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Abstract. Szemerédi’s regularity lemma for graphs has proved to be a pow-
erful tool with many subsequent applications. The objective of this paper is
to extend the techniques developed by Nagle, Skokan, and authors and obtain
a stronger and more “user friendly” regularity lemma for hypergraphs.

1. Introduction

In the course of proving his celebrated density theorem concerning arithmetic
progressions [30], Szemerédi established the regularity lemma for graphs [31]. This
lemma turned out to be a very useful tool in extremal graph theory and theoretical
computer science (see, e.g., [18, 19] for a survey). Following the work of Frankl
and Rödl on 3-uniform hypergraphs [5], Gowers [10, 12] and Nagle, Skokan, and
authors [20, 26] developed generalizations of the regularity method to k-uniform
hypergraphs. Subsequently, Tao [32] also obtained such a generalization. Those
extensions yield the following theorem (see [10, 20, 27]), which settles a conjecture
of Erdős, Frankl, and Rödl [4].

Theorem 1 (Removal lemma). Let ` ≥ k ≥ 2 be integers and let ε > 0 there
exist δ = δ(`, k, ε) > 0 and n0 = n0(`, k, ε) so that the following holds.

Suppose F (k) is a fixed k-uniform hypergraph on ` vertices and H(k) is a k-
uniform hypergraph on n ≥ n0 vertices. If H(k) contains at most δn` copies of F (k),
then one can delete εnk edges of H(k) to make it F (k)-free.

This theorem can be viewed as an extension of the theorem of Ruzsa and Sze-
merédi [28], which addressed the case k = 2 and F (2) being a triangle, the complete
graph on three vertices. In [4], Theorem 1 was verified for all graphs F (2). It
was shown by Frankl and Rödl [5], Solymosi [29], and Tengan, Tokushige, and
authors [25], that Theorem 1 implies Szemerédi’s density theorem [30], as well as
some of its multidimensional extensions due to Furstenberg and Katznelson [7, 8].
(It is not known, however, whether Theorem 1 also yields an alternative proof of
the density version of the theorem of Hales and Jewett [15], which was established
by Furstenberg and Katznelson [9] using ergodic theory.)

In this paper we continue the line of research from [5, 20, 26] and obtain a stronger
and hopefully easier to use regularity lemma for hypergraphs – Theorem 17. The
proof of a corresponding counting lemma will appear in a subsequent paper [23].
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A standard application of those theorems, following the lines of [4, 5, 10, 20, 27],
yields a proof of Theorem 1.

As a byproduct we obtain a result for hypergraphs, Theorem 14, which might be
of independent interest. Roughly speaking, in the context of graphs Theorem 14
says that for every fixed ν > 0 any graph on n vertices can be approximated, by
adding and deleting at most νn2 edges, by an ε-regular graph on a vertex partition
into t parts, where ε = ε(t) is an arbitrary function of t, and thus we may have
ε(t) � 1

t . This may perhaps be somewhat surprising, since it follows from the work
of Gowers [11], that there are graphs which if not changed admit only an ε-regular
partition with t classes, where t � 1

ε . In fact Gowers constructed graphs with
number of partition classes in any ε-regular partition being bigger than a tower of
height polynomial in 1/ε.

2. Main results

In what follows, we give a precise account of Szemerédi’s regularity lemma. For
a graph G = (V,E) and two disjoint sets A, B ⊂ V , let E(A,B) denote the set of
edges {a, b} ∈ E with a ∈ A and b ∈ B and set e(A,B) = |E(A,B)|. We also set
d(A,B) = e(A,B)/(|A||B|) for the density of the pair A, B.

The concept central to Szemerédi’s lemma is that of an ε-regular pair. Let ε > 0
be given. We say that the pair A, B is ε-regular if |d(A,B)− d(A′, B′)| < ε holds
whenever A′ ⊂ A, B′ ⊂ B, and |A′||B′| > ε|A||B|.

We call a partition P(1) = {Vi : 0 ≤ i ≤ t} of V t-equitable if it satisfies |V0| ≤ t
and |Vi| = b|V |/tc for i ∈ [t]. We say the graph G = (V,E) is ε-regular w.r.t. P(1)

if all but εt2 pairs Vi, Vj are ε-regular. Szemerédi’s lemma [31] may then be stated
as follows.

Theorem 2 (Szemerédi’s regularity lemma). For any positive real ε and any inte-
ger t0, there are positive integers tSz = tSz(ε, t0) and nSz = nSz(ε, t0) such that for
every graph G = (V,E) with |V | = n ≥ nSz vertices there exists a partition P(1) of
V such that

(i ) P(1) = {Vi : 0 ≤ i ≤ t} is t-equitable, where t0 ≤ t ≤ tSz, and
(ii ) G is ε-regular w.r.t. P(1).

Moreover, if (tSz)! divides n then V0 can be chosen to be empty.

We note that our definition of an ε-regular pair differs slightly from the usual
one of [31]. However, it is easy to see that both are equivalent. Also we point
out that in an early version of the regularity lemma, which appeared in [30], the
partition structure was a bit different and more complicated from the one stated
above, which appeared in [31].

In this paper we consider two extensions of Theorem 2 to hypergraphs (see
Theorem 14 and Theorem 17). To simplify the notation we will restrict to the
case where V0 is empty. Since our result is of asymptotic nature, dealing with
hypergraphs on n vertices where n is very large, and since every hypergraph can be
altered to satisfy (tSz)!|n by adding or deleting a constant number (independent of
n) of vertices this additional divisibility assumption has no essential baring.

2.1. Basic notation. For real constants α, β, and a non-negative constants ξ we
sometimes write

α = β ± ξ , if β − ξ ≤ α ≤ β + ξ .
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For a positive integer `, we denote by [`] the set {1, . . . , `}. For a set V and an
integer k ≥ 1, let [V ]k be the set of all k-element subsets of V . We may drop
one pair of brackets and write [`]k instead of

[
[`]
]k. A subset H(k) ⊆ [V ]k is a

k-uniform hypergraph on the vertex set V . We identify hypergraphs with their edge
sets. For a given k-uniform hypergraph H(k), we denote by V (H(k)) and E(H(k))
its vertex and edge set, respectively. For U ⊆ V (H(k)), we denote by H(k)[U ] the
sub-hypergraph of H(k) induced on U (i.e. H(k)[U ] = H(k) ∩ [U ]k). A k-uniform
clique of order j, denoted by K

(k)
j , is a k-uniform hypergraph on j ≥ k vertices

consisting of all
(

j
k

)
different k-tuples.

In this paper `-partite, j-uniform hypergraphs play a special rôle, where j ≤ `.
Given vertex sets V1, . . . , V`, we denote by K

(j)
` (V1, . . . , V`) the complete `-partite, j-

uniform hypergraph (i.e., the family of all j-element subsets J ⊆
⋃

i∈[`] Vi satisfying
|Vi ∩ J | ≤ 1 for every i ∈ [`]). If |Vi| = m for every i ∈ [`], then an (m, `, j)-
hypergraph H(j) on V1 ∪ · · · ∪ V` is any subset of K

(j)
` (V1, . . . , V`). Note that the

vertex partition V1 ∪ · · · ∪ V` is an (m, `, 1)-hypergraph H(1). (This definition may
seem artificial right now, but it will simplify later notation.) For j ≤ i ≤ ` and
set Λi ∈ [`]i, we denote by H(j)[Λi] = H(j)

[⋃
λ∈Λi

Vλ

]
the sub-hypergraph of the

(m, `, j)-hypergraph H(j) induced on
⋃

λ∈Λi
Vλ.

For an (m, `, j)-hypergraph H(j) and an integer j ≤ i ≤ `, we denote by Ki(H(j))
the family of all i-element subsets of V (H(j)) which span complete sub-hypergraphs
in H(j) of order i. Note that |Ki(H(j))| is the number of all copies of K

(j)
i in H(j).

Given an (m, `, j − 1)-hypergraph H(j−1) and an (m, `, j)-hypergraph H(j) such
that V (H(j)) ⊆ V (H(j−1)), we say an edge J of H(j) belongs to H(j−1) if J ∈
Kj(H(j−1)), i.e., J corresponds to a clique of order j in H(j−1). Moreover, H(j−1)

underlies H(j) if H(j) ⊆ Kj(H(j−1)), i.e., every edge of H(j) belongs to H(j−1). This
brings us to one of the main concepts of this paper, the notion of a complex.

Definition 3 ((m, `, h)-complex). Let m ≥ 1 and ` ≥ h ≥ 1 be integers. An
(m, `, h)-complex H is a collection of (m, `, j)-hypergraphs {H(j)}h

j=1 such that

(a ) H(1) is an (m, `, 1)-hypergraph, i.e., H(1) = V1 ∪ · · · ∪ V` with |Vi| = m for
i ∈ [`];

(b ) H(j−1) underlies H(j) for 2 ≤ j ≤ h, i.e., H(j) ⊆ Kj(H(j−1)).

Remark 4. We may also define hypergraphs and complexes in the same way for
underlying vertex sets V1, . . . , V` with different cardinalities. In such a case we will
drop the m and say H(j) is an (`, j)-hypergraph or H is an (`, h)-complex.

2.2. Regular complexes. We begin with a notion of relative density of a j-
uniform hypergraph w.r.t. (j − 1)-uniform hypergraph on the same vertex set.

Definition 5 (relative density). Let H(j) be a j-uniform hypergraph and let
H(j−1) be a (j − 1)-uniform hypergraph on the same vertex set. We define the
density of H(j) w.r.t. H(j−1) as

d
(
H(j)

∣∣H(j−1)
)

=


|H(j)∩Kj(H(j−1))|
|Kj(H(j−1))| if

∣∣Kj(H(j−1))
∣∣ > 0

0 otherwise .

