypothesis n ≥ 2r + 1
suffices in Proposition 17, which is best possible.

3.2. Proof of Theorem 2

Recall that all we have left to do to complete the proof of Theorem 2 is to prove the lower
bound (3.1).

Proof of (3.1). Let H be an r-uniform hypergraph with at least two edges. In order to
verify (3.1), we have to show that there exists some constant T = T (H) such that for every
integer n and every colouring γ ∈ L(r)

n (H, sH) (see (3.1) for the definition of sH)

| im(γ)| ≤ T . (3.2)

We distinguish two cases depending on the size of sH .
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Case 1 We have sH = 1. Here we set T =
(
3r−1

r

)
. Now let n be some positive integer and

let γ ∈ L(r)
n (H, 1) be given. Clearly, | im(γ)| ≤ T as long as n ≤ 3r − 1. So let n > 3r − 1

and suppose for the moment that | im(γ)| ≥ 2. Then Proposition 17 implies that γ yields an
injective (`, 2)-sunflower for every ` = 0, . . . , r−1. From the fact that H has at least two edges,
it then follows that γ is not (H, 1)-local, i.e., γ 6∈ L(r)

n (H, 1). Consequently, if n > 3r − 1, then
| im(γ)| ≤ 1 < T . ♦

Case 2 We have sH > 1. In this case the definition of T = T (H) is a little more
complicated. We first recursively define integers kr−1, . . . , k0 as follows:

ki =


k̃r−1

(
Lem.14(H)

)
if i = r − 1 ,

max
{

ki+1 + r, k̂i

(
Lem.16(s = sH , k̄ = ki+1)

)
,

k̃i

(
Lem.14(H)

)}
if i = r − 2, . . . , 0 ,

where k̃r−1, k̃i, and k̂i for i = r − 2, . . . , 0 are given by Lemmas 14 and 16, respectively. Note
that by definition the sequence k0, . . . , kr−1 is not only monotone decreasing, but also satisfies

ki+1 ≤ ki − r for i = r − 2, . . . , 0 . (3.3)

We then define the promised constant T by setting

T = T
(
Prop.12(k = k0 − 1, r)

)
. (3.4)

Now let n be some positive integer and let γ ∈ L(r)
n (H, sH) be given. We first show the

following.

Claim 18. The colouring γ is (i, ki − 1)-local for every i = 0, . . . , r − 1.

Proof. Assume for a contradiction that i0 is the largest index i so that γ is not (i, ki − 1)-
local. Due to the definition of kr−1 and the last part of Lemma 14 we have that i0 < r −
1. Furthermore, by definition of i0 there exists an injective (i0, ki0)-sunflower, and as ki0 ≥
k̃i0

(
Lem.14(H)

)
, we can apply Lemma 14. Now part (a ) of Lemma 14 is impossible, since for

any j > i0 we have kj ≤ ki0 − r (cf. (3.3)) and thus an injective (j, ki0 − r)-sunflower would
contain an injective (j, kj)-sunflower, contradicting the maximality of i0.

Hence case (b ) of Lemma 14 must occur. By definition of ki0 we have ki0 ≥ k̂i0

(
Lem.16(s =

sH , k̄ = ki0+1)
)
. Hence both assumptions (i ) and (ii ) of Lemma 16 are satisfied for k̄ = ki0+1.

Thus Lemma 16 yields an injective (j, ki0+1)-sunflower. Again, as j > i0, we have kj ≤ ki0+1,
and thus we have an injective (j, kj)-sunflower, contradicting the maximality of i0 again. This
proves Claim 18.

Now Claim 18 and (3.3) assert that γ is a (k0 − 1)-local colouring and, therefore, the choice
of T in (3.4) and Proposition 12 now imply | im(γ)| ≤ T in this case, Case 2. ♦

Having verified (3.1) in both cases, we have concluded the proof of the lower bound in
Theorem 2, based on Lemmas 14 and 16.

3.3. Proofs of Lemmas 14 and 16

In this section we prove Lemmas 14 and 16 stated in Section 3.1 and used in Section 3.2.
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3.3.1. Proof of Lemma 14 Let H be an r-uniform hypergraph and

s := sH = min
0≤`<r

∆`(H) ≥ 2 . (3.5)

Let i be a fixed integer in the interval [0, r − 1] and set

k̃i = max{s + 1 + r + i2, 3r − 1} . (3.6)

Moreover, let integers ki ≥ k̃i and n and a colouring γ ∈ L(r)
n (H, s) be given. Suppose Si =

(L, p1, . . . , pki) ⊆ K
(r)
n is an injective (i, ki)-sunflower under γ.

For the rest of the proof we assume that γ does not contain an injective (j, ki− r)-sunflower
for any j > i, i.e., we assume that conclusion (a ) of Lemma 14 fails and we are going to
deduce (b ). By the definition of s there exists an (i, s)-sunflower S′ = (L′, p′1, . . . , p

′
s) in H, as

claimed in (b1 ). We first show that there is an edge e′ ∈ H \S′ which satisfies property (b2 ).

Claim 19. There is an edge e′ ∈ H \ S′ with
∣∣e′ \⋃s

σ=1 p′σ
∣∣ ≥ i.

Proof. If i = 0, then it follows from s ≥ 2 that H \ S′ 6= ∅ (otherwise H contains no
(j, s)-sunflower for j ≥ 1, which contradicts the assumption s = sH ≥ 2) and, hence, there is
an edge e′ which trivially satisfies the conclusion of the claim.

So let i > 0. By the definition of s there exists a matching M ′ ⊆ H of size s. On average the
edges of M ′ have at least

1
|M ′|

∣∣∣ ⋃
f ′∈M ′

f ′ \
⋃

σ∈[s]

p′σ

∣∣∣ ≥ 1
s

(
sr − s(r − i)

)
= i

vertices outside the petals of S′. Consequently, there is an edge e′ ∈ M ′ which has at least i
vertices outside the petals of S′. If e′ 6∈ S′ then we found our edge. If, however, e′ ∈ S′ ∩M ′,
then we can repeat the argument with M ′ \ {e′} and S′ \ {e}′. Indeed, on average the edges of
M ′ \ {e′} have at least

1
s− 1

(
(s− 1)r − (s− 1)(r − i)

)
= i

vertices outside the petals of S′ \ {e′}. Hence, there must be an edge e′′ ∈ M ′ \ {e′} which has
at least i vertices outside the petals of S′ \ {e′}. Moreover, since e′ ∩ e′′ = ∅ (both are edges in
the matching M ′) and since we assumed that e′ ∈ S′, we have that e′′ 6∈ S′.