We now define a notion of regularity of an (m, j, j)-hypergraph with respect to
an (m, j, j − 1)-hypergraph.
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Definition 6. Let reals ε > 0 and dj ≥ 0 be given along with an (m, j, j)-hypergraph

H(j) and an underlying (m, j, j − 1)-hypergraph H(j−1). We say H(j) is (ε, dj)-
regular w.r.t. H(j−1) if whenever Q(j−1) ⊆ H(j−1) satisfies∣∣Kj(Q(j−1))

∣∣ ≥ ε
∣∣Kj(H(j−1))

∣∣ , then d
(
H(j)

∣∣Q(j−1)
)

= dj ± ε .

We extend the notion of (ε, dj)-regularity from (m, j, j)-hypergraphs to (m, `, j)-
hypergraphs H(j).

Definition 7 ((ε, dj)-regular hypergraph). We say an (m, `, j)-hypergraph H(j)

is (ε, dj)-regular w.r.t. an (m, `, j − 1)-hypergraph H(j−1) if for every Λj ∈ [`]j

the restriction H(j)[Λj ] = H(j)
[⋃

λ∈Λj
Vλ

]
is (ε, dj)-regular w.r.t. to the restriction

H(j−1)[Λj ] = H(j−1)
[⋃

λ∈Λj
Vλ

]
.

We sometimes write ε-regular to mean
(
ε, d
(
H(j)

∣∣H(j−1)
))

-regular.

Finally, we close this section with the notion of a regular complex.

Definition 8 ((ε, d)-regular complex). Let ε > 0 and let d = (d2, . . . , dh) be
a vector of non-negative reals. We say an (m, `, h)-complex H = {H(j)}h

j=1 is

(ε, d)-regular if H(j) is (ε, dj)-regular w.r.t. H(j−1) for every j = 2, . . . , h.

2.3. Partitions. The regularity lemmas for k-uniform hypergraphs which we prove
in this paper provide a well-structured family of partitions P = {P(1), . . . ,P(k−1)}
of vertices, pairs, . . . , and (k − 1)-tuples of some vertex set. We now discuss the
structure of these partitions following the approach of [26]. First we define the
refinement of a partition.

Definition 9 (refinement). Suppose A ⊇ B are sets, A is a partition of A, and
B is a partition of B. We say A refines B and write A ≺ B if for every A ∈ A
there either exists a B ∈ B such that A ⊆ B or A ⊆ A \B.

Let k be a fixed integer and V be a set of vertices. Throughout this paper we
require a family of partitions P = {P(1), . . . ,P(k−1)} on V to satisfy properties
which we are going to describe below (see Definition 10).

Let P(1) = {V1, . . . , V|P(1)|} be a partition of V . For every 1 ≤ j ≤ k let
Crossj(P(1)) be the family of all crossing j-tuples J , i.e., the set of j-tuples which
satisfy |J ∩ Vi| ≤ 1 for every Vi ∈ P(1).

Suppose that partitions P(i) of Crossi(P(1)) into (i, i)-hypergraphs have been
defined for 1 ≤ i ≤ j − 1. Then for every (j − 1)-tuple I in Crossj−1(P(1)) there
exist a unique P(j−1) = P(j−1)(I) ∈ P(j−1) so that I ∈ P(j−1). Moreover, for
every j-tuple J in Crossj(P(1)) we define the polyad of J

P̂(j−1)(J) =
⋃{

P(j−1)(I) : I ∈ [J ]j−1
}

.

In other words, P̂(j−1)(J) is the unique collection of j partition classes of P(j−1)

in which J spans a copy of K
(j−1)
j . Observe that P̂(j−1)(J) can be viewed as a

(j, j − 1)-hypergraph, i.e., a j-partite, (j − 1)-uniform hypergraph. More generally,
for 1 ≤ i < j, we set

P̂(i)(J) =
⋃{

P(i)(I) : I ∈ [J ]i
}

and P(J) =
{
P̂(i)(J)

}j−1

i=1
. (1)

Next, we define P̂(j−1) the family of all polyads

P̂(j−1) =
{
P̂(j−1)(J) : J ∈ Crossj(P(1))

}
.
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Note that P̂(j−1)(J) and P̂(j−1)(J ′) are not necessarily distinct for different j-
tuples J and J ′. We view P̂(j−1) as a set and, consequently, {Kj(P̂(j−1)) : P̂(j−1) ∈
P̂(j−1)} is a partition of Crossj(P(1)). The structural requirement on the partition
P(j) of Crossj(P(1)) we have in this paper is

P(j) ≺ {Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)} . (2)

In other words, we require that the set of cliques spanned by a polyad in P̂(j−1) is
sub-partitioned in P(j) and every partition class in P(j) belongs to precisely one
polyad in P̂(j−1). Note, that due to (2) we inductively infer that P(J) defined
in (1) is a (j, j − 1)-complex.

Throughout this paper we also want to have control over the number of partition
classes in P(j), and more specifically, over the number of classes contained in
Kj(P̂(j−1)) for a fixed polyad P̂(j−1) ∈ P̂(j−1). We render this precisely in the
following definition.

Definition 10 (family of partitions). Suppose V is a set of vertices, k ≥ 2 is
an integer and a = (a1, . . . , ak−1) is a vector of positive integers. We say P =
P(k − 1,a) = {P(1), . . . ,P(k−1)} is a family of partitions on V , if it satisfies the
following:

(i ) P(1) is a partition of V into a1 classes,
(ii ) P(j) is a partition of Crossj(P(1)) satisfying:

P(j) refines {Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)}

and
∣∣{P(j) ∈ P(j) : P(j) ⊆ Kj(P̂(j−1))

}∣∣ = aj for every P̂(j−1) ∈ P̂(j−1) .

Moreover, we say P = P(k − 1,a) is t-bounded, if max{a1, . . . , ak−1} ≤ t.

We now combine Definition 9 and Definition 10 and define the refinement of a
family of partitions.

Definition 11 (refinement of families). Suppose P = P(k − 1,aP) and R =
R(k− 1,aR) are families of partitions on the same vertex set V . We say P refines
R and write P ≺ R, if P(j) ≺ R(j) (cf. Definition 9) for every j ∈ [k − 1].

2.4. Main results. In this paper we prove two hypergraph regularity lemmas,
which may be viewed as strengthened versions of the hypergraph regularity lemma
from [26]. Those new lemmas were already applied in [2, 3, 21, 22, 24]. As in
Szemerédi’s regularity lemma, such hypergraph regularity lemmas should ensure
the existence of partitions of the edge set of a k-uniform hypergraph which satisfy
certain properties. Besides the structural conditions discussed in the last section
the partitions ensured by the main theorems in this paper will satisfy two more
properties which we define below. More specifically, the family of partitions P
have to satisfy properties analogous to (i ) and (ii ) of Theorem 2. We first extend
the notion of equitability.
Definition 12 ((η, ε, a)-equitable). Suppose V is a set of n vertices, η and ε are
positive reals, a = (a1, . . . , ak−1) is a vector of positive integers, and a1 divides n.

We say a family of partitions P = P(k−1,a) on V (as defined in Definition 10)
is (η, ε, a)-equitable if it satisfies the following:

(a )
∣∣[V ]k \ Crossk(P(1))

∣∣ ≤ η
(
n
k

)
;

(b ) P(1) = {Vi : i ∈ [a1]} is an equitable vertex partition, i.e., |Vi| = |V |/a1

for i ∈ [a1];



6 VOJTĚCH RÖDL AND MATHIAS SCHACHT

(c ) for every k-tuple K ∈ Crossk(P(1)) we have that P(K) = {P̂(j)}k−1
j=1 is an

(ε, d)-regular (n/a1, k, k − 1)-complex, where d = (1/a2, . . . , 1/ak−1).

Next, we extend (ii ) of Theorem 2. In this paper we consider two possible
extensions, which give rise to the two different regularity lemmas below.

Definition 13 (perfectly ε-regular). Suppose ε is some positive real. Let G(k) be
a k-uniform hypergraph with vertex set V and P = P(k − 1,a) be a family of

partitions on V . We say G(k) is perfectly ε-regular w.r.t. P, if for every P̂(k−1) ∈
P̂(k−1) we have that G(k) ∩ Kk(P̂(k−1)) is ε-regular w.r.t. P̂(k−1).

The following theorem is one of the two main results in this paper.

Theorem 14 (Regular approximation lemma). Let k ≥ 2 be a fixed integer. For
all positive constants η and ν, and every function ε : Nk−1 → (0, 1] there are inte-
gers tThm.14 and nThm.14 so that the following holds.

For every k-uniform hypergraph H(k) with |V (H(k))| = n ≥ nThm.14 such that
(tThm.14)! divides n there exist a k-uniform hypergraph G(k) on the same vertex set
and a family of partitions P = P(k − 1,aP) so that

(i ) P is (η, ε(aP),aP)-equitable and tThm.14-bounded,
(ii ) G(k) is perfectly ε(aP)-regular w.r.t. P, and
(iii ) |G(k)4H(k)| ≤ νnk.

Let us briefly compare Theorem 14 for k = 2 with Theorem 2. Note that as
discussed in [19, Section 1.8] there are graphs with irregular pairs in any partition.
Therefore, due to the “perfectness” in (ii ) of Theorem 14 one has to alter H = H(2)

to obtain G = G(2).
The main difference between Theorem 14 for k = 2 and Theorem 2, however,

is in the choice of ε being a function of aP
1 . It follows from the work of Gowers

in [11] that it is not possible to regularize a graph H with an ε in such a way that,
e.g., ε < 1/aP

1 can be ensured, where aP
1 = |P(1)| is the number of vertex classes.

Properties (i ) and (iii ) of Theorem 14 assert, however, that by adding or deleting
at most νn2 edges from H one can obtain a graph G which admits an ε(aP

1 ) regular
partition, with ε(aP

1 ) < 1/aP
1 . Such a lemma for graphs can be also deduced from

the iterated regularity lemma in [1].
The other result of this paper, Theorem 17, concerns the case in which we do not

change the given hypergraph H(k). Due to the discussion above such a lemma needs
to allow exceptional pairs (or polyads for k ≥ 3) in the partition P. Moreover, the
measure of regularity of H(k) w.r.t. P (called δk here) cannot depend on aP

1 . In
fact, in our proof of Theorem 17 δk is a constant independent of each aP

1 , . . . , aP
k−1.

On the other hand, as in [5, 26] we will infer that H(k) is (δk, ∗, r)-regular (defined
below), where r may depend on aP

1 , . . . , aP
k−1. We first extend Definition 7.

Definition 15 ((δk, dk, r)-regular hypergraph). Let δk and dk be positive reals
and r be a positive integer. Suppose H(k−1) is an (m, k, k−1)-hypergraph spanning

at least one K
(k−1)
k . We say an (m, k, k)-hypergraph H(k) is (δk, dk, r)-regular w.r.t.

H(k−1) if for every collection Q(k−1) = {Q(k−1)
1 , . . . ,Q(k−1)

r } of not necessarily

disjoint sub-hypergraphs of H(k−1) which satisfy∣∣∣∣ ⋃
i∈[r]

Kk(Q(k−1)
i )

∣∣∣∣ ≥ δk

∣∣∣Kk(H(k−1))
∣∣∣ > 0 ,
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we have ∣∣H(k) ∩
⋃

i∈[r]Kk(Q(k−1)
i )

∣∣∣∣⋃
i∈[r]Kk(Q(k−1)

i )
∣∣ = dk ± δk .

We write (δk, ∗, r)-regular to mean
(
δk, d

(
H(k)

∣∣H(k−1)
)
, r
)
-regular. Moreover, if

r = 1, then a (δk, dk, 1)-regular hypergraph is (ε, dk)-regular with ε = δk (cf.
Definition 7) and vice versa.

Finally, we give the second extension of (ii ) of Theorem 2, which will be ensured
by Theorem 17.

Definition 16 ((δk, ∗, r)-regular w.r.t. P). Suppose δk is a positive real and r
is a positive integer. Let H(k) be a k-uniform hypergraph with vertex set V and
P = P(k − 1,a) be a family of partitions on V . We say H(k) is (δk, ∗, r)-regular
w.r.t. P, if∣∣∣⋃{

Kk(P̂(k−1)) : P̂(k−1) ∈ P̂(k−1)

and H(k) is not (δk, ∗, r)-regular w.r.t. P̂(k−1)
}∣∣∣ ≤ δk|V |k .

The following theorem is a strengthening of the main result of [26].

Theorem 17 (Regularity lemma). Let k ≥ 2 be a fixed integer. For all positive
constants η and δk, and all functions r : Nk−1 → N and δ : Nk−1 → (0, 1] there are
integers tThm.17 and nThm.17 so that the following holds.

For every k-uniform hypergraph H(k) with |V (H(k))| = n ≥ nThm.17 such that
(tThm.17)! divides n, there exists a family of partitions P = P(k − 1,aP) so that

(i ) P is (η, δ(aP),aP)-equitable and tThm.17-bounded and
(ii ) H(k) is (δk, ∗, r(aP))-regular w.r.t. P.

3. Auxiliary results

In this section we review a few results that are essential for our proofs of Theo-
rem 14 and Theorem 17.

The following theorem can be used to estimate the number of copies of K
(h)
`

in an appropriate collection of dense and regular blocks within a regular partition
provided by the regular approximation lemma, Theorem 14. Moreover, it can be
applied to count the number of K

(k−1)
k ’s in the polyads of the partitions obtained

by Theorem 14 and Theorem 17.

Theorem 18 (Dense counting lemma). For all integers 2 ≤ h ≤ ` and all positive
constants γ and d0 there exist εDCL = εDCL(h, `, γ, d0) > 0 and an integer mDCL =
mDCL(h, `, γ, d0) so that if d = (d2, . . . , dh) ∈ Rh−1 satisfying dj ≥ d0 for 2 ≤ j ≤ h

and m ≥ mDCL, and if H = {H(j)}h
j=1 is an (εDCL,d)-regular (m, `, h)-complex,

then ∣∣∣K`

(
H(h)

)∣∣∣ = (1± γ)
h∏

j=2

d
(`

j)
j ×m` .

This theorem was proved by Kohayakawa, Rödl, and Skokan in [17, Theorem 6.5].
For completeness we give a short proof of a generalization of Theorem 18 in the
subsequent paper [23].
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The following two facts regard regularity properties of the union of regular hy-
pergraphs. The first of those two propositions states that the union of regular
(m, j, j)-hypergraphs which share the same underlying (m, j, j − 1)-hypergraph is
regular. The proof is straightforward and we refrain from presenting it here.

Proposition 19. Let j ≥ 2, m, t, r ≥ 1 be fixed integers and let δ and d(1), . . . , d(t)
be positive reals. Suppose P(j)

1 , . . . ,P(j)
t is a family of pairwise edge disjoint (m, j, j)-

hypergraphs with the same underlying (m, j, j − 1)-hypergraph P̂(j−1).
If P(j)

τ is (δ, d(τ), r)-regular w.r.t. P̂(j−1) for every τ ∈ [t], then P(j) is (tδ, d, r)-
regular w.r.t. P̂(j−1), where P(j) =

⋃
τ∈[t] P

(j)
τ and d =

∑
τ∈[t] d(τ). �

The next proposition gives us control when we union hypergraphs having differ-
ent underlying polyads. Before we make this precise, we define the setup for our
proposition.

Setup 20. Let j ≥ 2, m, t ≥ 1 be fixed integers and let δ and d be positive reals.

Let {P̂(j−1)
τ }τ∈[t] be a family of (m, j, j − 1)-hypergraphs such that⋃

τ∈[t]

P̂(j−1)
τ is a j-partite (j − 1)-uniform hypergraph,

Kj

( ⋃
τ∈[t]

P̂(j−1)
τ

)
=
⋃

τ∈[t]

Kj

(
P̂(j−1)

τ

)
,

and Kj

(
P̂(j−1)

τ

)
∩ Kj

(
P̂(j−1)

τ ′

)
= ∅ for 1 ≤ τ < τ ′ ≤ t .

(3)

Let {P(j)
τ }τ∈[t] be a family of (m, j, j)-hypergraphs such that P̂(j−1)

τ underlies P(j)
τ

for any τ ∈ [t]. Set P̂(j−1) =
⋃

τ∈[t] P̂
(j−1)
τ and P(j) =

⋃
τ∈[t] P

(j)
τ .

Proposition 21. Let r ≥ 1 be a fixed integer and let {P(j)
τ }τ∈[t] and {P̂(j−1)

τ }τ∈[t]

satisfy Setup 20. If P(j)
τ is (δ, d, r)-regular w.r.t. P̂(j−1)

τ for every τ ∈ [t], then P(j)

is (2
√

δ, d, r)-regular w.r.t. P̂(j−1). �

For r = 1 a proof of Proposition 21 appeared in [20] and the proof presented
there works verbatim for general r ≥ 1.

The proof of the following lemma is based on Chernoff’s inequality and the fact
that randomly chosen sub-hypergraphs of a regular hypergraph are regular. Similar
statements were proved in [5, 26] and we will omit the technical details here.

Proposition 22 (Slicing lemma). Let j ≥ 2, s0, r ≥ 1 be integers and let δ0, %0,
and p0 be positive real numbers. There is an integer mSL = mSL(j, s0, r, δ0, %0, p0)
so that the following holds. If m ≥ mSL,

(i ) P̂(j−1) is a (m, j, j − 1)-hypergraph satisfying |Kj

(
P̂(j−1)

)
| ≥ mj/ lnm and

(ii ) P(j) ⊆ Kj

(
P̂(j−1)

)
is an (δ, %, r)-regular (m, j, j)-hypergraph with % ≥ %0 ≥

2δ ≥ 2δ0.
Then for any positive integer 1 ≤ s ≤ s0 and all positive reals p1, . . . , ps satisfying

(iii )
∑

σ∈[s] pσ ≤ 1 and pσ ≥ p0 for σ ∈ [s]

there exists a partition {T (j)
0 , T (j)

1 , . . . , T (j)
s } of P(j) such that T (j)

σ is (3δ, pσ%, r)-
regular w.r.t. P̂(j−1) for every σ = 1, . . . , s.

Moreover, T (j)
0 is (3δ, (1−

∑
σ∈[s] pσ)%, r)-regular w.r.t. P̂(j−1) and T (j)

0 = ∅ if∑
σ∈[s] pσ = 1. �
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4. Outline of the proofs

Roughly speaking, our proof of both theorems, Theorem 14 and Theorem 17, is
based on the following induction scheme

Theorem 17 for k =⇒ Theorem 14 for k =⇒ Theorem 17 for k + 1.
To carry out the technical details for such an induction scheme, we need to

strengthen the statements of Theorem 17 (regularity lemma) and of Theorem 14
(regularity approximation lemma) to more general, but, unfortunately, less esthet-
ically pleasing statement RL(k), Lemma 23, and RAL(k), Lemma 25.

Before we start to discuss these more general statements we will briefly outline
why they are needed. While the proof of the implication Theorem 14 for k =⇒
Theorem 17 for k + 1 could follow the lines of [5, 26] (now using Theorem 14
for k to regularize the witnesses, which provides the cleaner partition P), the need
for generalizing the statements comes from the implication Theorem 17 for k =⇒
Theorem 14 for k. In our proof of this implication we need to apply Theorem 17 for k
twice. After the first application we obtain an (η, ε(aP),aP)-equitable partition
P which is bounded. However, the hypergraph H will only be δk-regular w.r.t. P,
where δk is a constant independent of aP , and not ε(aP)-regular, as required by
part (ii ) of Theorem 14. To obtain such an ε(aP)-regular hypergraph G(k), which
will be “ν close to H(k)” (cf. (iii ) of Theorem 14) we need to apply Theorem 17
again. It will be essential for us that the partition obtained in the second application
of Theorem 17 will refine P, the partition obtained in the first application. This is
the reason why we will strengthen the statement of Theorem 17 (see Lemma 23).
This change is due to the induction scheme requiring a corresponding strengthening
of Theorem 14 (see Lemma 25).