Fix e′ as in Claim 19. It remains to show that e′ has non-empty intersection with at least
two petals of S′. Our proof is by contradiction. So let us first assume that

e′ ∩ p′σ = ∅ for every σ ∈ [s] . (3.7)

In this case, let e be an edge of K
(r)
n which satisfies |e∩L| = |e′ ∩L′|. Since ki ≥ k̃i ≥ s+1+ r

(cf. (3.6)), after removing those edges f from Si for which γ(f) = γ(e) or (f \L)∩ e 6= ∅ there
must be an injective (i, s)-sunflower S∗

i ⊆ Si ⊆ K
(r)
n for which γ(e) 6∈ γ(S∗

i ) and e ∩ V (S∗
i ) =

e ∩ L. Consequently, e ∪ S∗
i (which is a copy of e′ ∪ S′ ⊆ H) picks up s + 1 colours, which

contradicts the assumption γ ∈ L(r)
n (H, s). Hence, assumption (3.7) must fail.

Next we assume that e′ intersects precisely one petal of S′. With an appropriate relabelling
we assume

e′ ∩ p′1 6= ∅ and e′ ∩ p′σ = ∅ for every σ = 2, . . . , s . (3.8)

Set

iL = |e′ ∩ L′| , iO = |e′ \ V (S′)| , and i1 = |e′ ∩ p1| . (3.9)
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Note that r = iL + iO + i1 and since e′ 6∈ S′ (see Claim 19), we have

iO > 0 and, consequently, iL + i1 < r . (3.10)

We shall need the following claims to derive a contradiction from assumption (3.8).

Claim 20. For every edge e of K
(r)
n satisfying |e ∩ L| = iL and |e ∩ pλ| = i1 for some

λ ∈ [ki], we have γ(e) = γ(pλ ∪ L).

Proof. Let e and pλ be as in the hypothesis of the claim. Since ki ≥ k̃i ≥ s+1+r ≥ s+1+iO,
there is an injective (i, s− 1)-sunflower S∗

i ⊆ Si satisfying the following:
– S∗

i does not contain the petal pλ,
– none of the petals of S∗

i intersects e, and
– γ(e) 6∈ γ(S∗

i ).
What can we say about e∪S∗

i ∪{L∪pλ}? (We observe that in this last expression we are mixing
the standard notation with the convention of omitting { } for singletons when the meaning is
clear.) Note first that e∪S∗

i ∪{L∪pλ} forms a copy of e′∪S′
i ⊂ H. Hence, if γ(e) 6= γ(pλ∪L),

then e ∪ S∗
i ∪ {L ∪ pλ} uses s + 1 colours, which contradicts the fact that γ ∈ L(r)

n (H, s).
Therefore γ(e) = γ(pλ ∪ L), as claimed.

The simple observation in Claim 20 implies our next claim, Claim 21. This latter claim
asserts that iL + iO = i and, more importantly, that any set L∗ of i vertices in K

(r)
n is, roughly

speaking, the core of a ‘large’ injective sunflower.

Claim 21. We have iL + iO = i and for all sets L∗ ⊆ [n] with |L∗| = i there is an injective
(i, s + 1 + r)-sunflower S∗

i with core L∗.

Proof. First we show that iL + iO = i. Note that

iL + iO = i
(3.9)⇐⇒ i1 = r − i . (3.11)

Clearly, iL + iO = |e′ ∩ L′|+ |e′ \ V (S′)| ≥ i since by Claim 19 the edge e′ contains at least i
vertices outside the petals of S′. If iL + iO > i, then fix some set O of cardinality iO in [n] \L
and some set L̄ of cardinality iL in L. Moreover, for every λ ∈ [ki] fix i1 vertices Iλ in every
petal pλ. Then, apply Claim 20 for every eλ = O ∪ L̄ ∪ Iλ for which pλ ∩ O = ∅. Since there
are at least ki − iO ≥ ki − r such petals, the above yields an injective (j, ki − r)-sunflower Sj

for j = iL + iO > i, which is a contradiction, as we assumed that (a ) does not hold. Thus we
do indeed have iL + iO = i, as claimed in the first part of Claim 21.

We now focus on the second part of the claim. For that let L∗ ⊆ [n] be a set of size i. We
fix a sequence of sets L1, . . . , Lb in [n] with b ≤ i + 1 so that

L1 = L , |La| = i , |La ∩ La+1| = iL for a = 1, . . . , b− 1, and Lb = L∗ .

Note that such a sequence exists since iL = i − iO < i (cf. (3.10)). For convenience we define
for a = 1, . . . , b

k(a) = ki − (a− 1)iO .

We now show inductively that for every a = 1, . . . , b there exists an injective (i, k(a))-sunflower
S(a) with core La. As k(b) = ki− (b− 1)iO ≥ ki− i2 ≥ k̃i− i2 ≥ s+1+ r this yields Claim 21.

Setting S(1) = Si gives the induction start. So suppose there is an injective (i, k(a))-sunflower
S(a) with core La and petals pa

1 , . . . pa
k(a). Note that |La+1 \ La| = i − iL = iO. We set

Λ = {λ ∈ [k(a)] : pa
λ ∩ La+1 = ∅}. Obviously, |Λ| ≥ k(a)− iO. For every λ ∈ Λ set pa+1

λ := pa
λ.

It is easy to see that the pa+1
λ together with the core La+1 form an injective (i, |Λ|)-sunflower

S(a + 1). Indeed, simply apply Claim 20 with L := La for every edge e := pa+1
λ ∪ La+1 and
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pλ := pa
λ. This will yield that γ(pa+1

λ ∪La+1) = γ(pa
λ∪La), and hence the injectivity of S(a+1)

is inherited from that of S(a), and the induction step follows from the definition of k(a + 1).

Based on Claim 21 we now show that our assumption (3.8) contradicts γ ∈ L(r)
n (H, s), thus

finishing the proof of Lemma 14. Since by (3.6) we have ki ≥ 3r − 1, we have n ≥ 3r − 1 and
| im(γ)| > 1. Therefore, Proposition 17 ensures the existence of two edges e, f ∈ K

(r)
n satisfying

|f ∩ e| = iL + i1 < r and γ(f) 6= γ(e). Let p̄ ∪ L̄ be a partition of e ∩ f with

|p̄| = i1 and |L̄| = iL .

Set L∗ = L̄ ∪ (f \ e) and note that

(e ∪ f) \ L∗ ⊆ e and |L∗| = iL + (r − iL − i1) = r − i1 = iO + iL = i ,

where we used the first part of Claim 21 for the last identity. We then apply the second part of
Claim 21 with L∗, which yields an injective (i, s+1+ r)-sunflower S∗

i with core L∗. Therefore,
after removing those edges of S∗

i which have the colour of e or f and those which intersect
(e ∪ f) \ L∗ there still exists an injective (i, s− 1)-sunflower S∗∗

i ⊆ S∗
i with core L∗ satisfying

γ(S∗∗
i ) ∩ {γ(f), γ(e)} = ∅ and V (S∗∗

i ) ∩ ((e ∪ f) \ L∗) = ∅ .