We now state the strengthened variant of Theorem 17. It allows us to enter
the regularity lemma with an initial equitable family of partitions O and a family
of k-uniform hypergraphs H(k)

1 , . . . ,H(k)
s . It then guarantees the existence of an

equitable refinement P of O for which each H(k)
i is regular. (Since it might not be

completely obvious that Theorem 17 follows from Lemma 23 stated below, we give
the formal reduction after Remark 24.)

Lemma 23 (RL(k)). For all positive integers o and s, all positive reals η and δk,
and all functions r : Nk−1 → N and δ : Nk−1 → (0, 1] there is a positive real µRL

and positive integers tRL and nRL such that the following holds. Suppose
(a ) V is a set of cardinality n ≥ nRL and (tRL)! divides n,
(b ) O = O(k − 1,aO) is an (ηO , µRL,aO)-equitable (for some ηO > 0) and

o-bounded family of partitions on V , and
(c ) H (k) = {H(k)

1 , . . . ,H(k)
s } is a partition of [V ]k.

Then there exists a family of partitions P = P(k − 1,aP) so that
(P1 ) P is (η, δ(aP),aP)-equitable and tRL-bounded,
(P2 ) P ≺ O,

and for every i ∈ [s]

(H ) H(k)
i is (δk, ∗, r(aP))-regular w.r.t. P.

Remark 24. In the inductive proof we will apply Lemma 23 twice. In the second
application in Section 5.2 it will be convenient to use a variant of Lemma 23, where
assumptions (a ) and (b ) are replaced by



10 VOJTĚCH RÖDL AND MATHIAS SCHACHT

(a ′) V = V1 ∪ · · · ∪ Vk, |Vi| = m ≥ nRL/k and tRL! divides m,
(b ′) R = {R(j)}k−1

j=1 is a (µRL/3,d)-regular (m, k, k − 1)-complex, where the
vertex set R(1) = V1 ∪ · · · ∪ Vk and d = (1/a2, . . . , 1/ak−1), ai ∈ N and
ai ≤ o for 2 ≤ i < k.

Moreover, we weaken conclusion (P2 ) in this context, insisting only that P “re-
fines” the given complex R, more precisely
(P2 ′) P(1) ≺ R(1) = V1 ∪ · · · ∪Vk and for every 2 ≤ j < k and every P(j) ∈ P(j)

we have either P(j) ⊆ R(j) or P(j) ∩R(j) = ∅.
Note that this version of Lemma 23 is in fact a consequence of Lemma 23.

We now verify that Lemma 23 implies Theorem 17 for the same k.

Proof: RL(k) =⇒ Theorem 17 for k. Let k be a fixed integer and let constants η
and δk and functions r : Nk−1 → N and δ : Nk−1 → (0, 1] be given by Theorem 17.
We want to apply Lemma 23. For that we will define an auxiliary family of par-
titions O. In fact any sufficiently equitable partition would do. In order to avoid
trivial cases we are going to split the vertex set into k parts of the same size and any
part of the partition O(j) will be isomorphic to the complete j-partite j-uniform
hypergraph of the appropriate order for 2 ≤ j ≤ k − 1 (see (4) below). With this
in mind we apply Lemma 23 with o = k, s = 2, and the given constants η and
δk, and functions r and δ to obtain µRL, tRL and nRL. We then set tThm.17 = tRL

and nThm.17 = nRL.
Now let n ≥ nThm.17 be a multiple of tThm.17 = (tRL)! and H(k) be a hypergraph

with vertex set V , where |V | = n. Set aO
1 = k, aO

j = 1 for j = 2, . . . , k − 1,
aO = (aO

1 , . . . , aO
k−1) and let V = V1 ∪ · · · ∪VaO

1
= O(1) be some arbitrary equitable

vertex partition. Moreover, set

O(j) = {K(j)
j (Vi1 , . . . , Vij ) : 1 ≤ i1 < · · · < ij ≤ aO

1 = k} (4)

and H (k) = {H(k), [V ]k \ H(k)}. Clearly, O constructed that way is (ηO , µ,aO)-
equitable for some ηO > 0 and every µ > 0. Consequently, V , O and H (k) satisfy
the assumptions (a )–(c ) of Lemma 23 for nRL, tRL, o = aO

1 = k, s = 2 and any
µRL. Then, (P1 ) and (H ) yield conclusions (i ) and (ii ) of Theorem 17. �

Next we state a similarly strengthened version of Theorem 14.

Lemma 25 (RAL(k)). For all positive integers o and s, all positive reals η and
ν, and every function ε : Nk−1 → (0, 1] there is a positive real µRAL and positive
integers tRAL and nRAL such that the following holds. Suppose

(a ) V is a set of cardinality n ≥ nRAL and (tRAL)! divides n,
(b ) O = O(k, aO) is a (ηO , µRAL,aO)-equitable (for some ηO > 0) and o-

bounded family of partitions on V , and
(c ) H (k) = {H(k)

1 , . . . ,H(k)
s } is a partition of [V ]k so that H (k) ≺ O(k).

Then there exist a family of partitions P = P(k − 1,aP) so that
(P1 ) P is (η, ε(aP),aP)-equitable and tRAL-bounded and
(P2 ) P ≺ O(k − 1) = {O(j)}k−1

j=1 .

Furthermore, there exists a partition G (k) = {G(k)
1 , . . . ,G(k)

s } of [V ]k such that for
every i ∈ [s] the following holds

(G1 ) G(k)
i is perfectly ε(aP)-regular w.r.t. P,
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(G2 ) |G(k)
i 4H(k)

i | ≤ νnk, and
(G3 ) if H(k)

i ⊆ Crossk(O(1)) then G(k)
i ⊆ Crossk(O(1)) and G (k) ≺ O(k).

Lemma 25 yields Theorem 14 for the same k in a similar way as Lemma 23
implies Theorem 17 and we omit the details. Hence it suffices to show

RL(2) and RL(k) =⇒ RAL(k) =⇒ RL(k + 1) for k ≥ 2 ,

in order to establish Theorem 17 and Theorem 14 inductively.
We outline the basis of the induction, the proof of RL(2), in Section 4.1. The

proofs of each of the two implications establishing the induction step are the content
of Section 5 and Section 6, respectively.

4.1. Sketch of the proof of RL(2). Observe that in the statement of RL(2),
Lemma 23 for k = 2, the constant µ and the function δ have no bearing. Conse-
quently, RL(2) reduces to the following statement.

Lemma 26 (RL(2)). For all positive integers o and s, all positive reals η and δ2,
and any function r : N → N there are positive integers tRL and nRL such that the
following holds.

Suppose
(a ) V is a set of cardinality n ≥ nRL and (tRL)! divides n,
(b ) O(1) is a vertex partition V1 ∪ · · · ∪ VaO

1
of V , where |V1| = · · · = |VaO

1
| and

aO
1 ≤ o

(c ) H = {H1, . . . ,Hs} is a partition of [V ]2 the complete graph on n vertices.

Then there exists a partition P(1) = {W1, . . . ,WaP
1
} of V so that

(P1 ) |W1| = · · · = |WaP
1
|, Cross2(P(1)) ≥ (1− η)

(
n
2

)
, and aP

1 ≤ tRL,
(P2 ) for every i ∈ [aP

1 ] we have Wi ⊆ Vj for some j ∈ [aO
1 ]

and for every i ∈ [s]

(H ) Hi is (δ2, ∗, r(aP
1 ))-regular w.r.t. P(1).

The proof of RL(2) follows closely the lines of the proof of Szemerédi’s regularity
lemma [31], Theorem 2. There are three differences, however. The first and the
last of them are standard.

(1 ) Rather than one graph we have a fixed number of graphs H1, . . . ,Hs to
regularize. Such a regularity lemma was used in a number of applications
and is discussed for example in [19, Section 1.9].

(2 ) This difference which regards the concept of regularity in (H ) is perhaps
most significant. Instead of a single pair A′ ⊆ A, B′ ⊆ B, |A′||B′| ≥ ε|A||B|
that witnesses the irregularity of a bipartite graph with vertex classes A and
B, we consider here a more complicated witness; namely an r-tuple of pairs
(Ai, Bi) of sets where A1, . . . , Ar ⊆ A, B1, . . . , Br ⊆ B and |

⋃
i∈[r] Ai ×

Bi| ≤ ε|A||B| (cf. Definition 15 with k = 2 and H(1) = (A,B)).
We recall that the proof of Szemerédi’s regularity lemma [31] is based

on a procedure in which, having an initial partition P
(1)
0 , one constructs a

sequence P
(1)
0 ,P

(1)
1 , . . . of partitions. To each partition a quantity (called

index ) is associated which is known to satisfy ind(P(1)) ≤ 1 for every vertex
partition P(1). On the other hand, one proves that if P

(1)
i is irregular,
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then ind(P(1)
i+1) ≥ ind(P(1)

i ) +δ4
2/10. Consequently, one infers that after

at most 10/δ4
2 iterations one arrives to a partition which is δ2-regular.

While in [31], if P
(1)
i was partition into aPi

1 parts implied that P
(1)
i+1 is

a partition into at most 4a
Pi
1 parts, in our proof (due to the fact that the

witness has r(aPi
1 ) parts for each pair) we may have as many as 4r(a

Pi
1 )×a

Pi
1

partition classes in P
(1)
i+1. Consequently, tRL (which is an upper bound for

the number of classes in the final partition) depends not only on δ2, but
also on the function r(·). It is independent, however, of the cardinality of
the vertex set V .

(3 ) In order to avoid the exceptional class V0 we assume that the cardinality
of V is divisible by (tRL)!. This allows us to redistribute all the vertices in
Vi which would remain from subdividing the witnesses. Such a lemma was
considered, e.g., in [26].

5. Proof of: RL(k) =⇒ RAL(k)

In order to simplify the presentation we break the proof into two parts. In the
first part we deduce RAL(k) from RL(k) and the following lemma.

Lemma 27. For every positive integer s, all positive reals ν and ε, and every vector
d = (d2, . . . , dk−1) satisfying 1/di ∈ N for 2 ≤ i ≤ k − 1, there exist positive reals
δ27 and ξ27 and integers t27 and m27 such that the following holds. Suppose

(a ) m ≥ m27 and (t27)! divides m,
(b ) R = {R(j)}k−1

j=1 is a (δ27,d)-regular (m, k, k − 1)-complex,
(c ) F (k) ⊆ Kk(R(k−1)) is ξ27-regular w.r.t. R(k−1), and
(d ) {H(k)

1 , . . . ,H(k)
s } is a partition of F (k), where each H(k)

i is (ν/12, ∗, t2k

27)-
regular w.r.t. R(k−1) for every i ∈ [s].

Then there exists a partition {G(k)
1 , . . . ,G(k)

s } of F (k) so that for every i ∈ [s] the
following holds

(i ) G(k)
i is (ε, d(H(k)

i |R(k−1)))-regular w.r.t. R(k−1) and
(ii ) |G(k)

i 4H(k)
i | ≤ ν|Kk(R(k−1))|.

In Section 5.1 we derive RAL(k) from Lemma 27 and RL(k), then, in Section 5.2,
we give the proof of Lemma 27 which is based on another application of RL(k).

5.1. Lemma 27 and RL(k) imply RAL(k). The idea of this reduction is as fol-
lows. Let O(k, aO) and H (k) be given by RAL(k). We apply RL(k) to O(k −
1) = {O(j)}k−1

j=1 and H (k). The constants will be chosen in such a way that
after that application of RL(k) a “typical” polyad P̂(k−1) with its underlying
complex P = {P̂(j)}k−1

j=1 matches the assumptions of Lemma 27 for R = P ,

F (k) = O(k) ∩ Kk(P̂k−1) (where O(k) ∈ O(k)), and {H̃(k)
h = H(k)

h ∩ F (k) : H(k)
h ∈

H (k) and H(k)
h ⊆ O(k)}. Lemma 27 then yields hypergraphs G̃(k)

h satisfying (i ) and
(ii ) of Lemma 27. Repeating this for all “typical” polyads P̂(k−1) and O(k) ∈ O(k)

and taking appropriate care of the “untypical” case, then yields the promised hyper-
graphs G(k)

1 . . .G(k)
s with properties (G1 )–(G3 ) of RAL(k). We give the technical

details of this outline below.
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Proof: RL(k) ∧ Lemma 27 =⇒ RAL(k). Let positive constants oRAL, sRAL, ηRAL,
and νRAL, and a function εRAL : Nk−1 → (0, 1] be given (w.l.o.g. we may assume
that εRAL is monotone in every coordinate). We have to determine µRAL, tRAL,
and nRAL (see (11)). Our proof relies on an application of RL(k) followed by
an application of Lemma 27. In order to match the assumptions of Lemma 27
the parameters for the application of RL(k) have to match these assumptions.
Consequently, “constant-wise” we first apply Lemma 27 to foresee what is needed
for its application, which will be provided by RL(k). With this in mind we set

s27 = sRAL , ν27 = νRAL/2 . (5)

Note that for every choice of ε and d1, . . . , dk−1 (satisfying 1/di ∈ N), Lemma 27
yields constants δ27, ξ27, t27, and m27. Accordingly, we define functions δaux,
ξaux : Nk−1 → (0, 1] and taux, maux : Nk−1 → N mapping any a = (a1, . . . , ak−1) ∈
Nk−1 to the corresponding constant from Lemma 27 with ε = εRAL(a) and d2 =
1/a2, . . . , dk−1 = 1/ak−1. More precisely, we set for x ∈ {δ, ξ, t, m}
xaux(a) = xL.27

(
s = s27, ν = ν27, ε = εRAL(a), d2 = 1/a2, . . . , dk−1 = 1/ak−1

)
(6)

where xL.27(s, ν, ε, d2, . . . , dk−1) is given by Lemma 27 applied with constants s,
ν, ε, and d2, . . . , dk−1. Without loss of generality we assume that the functions
defined in (6) are monotone in every coordinate.

We now choose the parameters for the application of RL(k). For that we set

oRL = oRAL , sRL = sRAL , ηRL = ηRAL , and δk,RL = min
{

ν27

12
,

νRAL

2sRAL

}
(7)

and consider functions rRL : Nk−1 → N and δRL : Nk−1 → (0, 1] defined for every
integer vector a = (a1, . . . , ak−1) by

rRL(a) =
(
taux(a)

)2k

and (8)

δRL(a) = min
{
εRAL(a), δaux(a), εDCL

(
h = k − 1, ` = k, γ = 1

2 , d0 = min
2≤i<k

a−1
i

)}
,

(9)

where εDCL(h, `, γ, d0) is given by Theorem 18.
Having defined all input parameters of RL(k), Lemma 23, in (7), (8) and (9),

Lemma 23 now yields positive constants µRL, tRL, and nRL. We use tRL to establish
“worst case” estimates on the functions ξaux, taux, and maux and set

ξworst = ξaux(tRL, . . . , tRL) , tworst = taux(tRL, . . . , tRL) ,

and mworst = maux(tRL, . . . , tRL) (10)

Finally, we define µRAL, tRAL, and nRAL promised by RAL(k). For that we set

µRAL = min
{

µRL ,
εRAL(tRL, . . . , tRL)

2t2
k

RL

,
ξworst

2t2
k

RL

}
, tRAL = tRL + tworst , and

nRAL = max
{

nRL , tRLmworst , tRLmDCL

(
h = k − 1, ` = k, γ = 1

2 , d0 = t−1
RL

)}
.

(11)

Note that for given input parameters oRAL, sRAL, ηRAL, νRAL, and εRAL : Nk−1 →
(0, 1] of RAL(k), above in (11) we defined the corresponding output parameters.
Now we need to show, that with this choice we will be able to verify RAL(k),
Lemma 25.
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Let V , ORAL, and H (k) satisfying (a )–(c ) of RAL(k), Lemma 25 be given, i.e.,

(RAL.a ) |V | = n ≥ nRAL and (tRAL)! divides n,
(RAL.b ) ORAL =ORAL(k, aORAL) = {O(j)

RAL}k
j=1 is (ηORAL , µRAL,aORAL)-equitable

(for some ηORAL > 0) and oRAL-bounded, and
(RAL.c ) |H (k)| = sRAL and H (k) ≺ O

(k)
RAL.

Our objective is to find a family of partitions PRAL = PRAL(k − 1,aPRAL) on V

and a partition G (k) = {G(k)
1 , . . . ,G(k)

sRAL} of [V ]k so that

(RAL.P1 ) PRAL is (ηRAL, εRAL(aPRAL),aPRAL)-equitable and tRAL-bounded,
(RAL.P2 ) PRAL ≺ ORAL(k − 1) = {O(j)

RAL}
k−1
j=1 ,

(RAL.G1 ) G(k)
i is perfectly εRAL(aPRAL)-regular w.r.t. PRAL for every i ∈ [sRAL],

(RAL.G2 ) |G(k)
i 4H(k)

i | ≤ νRALnk for every i ∈ [sRAL], and
(RAL.G3 ) if H(k)

i ⊆ Crossk(O(1)
RAL) then G(k)

i ⊆ Crossk(O(1)
RAL) for every i ∈ [sRAL]

and G (k) ≺ O
(k)
RAL.

Without loss of generality we may assume that

H(k)
i 6= ∅ for every i ∈ [sRAL] . (12)

Otherwise we simply set G(k)
i = ∅ for every i ∈ [sRAL] for which H(k)

i = ∅ and
obviously (RAL.G1 )–(RAL.G3 ) holds for those G(k)

i for any family of partitions
P.

As we already mentioned we want to apply RL(k) to V , ORL = ORAL(k − 1) =
{O(j)

RAL}
k−1
j=1 , aORL = (aORAL

1 , . . . , aORAL
k−1 ), and H (k) with constants oRL, sRL, ηRL,

and δk,RL defined in (7) and functions rRL and δRL defined in (8) and (9). For that
we have to verify that

(RL.a ) |V | = n ≥ nRL and (tRL)! divides n,
(RL.b ) ORL = ORL(k − 1,aORL) = {O(j)

RL}
k−1
j=1 is (ηORL , µRL,aORL)-equitable (for

some ηORL > 0) and oRL-bounded, and
(RL.c ) |H (k)| = sRL.

We note that (RL.a ) is an easy consequence of the choice of nRAL ≥ nRL and
tRAL ≥ tRL in (11) and (RAL.a ). Similarly, (RL.b ) follows from the choice of
µRAL ≤ µRL in (11) and (RAL.b ), while (RL.c ) is a consequence of (RAL.c ) and
the choice of sRL = sRAL in (7). Having verified that (RL.a )–(RL.c ) hold, we
reason that there is a family of partitions PRL = PRL(k − 1,aPRL) on V which
satisfies properties (P1 ), (P2 ), and (H ) of Lemma 23

(RL.P1 ) PRL is (ηRL, δRL(aPRL),aPRL)-equitable and tRL-bounded,
(RL.P2 ) PRL ≺ ORL = ORAL(k − 1), and
(RL.H ) H(k)

i is (δk,RL, ∗, rRL(aPRL))-regular w.r.t. PRL for every i ∈ [sRL].

We set
PRAL = PRL and aPRAL = aPRL . (13)

It then follows from (RL.P1 ) and (RL.P2 ) and the choices of ηRL = ηRAL in (7),
δRL(aPRL) ≤ εRAL(aPRL) in (9), and tRAL ≥ tRL in (11), that

PRAL satisfies (RAL.P1 ) and (RAL.P2 ) . (14)

It is left to ensure the existence of G (k) of [V ]k which satisfies (RAL.G1 )–(RAL.G3 ).