Consequently, S∗∗
i ∪f is an injective (i, s)-sunflower with core L∗ and additional petal f\L∗ = p̄.

Moreover, the definitions of p̄, L̄ ⊆ e∩f , L∗ = L̄∪ (f \ e), and S∗∗
i imply that |e∩ p̄| = |p̄| = i1,

|e ∩ L∗| = |L̄| = iL, and |e \ (V (S∗∗
i ) ∪ f)| = |e \ f | = r − i1 − iL = iO. In other words,

e ∪ S∗∗
i ∪ f is isomorphic to e′ ∪ S′. Since |γ(e ∪ S∗∗

i ∪ f)| = s + 1 this contradicts the fact
that γ ∈ L(r)

n (H, s). Therefore, assumption (3.8) cannot hold and e′ must intersect at least two
petals of S′.

As observed in Remark 15, the last assertion in Lemma 14 follows easily from the first part.
Therefore, the proof of Lemma 14 is complete.

3.3.2. Proof of Lemma 16 Let an r-uniform hypergraph H satisfying

s := sH = min
0≤`<s

∆`(H) ≥ 2 (3.12)

and integers i, 0 ≤ i ≤ r − 2, and k̄ be given. We set

k̃ = max
2≤u≤r

R(u)(k̄ + r − 1;u) and k̂i = k̃ + r , (3.13)

where R(u)(k̄ + r − 1;u) is the Ramsey number which ensures that every u-colouring of the
complete u-uniform hypergraph on R(u)(k̄ + r − 1;u) vertices yields a monochromatic copy of
K

(u)

k̄+r−1
.

Let H ′
i = S′+e′ be a subhypergraph of H which satisfies (b1 )–(b3 ) of Lemma 14. Moreover,

let γ ∈ L(r)
n (H, s) be an (H, s)-local colouring of K

(r)
n which yields an injective (i, k̂i)-sunflower.

We have to ensure the existence of an injective (j, k̄)-sunflower in K
(r)
n for some j > i.

Consider first the sub-hypergraph H ′
i = S′ + e′ of H. By property (b1 ) the hypergraph

S′ = (L′, p′1, . . . , p
′
s) is an (i, s)-sunflower, with core L′ and petals p′1, . . . , p

′
s. We set

iL = |e′ ∩ L′| , iO = |e′ \ V (S′)| , and iσ = |e′ ∩ p′σ| for every σ ∈ [s] . (3.14)

We may assume w.l.o.g. that i1 ≥ · · · ≥ iu > 0 and iu+1 = · · · = is = 0, We know from (b3 )
that u ≥ 2. Observe that

iO + iL + i1 + · · ·+ iu = r (3.15)

and clearly u ≤ r.
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Now we turn back to K
(r)
n and γ. Let L be the core of an injective (i, k̂i)-sunflower in K

(r)
n .

First fix a set O of iO vertices in V (K(r)
n ) \ L and a set L̄ of iL vertices inside the core L.

Since iO < r (cf. (3.15)) and k̂i = k̃ + r, there still exists an injective (i, k̃)-sunflower S ⊆ K
(r)
n

with core L satisfying V (S) ∩ O = ∅. Let p1, . . . , pek be the petals of that sunflower, i.e.,
S = (L, p1, . . . , pek).

Appealing to the fact that γ ∈ L(r)
n (H, s) and following the line of proof of Claim 20 one can

show the following claim.

Claim 22. Suppose Λ = {λ1, . . . , λu} ⊆ [k̃], and suppose e is an edge of K
(r)
n satisfying

|e ∩ L| = iL and |e ∩ pλσ | = iσ for every σ ∈ [u]. Then there exists σ(Λ) ∈ [u] such that
γ(e) = γ(pλσ(Λ) ∪ L).

For every λ ∈ [k̃] we fix u not necessarily disjoint subsets Bλ,1, . . . , Bλ,u ⊆ pλ in such a way
that

|Bλ,σ| = iσ for every σ ∈ [u] and λ ∈ [k̃] . (3.16)

From Claim 22 we infer that for every Λ = {λ1 < · · · < λu} ⊆ [k̃] we have

γ
(
L̄ ∪O ∪

⋃
σ∈[u]

Bλσ,σ

)
= γ(L ∪ pλσ(Λ)) for some σ(Λ) ∈ [u] . (3.17)

Note that the assertion above states that for every set Λ = {λ1 < · · · < λu} ⊆ [k̃] there exists
a σ(Λ) determining the colour of L̄ ∪ O ∪

⋃
σ∈[u] Bλσ,σ. While the above σ(Λ) depends on Λ,

a Ramsey type argument ensures a strengthening in which σ(Λ) is independent of Λ ⊆ X for
a suitable subset X ⊆ [k̃]. More precisely, we shall prove the following.

Claim 23. There exist a subset X ⊆ [k̃] with |X| = k̄ + u− 1 and a σ0 ∈ [u] such that for
every {λ1 < · · · < λu} ⊆ X we have

γ
(
L̄ ∪O ∪

⋃
σ∈[u]

Bλσ,σ

)
= γ(L ∪ pλσ0

) .

We prove Claim 23 momentarily, but first we deduce Lemma 16 from it. Let X = {x1 <
· · · < xk̄+u−1} and σ0 ∈ [u] be as in Claim 23. Set

L∗ = L̄ ∪O ∪
σ0−1⋃
σ=1

Bxσ,σ ∪
u⋃

σ=σ0+1

Bxk̄+σ−1,σ

and
p∗τ = Bxσ0+τ−1,σ0 for τ = 1, . . . , k̄ .

Recall that Bx,σ ⊆ px and, therefore, Bx,σ ∩Bx′,σ′ = ∅ whenever x 6= x′. Moreover, by (3.16)∣∣L∗∣∣ = iL + iO +
∑

σ∈[u]\{σ0}

iσ = r − iσ0 =: j

and j > i since iL + iO = i, u ≥ 2, and iσ > 0 for every σ ∈ [u]. Moreover, the choice of p∗τ and
the definition of L∗ imply that |L∗ ∪ p∗τ | = j + iσ0 = r and, hence,

S∗ = (L∗, p∗1, . . . , p
∗
k̄)

is a (j, k̄)-sunflower in K
(r)
n . Furthermore, it follows from Claim 23 that

γ(L∗ ∪ p∗τ ) = γ(L ∪ pxσ0+τ−1)
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for every τ ∈ [k̄]. Since S is injective by assumption this implies that S∗ is an injective (j, k̄)-
sunflower in K

(r)
n and the proof of Lemma 16 is complete, except for the proof of Claim 23.