REGULAR PARTITIONS OF HYPERGRAPHS I 15

Before we prove the existence of G (k) we make some preparations, which sim-
plify the presentation. We complete O

(k)
RAL (which partitions Crossk(O(1)

RAL)), to a
partition of [V ]k. For that we set

Õ(k) = O
(k)
RAL ∪

(
[V ]k \ Crossk(O(1)

RAL)
)
. (15)

We also define for every O(k) ∈ Õ(k)

I(O(k)) =
{
i ∈ [sRAL] : H(k)

i ⊆ O(k) and H(k)
i 6= ∅

}
. (16)

Note that due to (RAL.c ), (12), and (15) the family {I(O(k)) : O(k) ∈ Õ(k)} forms
a partition of [sRAL]. Before we continue we make the observation.

Claim 28. For every O(k) ∈ Õ(k) and P̂(k−1) ∈ P̂
(k−1)
RL the following holds. Set

F (k) = O(k) ∩ Kk(P̂(k−1)), then F (k) is (2t2
k

RLµRAL)-regular w.r.t. P̂(k−1).

Proof. The claim is trivial if F (k) = O(k) ∩Kk(P̂(k−1)) = ∅ and, hence, we assume
that

F (k) = O(k) ∩ Kk(P̂(k−1)) 6= ∅ . (17)

We distinguish two cases. From, PRL ≺ ORAL(k − 1) (cf. (RL.P2 )) we infer
that either P̂(k−1) is contained in some polyad Ô(k−1) ∈ Ô

(k−1)
RAL or Kk(P̂(k−1)) ∩

Crossk(O(1)
RAL) = ∅. If Kk(P̂(k−1)) ∩ Crossk(O(1)

RAL) = ∅, then we have O(k) =
[V ]k \ Crossk(O(1)

RAL) (using (17)) and, consequently, F (k) = Kk(P̂(k−1)). Hence,
F (k) is ξ-regular w.r.t. P̂(k−1) for every ξ > 0 which yields the claim in that case.

On the other hand, if P̂(k−1) ⊆ Ô(k−1) for some Ô(k−1) ∈ Ô
(k−1)
RAL , then we have

due to (17) and the fact that ORAL is a family of partitions (cf. Definition 10)
that O(k) ⊆ Kk(Ô(k−1)). Therefore, if follows from (RAL.b ) and the definition of
regularity (Definition 7) that

F (k) is

(
µRAL

|Kk(Ô(k−1))|
|Kk(P̂(k−1))|

)
-regular w.r.t. P̂(k−1) . (18)

Clearly, |Kk(Ô(k−1))| ≤ nk and due to the choice of δRL(aPRL) ≤ εDCL(h =
k − 1, ` = k, γ = 1/2, d0 = min2≤i<k 1/aPRL

i ) in (9), the appropriate choice of
nRAL ≥ tRL ×mDCL(h = k − 1, ` = k, γ = 1/2, d0 = t−1

RL) in (11), and (RL.P1 ), by
Theorem 18, we infer

∣∣∣Kk(P̂(k−1))
∣∣∣ ≥ 1

2

k−1∏
j=2

(
1

aPRL
j

)(k
j)
×

(
n

aPRL
1

)k

≥ nk

2t2
k

RL

.

and the claim follows. �

We now continue with the proof of the existence of the partition G (k) of [V ]k

which satisfies (RAL.G1 )–(RAL.G3 ). For that we will mainly use Lemma 27 ap-
plied to the polyads of PRL. However, we distinguish between two types of polyads
and set

P̂
(k−1)
RL,H ·reg =

{
P̂(k−1) ∈ P̂

(k−1)
RL : H(k)

i is (δk,RL, ∗, rRL(aPRL))-regular

w.r.t. P̂(k−1) for every i ∈ [sRL]
}

.
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Case 1 (P̂(k−1) ∈ P̂
(k−1)
RL,H ·reg). In this case let K ∈ Kk(P̂(k−1)) and set R =

P(K) = {P̂(j)(K)}k−1
j=1 with P̂(k−1)(K) = P̂(k−1) (see (1)). Let O(k) ∈ Õ(k) be

such that

F (k) = O(k) ∩ Kk(P̂(k−1)) 6= ∅ , (19)

and set

H̃(k)
i = H(k)

i ∩ F (k) = H(k)
i ∩ Kk(P̂(k−1)) for i ∈ I(O(k)) . (20)

We want to apply Lemma 27 with parameters s = s27, ν = ν27, ε = εRAL(aPRL),
and di = 1/aPRL

i for 2 ≤ i < k. Note that due to the definition of the functions
δaux, ξaux, taux, and maux in view of (6), Lemma 27 yields constants δ27, ξ27, t27
and m27 which satisfy

δ27 = δaux(aPRL) , ξ27 = ξaux(aPRL) ,

t27 = taux(aPRL) , and m27 = maux(aPRL) .

In order to apply Lemma 27 with the chosen parameters to m = n/aPRL
1 , R, F (k),

and {H̃(k)
i : i ∈ I(O(k))} we have to verify

(L.27.a ) n/aPRL
1 = m ≥ maux(aPRL) and (taux(aPRL))! divides m,

(L.27.b ) R = {R(j)}k−1
j=1 is a (δaux(aPRL),d)-regular (m, k, k− 1)-complex, where

d = (1/aPRL
2 , . . . , 1/aPRL

k−1 ),
(L.27.c ) F (k) ⊆ Kk(R(k−1)) is ξaux(aPRL)-regular w.r.t. R(k−1), and
(L.27.d ) the family {H̃(k)

i : i ∈ I(O(k))} partitions F (k), |I(O(k))| ≤ s27, and
each H̃(k)

i is
(
ν27/12, ∗, (taux(aPRL))2

k)
-regular w.r.t. R(k−1) for every

i ∈ I(O(k)).

The verification of (L.27.a )–(L.27.d ) is straightforward, but somewhat technical.
We give the details below.

Due to (RAL.a ), (11), (10), (RL.b ) and the monotonicity of the function maux

we have

n ≥ tRL ×mworst ≥ aPRL
1 ×maux(aPRL) .

In order to verify (L.27.a ) it is left to show that (taux(aPRL))! divides m = n/aPRL
1 .

For that we note that due to the definition of tRAL in (11) we have tRAL =
tRL + tworst, which due to (RAL.a ) yields (tRL + tworst)! divides n. Consequently,
(tRL)!(tworst)! divides n (to see this consider

(
tRL+tworst

tworst

)
). Hence, from aPRL

1 ≤ tRL

(cf. (RL.b )) it follows that n/aPRL
1 = m is divisible by (tworst)!. It now follows that

(taux(aPRL))! divides m since tworst ≥ taux(aPRL) due to the monotonicity of the
function taux.

Part (L.27.b ) follows easily from (RL.b ) and the choice of the function δRL in (9)
ensuring that δRL(aPRL) ≤ δaux(aPRL).

Next we verify (L.27.c ). It follows from the definition of F (k) that R(k−1) =
P̂(k−1) underlies F (k). The second assertion of (L.27.c ) follows from 2t2

k

RLµRAL ≤
ξworst ≤ ξaux(aPRL) (cf. (11) and (10)) and Claim 28.

Finally, it is left to verify (L.27.d ). It follows from the definitions in (16) and (20)
and the fact that H (k) is a partition of [V ]k (cf. (RAL.d )), that {H̃(k)

i : i ∈ I(O(k))}
partitions F (k). Clearly, |I(O(k))| ≤ s27. Moreover, from the assumption of this
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case (R(k−1) = P̂(k−1) ∈ P̂
(k−1)
RL,H ·reg) we know that H̃(k)

i is (δk,RL, ∗, rRL(aPRL))-
regular w.r.t. R(k−1) = P̂(k−1) for every i ∈ I(O(k)). Therefore, (L.27.d ) follows
from the choice of δk,RL ≤ ν27/12 in (7) and rRL(aPRL) = (taux(aPRL))2

k

in (8).
Having verified (L.27.a )–(L.27.d ), we are now able to apply Lemma 27 and infer

the existence of a partition {G̃(k)
i : i ∈ I(O(k))} of F (k) so that for every i ∈ I(O(k))

(L.27.i ) G̃(k)
i is εRAL(aPRL)-regular w.r.t. P̂(k−1) = R(k−1), and

(L.27.ii ) |G̃(k)
i 4H̃(k)

i | ≤ ν27|Kk(P̂(k−1))|.
For i ∈ I(O(k)) each G̃(k)

i given above defines G(k)
i restricted to the polyad P̂(k−1).

Formally we set
G(k)

i (P̂(k−1)) = G̃(k)
i for i ∈ I(O(k)) , (21)

and repeat the procedure for every O(k) ∈ Õ(k) satisfying (19). ♦

Case 2 (P̂(k−1) 6∈ P̂
(k−1)
RL,H ·reg). Again, let K ∈ Kk(P̂(k−1)) and set P = P(K) =

{P̂(j)(K)}k−1
j=1 with P̂(k−1)(K) = P̂(k−1) (see (1)). Let O(k) ∈ Õ(k) be such that

F (k) = O(k) ∩ Kk(P̂(k−1)) 6= ∅ . (22)

In this case fix some index i0 ∈ I(O(k)). We then define for i ∈ I(O(k))

G(k)
i (P̂(k−1)) =

{
F (k) for i = i0 ,

∅ for i 6= i0 ∈ I(O(k)) .
(23)

For later reference we note that for every i ∈ I(O(k))

G(k)
i (P̂(k−1)) ⊆ O(k) (24)

and
G(k)

i (P̂(k−1)) is εRAL(aPRL)-regular w.r.t. P̂(k−1) . (25)

Indeed, (24) is trivial for every i ∈ I(O(k)) and (25) is trivial for i 6= i0. In
the case i = i0 we have G(k)

i (P̂(k−1)) = F (k) = O(k) ∩ Kk(P̂(k−1)) and (25)
follows from Claim 28 and the choice of µRAL in (11) ensuring 2t2

k

RL × µRAL ≤
εRAL(tRL, . . . , tRL) ≤ εRAL(aPRL).

Again we repeat this procedure for every O(k) ∈ Õ(k) satisfying (22). ♦

We note that due to the both cases above the following statement holds:

(∗) For every P̂(k−1) ∈ P̂
(k−1)
RL and every O(k) ∈ Õ(k) with O(k)∩Kk(P̂(k−1)) 6=

∅ we have {G(k)
i (P̂(k−1)) : i ∈ I(O(k))} is a partition of O(k) ∩Kk(P̂(k−1)).

Now we define the partition G (k) and verify (RAL.G1 )–(RAL.G3 ). For that we
set for i ∈ [sRAL]

G(k)
i =

⋃{
G(k)

i (P̂(k−1)) : P̂(k−1) ∈ P̂
(k−1)
RL

}
. (26)

Since Õ(k) is a partition of [V ]k we infer from (∗) that G (k) = {G(k)
1 , . . . ,G(k)

sRAL}
forms a partition of [V ]k.

Next we verify (RAL.G1 ). From (L.27.i ) (combined with (21)) and (25) we
conclude that for all i ∈ [sRAL] and all P̂(k−1) ∈ P̂

(k−1)
RL the defined G(k)

i is
εRAL(aPRL)-regular w.r.t. P̂(k−1). Consequently, the definition of PRAL = PRL

and aPRAL = aPRL in (13) yields (RAL.G1 ).
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In order to show (RAL.G2 ), let i ∈ [sRAL] be fixed. It follows from (L.27.ii )
that∑{∣∣(G(k)

i 4H(k)
i

)
∩ Kk(P̂(k−1))

∣∣ : P̂(k−1) ∈ P̂
(k−1)
RL,H ·reg

} (5)

≤ 1
2
νRALnk (27)

Moreover, from (RL.H ) and Definition 15 we infer∑{∣∣(G(k)
i 4H(k)

i

)
∩ Kk(P̂(k−1))

∣∣ : P̂(k−1) 6∈ P̂
(k−1)
RL,H ·reg

}
≤
∑{

|Kk(P̂(k−1))| : P̂(k−1) 6∈ P̂
(k−1)
RL,H ·reg

}
≤ sRLδk,RLnk

(7)

≤ 1
2
νRALnk (28)

In view of (13) the inequalities (27) and (28) then yield (RAL.G2 ).
Finally, we consider (RAL.G3 ). For that for each O(k) ∈ Õ(k) we set

J(O(k)) = {i ∈ [sRAL] : G(k)
i ∩ O(k) 6= ∅} .

Since (12) and G (k) is a partition of [V ]k, the two assertions in (RAL.G3 ) are
implied by the following two statements which we verify below

J
(
[V ]k \ Crossk(O(1)

RAL)
)
⊆ I
(
[V ]k \ Crossk(O(1)

RAL)
)
, and (29)

J(O(k)
1 ) ∩ J(O(k)

2 ) = ∅ for all O(k)
1 6= O(k)

2 ∈ Õ(k) . (30)

From (∗) we infer for every P̂(k−1) ∈ P̂
(k−1)
RL that if G(k)

i (P̂(k−1)) ∩ O(k) 6= ∅ then
G(k)

i (P̂(k−1)) ⊆ O(k). Consequently, (∗) yields

J(O(k)) ⊆ I(O(k)) (31)

for every O(k) ∈ Õ(k), which gives (29).
Moreover, since H (k) ≺ O(k) and, therefore, H (k) ≺ Õ(k) (see (15), we have

I(O(k)
1 ) ∩ I(O(k)

2 ) = ∅ for all distinct O(k)
1 and O(k)

2 from Õ(k). Hence, (30) holds
as well, and consequently (RAL.G3 ) follows.

From the discussion above and (14) we infer that PRAL defined in (13) and
G (k) defined in (26) satisfy the conclusions of RAL(k), Lemma 25, i.e., (RAL.P1 )–
(RAL.G3 ). �

5.2. RL(k) implies Lemma 27. The proof of Lemma 27 is the heart of the im-
plication RL(k) =⇒ RAL(k) and its idea resembles the main idea from the work of
B. Nagle and the authors in [20]. Before we give with the detailed proof below, we
briefly discuss the main idea.

Recall that in Lemma 27 a (δ27,d)-regular (m, k, k−1)-complex R = {R(j)}k−1
j=1

and a ξ-regular k-uniform hypergraph F (k) ⊆ Kk(R(k−1)) are given. Moreover,
we are given a partition H (k) = {H(k)

i : i ∈ [s27]} of F (k), where every H(k)
i is

(ν, ∗, t2k

27)-regular w.r.t. R(k−1). We will apply RL(k) to regularize every H(k)
i ∈

H (k) with some appropriately chosen δk less than the given ε. For this regular-
ization we apply the variant of RL(k) discussed in Remark 24, which allows us to
find a tRL-bounded family of partitions PRL = PRL(k − 1,aPRL) = {P(j)

RL}
k−1
j=1

such that for each j = 1, . . . , k − 1 and each P(j) ∈ P
(j)
RL either P(j) ⊆ R(j) or

P(j)∩R(j) = ∅. Since each H(k)
i ⊆ F (k) ⊆ Kk(R(k−1)), we will focus on the “inter-

esting” part of the partition PRL and consider only those polyads P̂(k−1) ∈ P̂
(k−1)
RL
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which are subsets of R(k−1). For that we set

P̂
(k−1)
RL (R) =

{
P̂(k−1) ∈ P̂

(k−1)
RL : P̂(k−1) ⊆ R(k−1)

}
.

From RL(k) we infer that for every “typical” P̂(k−1) ∈ P̂
(k−1)
RL (R)

(i ) H(k)
i is (δk, d(H(k)

i |P̂(k−1)), 1)-regular w.r.t. P̂(k−1) for every i ∈ [s27].

Moreover, we will prove (cf. Claim 30) that for every i ∈ [s27] the typical density
d(H(k)

i |P̂(k−1)) will be “near” to the density of H(k)
i in R(k−1), i.e.,

(ii ) |d(H(k)
i |P̂(k−1))− d(H(k)

i |R(k−1))| ≤ ν/6 for “most” P̂(k−1) ∈ P̂
(k−1)
RL (R).

Property (ii ) is the key observation in the proof of Lemma 27. Its proof is based on
our choice of t27 ≥ tRL and t2

k

RL ≥ |P̂(k−1)
RL (R)|. The proof of (ii ) then is simple.

Assuming that there is a constant fraction of polyads in P̂
(k−1)
RL (R) which violate

(ii ) gives rise to a witness that is (ν/12, ∗, t2k

27)-irregular w.r.t. R(k−1). (The choice
of t27 ≥ tRL allows us to “look” into a constant fraction of polyads in P̂

(k−1)
RL (R).)

Combining, (i ) and (ii ) with an appropriate use of the slicing lemma, Propo-
sition 22, allows us to prove that for a typical P̂(k−1) ∈ P̂

(k−1)
RL (R), H(k)

i needs
to be altered only slightly (in less than ν/6 proportion of the number of cliques
in P̂(k−1)) to become (ε2/4, d(H(k)

i |R(k−1)))-regular w.r.t. P̂(k−1). In other words,
the resulting graph, which we will denote by G(k)

i (P̂(k−1)), maintains large degree
of regularity (we will choose δk � ε), while its density will be ∼ d(H(k)

i |R(k−1)).
On the other hand in the rare case of an atypical polyad P̂(k−1) for which (i ) or

(ii ) does not hold for H(k)
i we use slicing lemma to replace H(k)

i by a randomly cho-
sen (and therefore extremely regular) G(k)

i (P̂(k−1)), with d(G(k)
i (P̂(k−1))|P̂(k−1)) ∼

d(H(k)
i |R(k−1)).

For each i ∈ [s27] we then set G(k)
i =

⋃
G(k)

i (P̂(k−1)) where the union is taken
over all (typical and atypical) P̂(k−1) ∈ P̂

(k−1)
RL (R). Since, G(k)

i obtained that way
is (ε2/4, d(H(k)

i |R(k−1))-regular for every P̂(k−1) ∈ P̂
(k−1)
RL (R), Proposition 19 then

yields that G(k)
i is (ε, d(H(k)

i |R(k−1))-regular w.r.t. R(k−1). Moreover, since in the
typical case we changed H(k)

i ∩Kk(P̂(k−1)) only “slightly” to become G(k)
i (P̂(k−1))

and since the atypical case, in which more drastic changes are needed, happens
rarely, we will be able to prove that |G(k)

i 4H(k)
i | ≤ νnk.

We now give the technical details of the proof of Lemma 27, sketched above.

Proof: RL(k) =⇒ Lemma 27. Let positive reals s27, ν27, and ε27 and a vector d27 =
(d2, . . . , dk−1) satisfying 1/di ∈ N for 2 ≤ i < k be given. Lemma 27 is trivial for
ν27 > 1. Moreover, without loss of generality we may assume that

ε27 < ν27 ≤ 1 . (32)
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We will apply RL(k). For that we set1

oRL = max
2≤i<k

1/di , sRL = s27 + 1 , ηRL = 10−2 , (33)

and δk,RL = min

ν27

∏k−1
h=2 d

(k
h)

h

6× s27 × kk
,

ε2
27

384s27
,
ν27

18

 (34)

and consider functions rRL : Nk−1 → N, and δRL : Nk−1 → (0, 1] defined for every
a = (a1, . . . , ak−1) ∈ Nk−1 by

rRL(a) = 1 and δRL(a) = εDCL

(
h = k − 1, ` = k, γ = ν27

48 , d0 = min
2≤i<k

a−1
i

)
,

(35)
where εDCL(h, `, γ, d0) is given by Theorem 18.