Proof of Claim 23. Recall that Claim 22 guarantees for every Λ = {λ1 < · · · < λu} ⊆ [k̃] a
σ(Λ) ∈ [u] such that

γ
(
L̄ ∪O ∪

⋃
σ∈[u]

Bλσ,σ

)
= γ(L ∪ pλσ(Λ)) .

In other words we may view σ as a u-edge colouring of the complete u-uniform hypergraph
with vertex set [k̃]. By the choice of k̃ in (3.13) we infer from Ramsey’s theorem [12] that there
exist a subset X ⊆ [k̃] of size |X| = k̄ + r − 1 and a σ0 ∈ [u] such that σ(Λ) = σ0 for every
Λ = {λ1 < · · · < λu} ⊆ X.

4. Essentially unbounded colourings

In this section we prove Theorem 8 (Section 4.3) and Theorem 5 (Section 4.4). Behind the
scene we shall need a partite version of the canonical theorem of Erdős and Rado, Theorem 7;
see Theorem 24 below.

4.1. A partite version of the Erdős–Rado canonical theorem

For a given `-type τ (see Definition 4) we call a vector J = (J1, . . . , J`) of sets an τ -trace
if Ji ⊆ [τi] for every i ∈ [`]. Finally, we recall that for a set (e ∩Wi) = {v1 < · · · < vτi} and
Ji = {j1, . . . , jx} ⊆ [τi] we write (e∩Wi)[Ji] to denote the set {vj1 , . . . , vjx} and (e∩Wi)[Ji] = ∅
if and only if Ji = ∅.

Theorem 24. For all integers q ≥ r ≥ 2 and ` ∈ [r] and every `-type τ there exists an

integer n = n(q, r, `, τ) so that for every colouring γ ∈ C(r)
`·n and every partition of the vertex set

into classes V1, . . . , V` of cardinality |Vi| = n each, there exists a family W1, . . . ,W` of disjoint
sets Wi ⊂ Vi with |Wi| = q and a τ -trace J = J (τ) = (J1, . . . , J`), such that for all edges e,
e′ ∈ (W1, . . . ,W`)〈τ〉

γ(e) = γ(e′) ⇔ (e ∩Wi)[Ji] = (e′ ∩Wi)[Ji] ∀i ∈ [`] .

Observe that the case ` = 1 of Theorem 24 is exactly Theorem 7, since then τ = (r) is the
only 1-type and then Theorem 24 guarantees for every colouring γ a set W and a set J ⊆ [r]
so that two edges e, e′ ⊆ W receive the same colour iff e[J ] = e′[J ].

Proof of Theorem 24. Let integers q, r, and ` and an `-type τ = (τ1, . . . , τ`) be given. We
set n to be the integer n(q`, r) guaranteed by Theorem 7 applied with q · ` and r. Let γ be
colouring K

(r)
`·n → Z and let V1, . . . , V` be an arbitrary partition of the vertex set of K

(r)
`·n.

We treat the sets V1, . . . , V` as (pairwise disjoint) copies of [n] and denote by V̂ another
copy of [n]. Consider the natural projection

⋃
i∈[k] Vi → V̂ , where all the ` copies of x ∈ [n]

in
⋃

i∈[k] Vi are mapped onto the same x ∈ V̂ . Restricting that projection to (V1, . . . , V`)〈τ〉
gives rise to

π : (V1, . . . , V`)〈τ〉 →
(

V̂

≤ r

)
, (4.1)

where
( bV
≤r

)
is the family of all subsets of V̂ with cardinality at most r.
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Let us define an “inverse” π−1 of π on
(bV

r

)
as follows. Lift ê ∈

(bV
r

)
to the element π−1(ê) =

e ∈ (V1, . . . , V`)〈τ〉 such that π(e) = ê and

π(e ∩ V1) < · · · < π(e ∩ V`) ,

where as usual we write X < Y for two sets X, Y ⊆ [n] to denote maxX < minY .
Based on π−1 and the given colouring γ, we define an auxiliary colouring γ̂ :

(bV
r

)
→ Z by

setting for every ê ∈
(bV

r

)
γ̂(ê) := γ(π−1(ê)) . (4.2)

Apply Theorem 7 to γ̂. We obtain a subset Ŵ ⊂ V̂ with |Ŵ | = q` and a set Ĵ ⊂ [r] such
that for all ê, ê′ ∈

(cW
r

)
γ̂(ê) = γ̂(ê′) ⇔ ê[Ĵ ] = ê′[Ĵ ] . (4.3)

View Ĵ as the corresponding characteristic vector in {0, 1}r, and partition this vector by letting
J1 consist of the first τ1 components, J2 of the next τ2 components, up to J`. Finally view the
sets Ji as subsets of τi and fix the promised τ -trace J = J (τ) = (J1, . . . , J`). We obtain the
sets Wi ⊆ Vi from Ŵ in a similar manner: simply partition Ŵ into ` sets Ŵ1, . . . Ŵ` of the
same cardinality q so that for every i = 1, . . . , `− 1

Ŵ1 < · · · < Ŵ` ,

and lift Ŵi to Vi in the natural way, i.e., Wi equals to the copy of Ŵi in Vi. Thus we obtain
Wi ⊂ Vi for all i ∈ [`].

Observe that

π is injective on (W1, . . . ,W`)〈τ〉 (4.4)

and that, since Ŵi ∩ Ŵj = ∅, we have π(e) ∈
(bV

r

)
for every e ∈ (W1, . . . ,W`)〈τ〉. Moreover, for

every e ∈ (W1, . . . ,W`)〈τ〉 we have

π−1(π(e)) = e . (4.5)

Also for every ê ∈
(bV

r

)
ê[Ĵ ] =

(
(ê ∩ Ŵ1)[J1] < · · · < (ê ∩ Ŵ`)[J`]

)
. (4.6)

Finally, we show that the W1, . . . ,W` together with J = (J1, . . . , J`) satisfy the conclusion of
Theorem 24. For all edges e, e′ ∈ (W1, . . . ,W`)〈τ〉 we have

γ(e) = γ(e′) ⇔ γ̂(π(e)) = γ̂(π(e′)) by (4.5) and (4.2)

⇔ π(e)[Ĵ ] = π(e′)[Ĵ ] by (4.3) and (4.4)

⇔ ∀i ∈ [`] : (π(e) ∩ Ŵi)[Ji] = (π(e′) ∩ Ŵi)[Ji] by (4.6)
⇔ ∀i ∈ [`] : (e ∩Wi)[Ji] = (e′ ∩Wi)[Ji] by choice of Wi.

4.2. Further auxiliary lemmas

Besides Theorem 24 from the last section, we need a few technical lemmas for the proof of
Theorem 8. We start with an auxiliary result relating (r−1, k)-local colourings (see Definition 11)
and (ε, T )-bounded colourings (see Definition 3). Roughly speaking, Lemma 25 asserts that
unbounded colourings are not local.
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Lemma 25. For all integers r ≥ 2 and k ≥ 1 and every ε > 0 there exists an integer
T = T (r, k, ε) such that for every n ∈ N, every (r − 1, k)-local colouring γ ∈ C(r)

n is (ε, T )-
bounded.

Proof. Let r ≥ 2, k ≥ 1, and ε > 0 be given and set

T =
⌊(

krr

ε

)r⌋
+ 1 .

Assume for a contradiction that for some n ∈ N there exists an (r−1, k)-local colouring γ ∈ C(r)
n

which is not (ε, T )-bounded. Denote by ci the number of edges of colour i. After renumbering
we may assume that ci = 0 for every i ≤ 0 and ci ≥ ci+1 for every i ≥ 1. Moreover,∑

i>T

ci > ε

(
n

r

)
, (4.7)

since otherwise γ would be (ε, T )-bounded.
As there are ci edges of colour i, by the Kruskal–Katona theorem [8, 10] there are at least

c
(r−1)/r
i sets L ∈

(
[n]

r−1

)
seeing colour i, i.e., each such L is contained in some edge of colour i.

On the other hand, since γ is (r − 1, k)-local, each such set L sees at most k different colours,
and so combining these two arguments we have that∑

i≥1

c
1−1/r
i ≤

∑
L∈( [n]

r−1)
#{ different colours seen by L } ≤ k

(
n

r − 1

)
≤ knr−1. (4.8)

Furthermore, for every i > T we have

ci ≤ cT ≤ 1
T

∑
j∈[T ]

cj ≤
1
T

(
n

r

)
≤ nr

T
. (4.9)

Combining (4.7), (4.8), and (4.9), we obtain

ε

(
n

r

)
(4.7)

≤
∑
i>T

ci =
∑
i>T

c
1/r
i c

1−1/r
i

(4.9)

≤ n
r
√

T

∑
i>T

c
1−1/r
i

(4.8)

≤ knr

r
√

T
≤ krr

r
√

T

(
n

r

)
,

which contradicts the choice of T .

Suppose γ ∈ C(r)
n and L ∈

(
[n]

r−1

)
. Let CL,i be the set of those vertices v ∈ [n] \ L for which

γ(L ∪ {v}) = i. Again we may assume (after renumbering if necessary) that CL,i = ∅ for i ≤ 0
and i ≥ n + 1 and |CL,i| ≥ |CL,i+1| for every i ≥ 1. For a given integer k ≥ 1 and α > 0 we
call L (k, α, γ)-good, if ∑

i>k

|CL,i| ≥ αn, (4.10)

and (k, α, γ)-bad otherwise. In other words, a set L is good if its “smaller colour classes” CL,i

(i > k) add up a positive fraction. We first show (see Proposition 26) that, in this case [n] \ L
can be partitioned into classes of sensible sizes with disjoint colour ranges. Then we prove (see
Lemma 27) that every unbounded colouring must contain many good sets L.

Proposition 26. For all integers r ≥ 2 and k ≥ 1, every α > 0 and every colouring
γ ∈ C(r)

n the following holds. If L ∈
(

[n]
r−1

)
is (k, α, γ)-good, then [n] \L can be partitioned into

classes U1, . . . , Uk such that

(i ) |Ui| ≥ αn/(2k) and
(ii ) for all 1 ≤ i < j ≤ k and all x ∈ Ui and y ∈ Uj we have γ(L ∪ {x}) 6= γ(L ∪ {y}).
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Proof. Let constants r ≥ 2, k ≥ 1, α > 0, a colouring γ ∈ C(r)
n and a (k, α, γ)-good set

L ∈
(

[n]
r−1

)
be given. Moreover, let CL,i be defined as before.

First note that if |CL,k| ≥ αn/(2k) then we are done by setting

Ui =

{
CL,i if i = 1, . . . , k − 1,⋃

j≥k CL,j if i = k .

Therefore, assume that |CL,k| < αn/(2k). Let {X1, . . . , Xk} be a partition of {k + 1, . . . , n}
such that

M := max
1≤i<j≤k

∣∣∣∣ ∑
x∈Xi

|CL,x| −
∑

y∈Xj

|CL,y|
∣∣∣∣

is minimized. Note that, |CL,x| ≤ |CL,k| < αn/(2k) for any x > k, we have

M ≤ αn

2k
. (4.11)

Assume for a contradiction that |
∑

x∈Xi0
|CL,x| < αn/(2k) for some i0 ∈ [k]. Then (4.11)

would imply that ∑
x∈Xi

|CL,x| < |
∑

x∈Xi0

|CL,x|+
αn

2k
≤ αn

k

for every i ∈ [k], and, consequently,∑
i>k

|CL,i| <
αn

2k
+ (k − 1)

αn

k
< αn ,

which contradicts the fact that L is (k, α, γ)-good. Hence,
∑

x∈Xi
|CL,x| ≥ αn/(2k) for every

i ∈ k and setting for every i ∈ [k]

Ui =
⋃

x∈Xi

CL,x ∪ CL,i

satisfies (i ) and (ii ).

Lemma 27. For all integers r ≥ 2 and k ≥ 1, and every ε > 0 there exists an integer
T = T (r, k, ε) and a real α = α(r, k, ε) > 0 such that for every n ∈ N and every colouring

γ ∈ C(r)
n which is not (ε, T )-bounded, there are more than ε

3rr

(
n

r−1

)
sets in

(
[n]

r−1

)
, which are

(k, α, γ)-good.

Proof. Let r ≥ 2, k ≥ 1, and ε > 0 be given. Set T = T (r, k +1, ε/3) as given by Lemma 25
and set α = ε/(3rr). Assume for a contradiction that for some not (ε, T )-bounded colouring
γ ∈ C(r)

n there are at most (ε/(3rr))
(

n
r−1

)
sets L ∈

(
[n]

r−1

)
which are (k, α, γ)-good.

For simplicity we assume that im(γ) ⊆ N and for every L ∈
(

[n]
r−1

)
let π = πL : N → N be a

bijection for which |CL,π(1)| ≥ |CL,π(2)| . . . , where as above, CL,π(i) = {v ∈ [n]\L : γ(L∪{v}) =
π(i)}. This way for every (k, α, γ)-bad set L ∈

(
[n]

r−1

)
we have∑

i>k

|CL,π(i)| < αn =
ε

3rr
n . (4.12)

We define an auxiliary colouring γ̄ by setting for every e ∈ K
(r)
n

γ̄(e) =


0


if e contains a (k, α, γ)-good set or
if γ(e) = πL(i) for some i > k

and some (k, α, γ)-bad set L ∈
(

e
r−1

)
,

γ(e) otherwise .
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Since by assumption there are at most (ε/(3rr))
(

n
r−1

)
different (k, α, γ)-good sets and since (4.12)

holds, we have ∣∣γ̄−1(0)
∣∣ ≤ ε

3rr

(
n

r − 1

)
× n + αn×

(
n

r − 1

)
≤ 2εnr

3rr
≤ 2ε

3

(
n

r

)
.

Thus in total we recoloured at most (2/3)ε
(
n
r

)
edges in γ̄. On the other hand, by definition the

colouring γ̄ is (r− 1, k +1)-local and, hence, by Lemma 25 it is (ε/3, T )-local. But this implies
that the original colouring γ must be (ε, T )-bounded (as it differs from γ̄ on at most (2/3)ε

(
n
r

)
edges), which contradicts our assumption.

4.3. Proof of Theorem 8

In this section we prove Theorem 8. However, we shall first prove a slightly weaker result,
namely, Lemma 29 below. For the proof of this lemma, we need the following well known result
of Erdős, which says that every sufficiently large and dense r-uniform hypergraph contains
every r-partite r-uniform hypergraph of fixed order. We denote by K(r)(k; r) the complete
r-partite r-uniform hypergraph with vertex classes of size k.

Theorem 28 (Erdős [3]). For all integers r ≥ 2 and k ≥ 1 and every δ > 0 there is some
n0 = n0(r, k, δ) such that every r-uniform hypergraph G on |V (G)| = n ≥ n0 vertices with at
least δ

(
n
r

)
edges, contains a copy of K(r)(k; r).

We now state and prove Lemma 29, which deals with edges of the unique, non-degenerate
r-type 1r = (1, . . . , 1) and proves the first part of Theorem 8.

Lemma 29. For all integers q ≥ r ≥ 2 and every ε > 0, there exist integers T = T (r, q, ε)
and n0 = n0(r, q, ε) so that for every n ≥ n0 and every colouring γ ∈ C(r)

n which is not (ε, T )-
bounded the following holds. There exists a family V = {V1, . . . , Vr} of mutually disjoint sets,
each of cardinality q, such that with τ = (1, . . . , 1) ∈ Nr for all edges e, e′ ∈ (V1, . . . , Vr)〈τ〉

γ(e) = γ(e′) ⇒ e ∩ V1 = e′ ∩ V1 .

Proof. Let q ≥ r ≥ 2 and ε > 0 be given. Fix an integer k sufficiently large so that

kqr−1 <

(
k

q

)r

. (4.13)

We set the promised constant T to T (r, k, ε) given by Lemma 27. Moreover, let α = α(r, k, ε)
be given by Lemma 27. We fix auxiliary constants s and δ by letting

s =
⌈

ε

3rr

(
n

r − 1

)⌉
and δ =

ε

3rr

( α

2k

)k

. (4.14)

Finally, we set n0 to n0(r − 1, k, δ) given by Theorem 28.
After we fixed the promised constants T and n0, let γ ∈ C(r)

n for n ≥ n0 be a not (ε, T )-
bounded colouring. Due to the choice of the constants above, Lemma 27 implies that there
exist at least s sets L1, . . . , Ls ∈

(
n

r−1

)
, which are (k, α, γ)-good. For each such Lσ, σ ∈ [s],

we are guaranteed by Proposition 26 to have a partition {Uσ
1 , . . . , Uσ

k } of [n] \ Lσ satisfying
properties (i ) and (ii ) of Proposition 26. In particular, property (ii ) implies that for any set
P = {pσ

1 , . . . , pσ
k} ∈ Uσ

1 × · · · ×Uσ
k the (r− 1, k)-sunflower Sσ

P = (Lσ, pσ
1 , . . . , pσ

k) is an injective
sunflower. Since by property (i ) the sets |Uσ

i | ≥ αn/(2k) for every σ ∈ [s] and i ∈ [k], we thus
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obtain

s×
(αn

2k

)k (4.14)

≥ δnk

(
n

r − 1

)
distinct, injective (r − 1, k)-sunflowers. As there are less than nk ways to choose k petals,
there must be a set W1 = {p1, . . . , pk} ∈

(
[n]
k

)
with more than δ

(
n

r−1

)
such injective (r − 1, k)-

sunflowers using p1, . . . , pk, the elements of W1, for the k petals. The kernels of those sunflowers
give rise to an auxiliary (r− 1)-uniform hypergraph G on the vertex set [n] with δ

(
n

r−1

)
edges.

By the choice of n0 and n ≥ n0 appealing to Theorem 28, we infer that G contains a copy
of the complete (r − 1)-partite hypergraph K(r−1)(k; r − 1). Let W2, . . . ,Wr ⊆ [n] be the
vertex classes of cardinality k of that copy of K(r−1)(k; r − 1). Recalling that the edges of G
are actually kernels of (r − 1, k)-sunflowers with the k petals coming from W1 = {p1, . . . , pk}
implies that W1 ∩Wi = ∅ for every i = 2, . . . , r and, hence, W1, . . . ,Wr is a family of mutually
disjoint sets of cardinality k. Moreover, for every L ∈ W2 × · · · ×Wr the (r − 1, k)-sunflower
S = (L, p1, . . . , pk) is injective, thus for all x, x′ ∈ W1 with x 6= x′ we have

γ(L ∪ {x}) 6= γ(L ∪ {x′}) . (4.15)

Our aim is to find sets Vi ∈
(
Wi

q

)
for all i ∈ [r] such that for all not necessarily disjoint L,

L′ ∈ V2 × · · · × Vr and all distinct x 6= x′ ∈ W1 we have

γ(L ∪ {x}) 6= γ(L′ ∪ {x′}) . (4.16)

For that we call a family V = {V1, . . . , Vr} of sets Vi ∈
(
Wi

q

)
faulty if the above condition is not

satisfied. We count all faulty families. By definition, every faulty family contains two sets L,
L′ ∈ V2× . . . Vr and two points x, x′ ∈ V1 so that γ(L∪{x}) = γ(L′ ∪{x′}). There are at most
k|L∪L′|+1 ways to choose L, L′ and x. Once these are given, there is only one choice for x′,
because if there were two distinct choices, say x′ and x′′, then γ(L ∪ {x}) = γ(L′ ∪ {x′}) and
γ(L∪{x}) = γ(L′∪{x′′}) would imply γ(L′∪{x′}) = γ(L′∪{x′′}), which contradicts (4.15). So
our choice of x′ is forced. Now the remaining points in the family can be chosen arbitrarily, and
there are at most kq−2 ways to complete V1 and k(r−1)q−|L∪L′| ways to complete V2, . . . , Vr.
But since

k|L∪L′|+1 × kq−2 × k(r−1)q−|L∪L′| = kqr−1
(4.13)
<

(
k

q

)r

,

there is at least one family V = {V1, . . . , Vr}, with Vi ∈
(
Wi

q

)
for i ∈ [r], which is not faulty,

i.e., it satisfies (4.16).

We are finally able to give the proof of Theorem 8, which is based on Lemma 29 and
Theorem 24.

Proof of Theorem 8. Let q ≥ r ≥ 2 and ε > 0 be given. First we define the constants T
and n0. For that let τ(1), . . . , τ(ξ) be any list of all non-degenerate types (for r) in which each
`-type (` ∈ [r]) appears

(
r
`

)
times. It will be convenient to assume that τ(ξ) = (1, . . . , 1) is the

single copy of the unique non-degenerate r-type. Furthermore, let `(i) ∈ [r] be so that τ(i) is
an `(i)-type, i.e., let `(i) denote the dimension of the vector τ(i). Finally, let Λ(i) = {λ1(i) <
· · · < λ`(i)(i)} ⊆ [r] be an ordered subset of `(i) indices in [r] so that every two copies τ(i1)
and τ(i2) of the same type get different sets, i.e., Λ(i1) 6= Λ(i2).

We define the following sequence of integers q(ξ) ≤ · · · ≤ q(1) recursively by setting

q(i) =

{
q + ξ if i = ξ,

n
(
Thm.24

(
q(i + 1), r, `(i), τ(i)

))
if i = ξ − 1, . . . , 1,

(4.17)
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where n(q, r, `, τ) is given by Theorem 24. Finally, we fix the promised constants T and n0 by
appealing to Lemma 29 with q(1) and ε. In fact, we set

T = T
(
Lem.29(q(1), ε)

)
and n0 = n0

(
Lem.29(q(1), ε)

)
. (4.18)

Having defined the constants T and n0, we let γ ∈ C(r)
n , for some n ≥ n0, be a not (ε, T )-

bounded colouring.
Clearly, by our choice of T and n0 in (4.18) we can apply Lemma 29. Consequently, there

exists a family V(1) = {V1(1), . . . , Vr(1)} of mutually disjoint sets, with

|V1(1)| = · · · = |Vr(1)| = q(1) , (4.19)

so that for all edges e, e′ ∈ (V1(1), . . . , Vr(1))〈τ(ξ)〉

γ(e) = γ(e′) ⇒ e ∩ V1(1) = e′ ∩ V1(1) . (4.20)

Notice that this would already prove the first assertion of the theorem by choosing ` = r and
τ = τ(ξ) = (1, . . . , 1) ∈ Nr. However, at this point we cannot guarantee that all edges of
degenerate r-type receive a colour different from the ones used so far, which we need for the
moreover-part of Theorem 8. The idea to find the right value for ` is, roughly spoken, to go
down with ` = r, r − 1, . . . and stop just before all Jj(i) = ∅.

Next we apply Theorem 24 consecutively for i = 1, . . . , ξ − 1 to obtain a family V(i + 1) =
{V1(i + 1), . . . , Vr(i + 1)}, each of cardinality at least q(i + 1) and V (i + 1) ⊆ V (i). More
precisely, given a family V(i) = {V1(i), . . . , Vr(i)} of mutually disjoint sets, each of size q(i),
which exist for i = 1 due to (4.19), we apply Theorem 24 with q(i + 1), r, `(i), and τ(i) to
the family of sets {Vj : j ∈ Λ(i)} and γ restricted to the union of those sets. Theorem 24 then
gives rise to subsets Wj(i) ⊆ Vj(i) for j ∈ Λ(i) = {λ1(i) < · · · < λ`(i)(i) and a τ(i)-trace
J (τ(i)) = (J1(i), . . . , J`(i)(i)), so that for all edges e, e′ ∈ (Wλ1(i)(i), . . . ,Wλ`(i)(i))〈τ(i)〉

γ(e) = γ(e′) ⇔ (e ∩Wj(i))[Jj ] = (e′ ∩Wj(i))[Jj ] ∀j ∈ [`(i)] . (4.21)

We conclude the inductive definition of V(i) by setting

Vj(i + 1) =

{
Wj(i) if j ∈ Λ(i),
Vj(i) if j 6∈ Λ(i).

We call a τ(i)-trace J (τ(i)) = (J1(i), . . . , J`(i)(i)) monochromatic, if Jj(i) = ∅ for every
j ∈ [`(i)], as in this case all e ∈ (Wλ1(i)(i), . . . ,Wλ`(i)(i))〈τ(i)〉 receive the same colour. Fixing
the (τ(ξ) = (1, . . . , 1))-trace J (τ(ξ)) = ({1}, . . . , {1}), we have, in view of (4.20), a non-
monochromatic trace for the unique non-degenerate r-type. Therefore, there exists a minimum
integer `0 ∈ [r] for which there exists an `0-type, say τ(i0) with corresponding index set Λ(i0)
, with a non-monochromatic trace J (τ(i0)).

From the choice of `0 it follows that if Λ(i) ( Λ(i0), then J (τ(i)) is monochromatic. In
particular, there exists a relabelling U1, . . . , U`0 of the sets Wj(i0) = Vj(i0 + 1) for j ∈ Λ(i0)
such that for every degenerate `0-type τ the colouring γ is monochromatic on (U1, . . . , U`0)〈τ〉
and if U1 = Wj(i0) then Jj(i0) 6= ∅, which is possible since J (τ(i0)) is non-monochromatic.
Let τ∗ = (τ∗1 , . . . , τ∗`0) be the vector which we obtain from τ(i0) = (τ1(i0), . . . , τ`0(i0)) after
reshuffling the entries corresponding to the relabelling above, i.e., if U∗

j = Wλj(i0)(i0), then
τ∗j = τj(i0). Similarly, let J (τ∗) = (J∗1 , . . . , J∗`0) be the corresponding reshuffling of J (τ(i0)),
where J∗1 6= ∅. Therefore, from (4.21) we infer the first part of Theorem 8, i.e, for all edges e,
e′ ∈ (U1, . . . , U`0)〈τ∗〉

γ(e) = γ(e′) ⇒ (e ∩ U1)[J∗1 ] = (e′ ∩ U1)[J∗1 ] .

Moreover, due to the choice of the integers q(i) in (4.17), we have |Uj | ≥ q(i0 + 1) ≥ q + ξ for
all j ∈ [`0]. Since there are less than ξ colours used by degenerate `0-types, the deletion of at
most ξ many vertices from each Uj will produce the final family W.
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4.4. Proof of Theorem 5

In this section, we deduce Theorem 5 from Theorem 8.

Proof of Theorem 5. Let H be an r-uniform hypergraph with at least two edges and vH

vertices and set

k := Ξ(H) = min
τ∈T (r)

j1∈[τ1]

max
{∣∣χ(r)

τ,j1,r·vH
(H0)

∣∣ : H0 ⊆ K
(r)
r·vH

}
. (4.22)

In (4.22) above as well as later in this proof, H0 denotes a copy of H in some “large enough”
complete hypergraph. We have to show that k− 2 ≤ EssFin(H) < k. We first prove the upper
bound. For that it suffices to give an example of a family of (H, k)-local colourings, that are
not (ε, T )-bounded for a given ε > 0 and every T . For that we note that for fixed ε < r!/rr and
given T the colouring χ

(r)
τ,j1,n is not (ε, T )-bounded for any τ ∈ T (r), j1 ∈ [τ1], and n = n(ε, T )

sufficiently large. Moreover, by definition of k in (4.22) there is some τ0 ∈ T (r) and some
j1 ∈ [τ1] such that χ

(r)
τ0,j1,n is (H, k)-local and, hence,

EssFin(H) < k . (4.23)

We prove the lower bound by contradiction. So assume EssFin(H) < k − 2, i.e., there is
an ε > 0 such that for every T there exist an n and a colouring γ ∈ L(r)

n (H, k − 2) that is
not (ε, T )-bounded. Let such an ε > 0 be given. For q = vH , r, and ε Theorem 8 yields T

and n0. Now suppose for some n ≥ n0 there exist some γ ∈ L(r)
n (H, k − 2) ⊆ C(r)

n which is not
(ε, T )-bounded. Then by Theorem 8 there exist an integer `0 ∈ [r], a non-degenerate `0-type
τ = (τ1, . . . , τ`0), a set ∅ 6= J1 ⊆ [τ1], and a family W = {W1, . . . ,W`0} of mutually disjoint
sets of cardinality q such that for all edges e, e′ ∈ (W1, . . . ,W`0)〈τ〉

γ(e) = γ(e′) ⇒ (e ∩W1)[J1] = (e′ ∩W1)[J1] . (4.24)

Consequently, for j1 = minJ1 we have

max
H0⊆K

(r)
n

∣∣γ(H0)
∣∣ ≥ max

{∣∣γ(H0)
∣∣ : H0 induced on

⋃
i∈[`0]

Wi

}
(4.24)

≥ −1 + max
H0⊆K

(r)
`0·q

∣∣χ(r)
τ,j1,`0·q(H0)

∣∣ .

(4.25)

Note that the “−1” is needed, because H0 may contain edges of a non-degenerate `0-type
τ ′ 6= τ . Theorem 8 gives us no control over the colour of those edges, but χ

(r)
τ,j1,`0·q(H0) insists

on a colour different from those used for the edges of type τ . However, if r = 2, then there exist
only one non-degenerate 1-type (τ = (2)) and only one non-degenerate 2-type (τ = (1, 1)).
Hence, for r = 2 we infer

max
H0⊆K

(2)
n

∣∣γ(H0)
∣∣ ≥ max

H0⊆K
(2)
`0·q

∣∣χ(2)
τ,j1,`0·q(H0)

∣∣ . (4.26)

Moreover, since τ ∈ T (r) and q ≥ vH , we infer from (4.25) that

max
H0⊆K

(r)
n

∣∣γ(H0)
∣∣ ≥ −1 + min

τ∈T (r)

j1∈[τ1]

max
H0⊆K

(r)
r·vH

∣∣χ(r)
τ,j1,r·vH

(H0)
∣∣ .

But by definition of k in (4.22) this contradicts γ ∈ L(r)
n (H, k − 2). Hence EssFin(H) ≥ k − 2

and (2.7) follows from (4.23) and (4.22).
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The moreover-part of Theorem 5 for r = 2 follows in the same way. Colourings χ
(2)
(2),1,n and

χ
(2)
(2),2,n are equivalent in the sense that

max
H0⊆K

(2)
n

∣∣χ(2)
(2),1,n(H0)

∣∣ = max
H0⊆K

(2)
n

∣∣χ(2)
(2),2,n(H0)

∣∣
for every integer n. Recalling, that γmin,n = χ

(2)
(2),1,n and γbip,n = χ

(2)
(1,1),1,n we infer from (4.23)

and (4.22) that

EssFin(H) ≤ −1 + min
{

max
H0

|γmin,2vH
(H0)| , max

H0
|γbip,2vH

(H0)|
}

= k − 1 ,

where the H0 range over all copies of H in K
(2)
n . Similarly, repeating the analysis as in the

proof of EssFin(H) ≥ k − 2 for general r above, but using (4.26) instead of (4.25), we infer
EssFin(H) ≥ k − 1 for r = 2.

5. Essentially unbounded colourings of the integers

In this short, final section, we present the proof of Theorem 10. We shall use the following
quantitative version of Szemerédi’s theorem, which was proved for 3-term arithmetic progressions
by Varnavides [16] and for k-term progressions by Frankl, Graham, and Rödl [7].

Theorem 30 (Quantitative version of Szemerédi’s theorem). For every integer k ≥ 3 and
ε > 0 there exists d = d(k, ε) and n1 = n1(k, ε) such that for every n ≥ n1, every subset
X ⊆ [n] with |X| ≥ εn contains at least dn2 arithmetic progressions with k elements.

Proof of Theorem 10. We start with an argument similar to the one in the proof of
Lemma 25. Let k ≥ 3 and ε > 0 be given. We set

n0 = n1(k, ε), T =
⌊

1
d(k, ε)

(
k

2

)⌋
+ 1 , (5.1)

where n1(k, ε) and d(k, ε) are given by Theorem 30.
Let n ≥ n0 and γ : [n] → Z be a colouring that is not (ε, T )-bounded. We denote by Ci ⊆ [n]

the set of integers that receive colour i, i.e., Ci = γ−1(i) and let ci := |Ci|. Without loss of
generality we may assume that ci = 0 for every i ≤ 0 and ci ≥ ci+1 for every i ≥ 1. Moreover,
for every i ≥ T we have T · ci ≤

∑T
j=1 cj ≤ n and hence

ci ≤
n

T
for all i ≥ T . (5.2)

Next let Y = C1 ∪ · · · ∪ CT . Clearly, |γ(Y )| ≤ T and since γ is not (ε, T )-bounded

|Y | =
T∑

i=1

ci < n− εn.

Therefore
∑

i>T ci > εn and we may apply Theorem 30 to the set X =
⋃

i>T Ci. By Theorem 30
we obtain dn2 arithmetic progressions with k elements inside X, where d = d(k, ε). If one of
them is injective, i.e., uses k colours, then we are done. Suppose that none of them is injective,
so that each of them contains a monochromatic pair. In general, every monochromatic pair
can prevent at most

(
k
2

)
different k-term arithmetic progressions from being injective, which

implies the following bounds:

dn2

(
k

2

)−1

≤ #{ monochromatic pairs in X } ≤
∑
i>T

(
ci

2

)
≤

∑
i>T

c2
i ≤ T

( n

T

)2

,
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where for the last step we used the fact that the above sum is maximized when as many
summands as possible take the maximum possible value as given by (5.2). This yields that
T ≤

(
k
2

)
/d, contradicting our choice of T in (5.1).
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