Having defined all input parameters of RL(k), Lemma 23, in (33), (34), and (35),
Lemma 23 now yields positive constants µRL, tRL, and nRL. We define δ27, ξ27, t27,
and m27 promised by Lemma 27. For that we set t27 = tRL,

δ27 = min
{

µRL
3 , εDCL

(
h = k − 1, ` = k, γ = 1

2 , d0 = min
2≤i<k

di

)}
, ξ27 =

ε2
27

192t2
k

RL

,

(36)
and let m27 be sufficiently large.

Having defined all the parameters of Lemma 27, now let m, R, F (k), and H (k)

satisfying (a )–(d ) of Lemma 27 for these parameters be given, i.e.,
(L.27.a ) m ≥ m27 and (t27)! divides m,
(L.27.b ) R = {R(j)}k−1

j=1 is a (δ27,d27)-regular (m, k, k − 1)-complex with vertex
set V = V1 ∪ · · · ∪ Vk,

(L.27.c ) F (k) ⊆ Kk(R(k−1)) is ξ27-regular w.r.t. R(k−1), and
(L.27.d ) the family H (k) = {H(k)

1 , . . . ,H(k)
s27} is a partition of F (k) and every H(k)

i

is
(
ν27/12, ∗, t2k

27

)
-regular w.r.t. R(k−1) for i ∈ [s27].

We have to ensure the existence of a partition G (k) = {G(k)
1 , . . . ,G(k)

s27} of F (k) so
that for every i ∈ [s27]

(L.27.i ) G(k)
i is ε27-regular w.r.t. R(k−1), and

(L.27.ii ) |G(k)
i 4H(k)

i | ≤ ν27|Kk(R(k−1))|.
Before we start we note for later use that due to (L.27.b ) and the choice of δ27 ≤
εDCL(h = k − 1, ` = k, γ = 1/2, d0 = min2≤i<k di) in (36) we infer for sufficiently
large m by DCL, Theorem 18, that∣∣Kk(R(k−1))

∣∣ = (1± 1
2

) k−1∏
h=2

d
(k

h)
h ×mk . (37)

Our proof is based on the variant of RL(k), Lemma 23, discussed in Remark 24.
More precisely we want to apply this variant of Lemma 23 with the constants and
functions chosen in (33), (34), and (35) to V , R, and H(k)

0 ∪{H(k)
1 , . . . ,H(k)

s27}, where

H(k)
0 = [V ]k \ F (k) = [V ]k

∖ ⋃
i∈[s27]

H(k)
i . (38)

1Since we later are only interested in partition classes P(j), which are sub-hypergraphs of the
given R(j) (see, e.g., (40)), the constant ηRL is unessential for our proof and any positive constant
value would do.
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We artificially add H(k)
0 only to obtain a partition of [V ]k, to formally match the

assumption (c ) of RL(k) (see (RL.c ) below). We have to verify the following
assumptions of Lemma 23 (see also Remark 24).
(RL.a ′) |V | = km ≥ nRL, V = V1 ∪ · · · ∪ Vk with Vi = m and tRL! divides m,
(RL.b ′) R = {R(j)}k−1

j=1 is a (µRL/3,d27)-regular (m, k, k − 1)-complex, where
d27 = (d2, . . . , dk−1), 1/di ∈ N and 1/di ≤ oRL for 2 ≤ i < k, and
R(1) = V1 ∪ · · · ∪ Vk, and

(RL.c ) {H(k)
0 ,H(k)

1 , . . . ,H(k)
s27} is a partition of [V ]k into sRL parts.

Note that (RL.a ′) follows from (L.27.a ) and the choice of t27 in (36) for sufficiently
large m. Moreover, (RL.b ′) is a consequence of the assumption on d27, and (L.27.b )
combined with the choice of δ27 in (36) and oRL in (33). Similarly, (RL.c ) follows
from (L.27.d ) in conjunction with (38) and the choice of sRL in (33).

Having verified that (RL.a ′), (RL.b ′), and (RL.c ) hold, Lemma 23 then ensures
the existence of a family of partitions PRL = PRL(k−1,aPRL) on V which satisfies
the following properties:
(RL.P1 ) PRL is (ηRL, δRL(aPRL),aPRL)-equitable and tRL-bounded,
(RL.P2 ′) P(1) ≺ R(1) = V1 ∪ · · · ∪ Vk and for every 2 ≤ j < k and every P(j) ∈

P(j) we have either P(j) ⊆ R(j) or P(j) ∩R(j) = ∅, and
(RL.H ) H(k)

i is (δk,RL, ∗, rRL(aPRL))-regular w.r.t. PRL for every i ∈ [sRL].
Before we continue with the proof we make a few observations and develop some
notation. To an arbitrary polyad P̂(k−1) ∈ P̂

(k−1)
RL consider its corresponding

(m/aPRL
1 , k, k − 1)-complex P = {P̂(j)}k−1

j=1 . (More precisely, recalling (1), P =
P(K) = {P̂(j)(K)}k−1

j=1 for any K ∈ Kk(P̂(k−1))). Due to (RL.P1 ) and part (c ) of
Definition 12, P is an (δRL(aPRL), (1/aPRL

2 , . . . , 1/aPRL
k−1 )-regular (m/aPRL

1 , k, k −
1)-complex. From the choice of the function δRL in (35)we infer for sufficiently
large m by Theorem 18 that

∣∣Kk(P̂(k−1))
∣∣ = (1± ν27

48

) k−1∏
h=2

(
1

aPRL
h

)(k
h)
×

(
m

aPRL
1

)k

, (39)

holds for every P̂(k−1) ∈ P̂
(k−1)
RL .

Since each H(k)
i ⊆ F (k) ⊆ Kk(R(k−1)) for the rest of the proof we will focus to

the “interesting” part of the partition PRL and consider only those polyads which
are sub-hypergraphs of R(k−1). To this end we set

P̂
(k−1)
RL (R) =

{
P̂(k−1) ∈ P̂

(k−1)
RL : P̂(k−1) ⊆ R(k−1)

}
. (40)

Note that due to (RL.P2 ′) and the properties of PRL we have that{
Kk(P̂(k−1)) : P̂(k−1) ∈ P̂

(k−1)
RL (R)

}
partitions Kk(R(k−1)) . (41)

To simplify the notation we set

dH ,R(i) = d(H(k)
i |R(k−1)) .

The following claim, ensures the existence of a partition {G(k)
i (P̂(k−1)) : i ∈ [s27]}

of F (k) ∩ Kk(P̂(k−1)) for every polyad P̂(k−1) in P̂
(k−1)
RL (R) with the property

that G(k)
i (P̂(k−1)) is (ε2

27/4, dH ,R(i))-regular w.r.t. P̂(k−1) for each i ∈ [s27]. This
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property will enable us to use Proposition 21 to infer property (L.27.i ) for G(k)
i

defined in the obvious way.
In order to verify (L.27.ii ) we will need some additional information concerning

the {G(k)
i (P̂(k−1)) : i ∈ [s27]}. Here our analysis splits into two cases and we define2

P̂(k−1)
RL,H ·reg(R) =

n
P̂(k−1)∈P̂(k−1)

RL (R) : H(k)
i is (δk,RL, ∗, rRL(aPRL))-regular

w.r.t. P̂(k−1) for every i ∈ [s27]
o

. (42)

Below we present two claims, based on which we will ensure the existence of
{G(k)

i : i ∈ [s27]} with the desired properties (L.27.i ) and (L.27.ii ). We then give
the proofs of the claims.

Claim 29. For any P̂(k−1) ∈ P̂
(k−1)
RL (R) there exist a partition {G(k)

i (P̂(k−1)) : i ∈
[s27]} of F (k) ∩ Kk(P̂(k−1)) such that for every i ∈ [s27]

G(k)
i (P̂(k−1)) is (ε2

27/4, dH ,R(i))-regular w.r.t. P̂(k−1) . (43)

Moreover, if P̂(k−1) ∈ P̂
(k−1)
RL,H ·reg(R), then the partition {G(k)

i : i ∈ [s27]} has the
additional property that for every i ∈ [s27]∣∣∣G(k)

i (P̂(k−1))4
(
H(k)

i ∩ Kk(P̂(k−1))
)∣∣∣

≤
(∣∣dH ,R(i)− d(H(k)

i |P̂(k−1))
∣∣+ ν27

6

)∣∣Kk(P̂(k−1))
∣∣ (44)

In order to verify (L.27.ii ) we need further control over the quantity considered
in (44). The following claim ensures that “typically” |dH ,R(i)− d(H(k)

i |P̂(k−1))| ≤
ν27
6 . For that we define for every i ∈ [s27]

P̂
(k−1)
RL,BAD(R,H(k)

i )

=
{
P̂(k−1) ∈ P̂

(k−1)
RL (R) :

∣∣dH ,R(i)− d(H(k)
i |P̂(k−1))

∣∣ > ν27
6

}
. (45)

Claim 30. For every i ∈ [s27]∣∣∣⋃{
Kk(P̂(k−1)) : P̂(k−1) ∈ P̂

(k−1)
RL,BAD(R,H(k)

i )
}∣∣∣ ≤ ν27

3

∣∣Kk(R(k−1))
∣∣ . (46)

We now finish the proof of Lemma 27 based on Claim 29 and Claim 30. We use
Claim 29 and set G(k)

i for every i ∈ [s27] equal to

G(k)
i =

⋃{
G(k)

i (P̂(k−1)) : P̂(k−1) ∈ P̂
(k−1)
RL (R)

}
. (47)

From F (k) ⊆ Kk(R(k−1)) (cf. (L.27.c )) combined with (41) and Claim 29 we infer
that G (k) = {G(k)

i : i ∈ [s27]} defined in (47) is a partition of F (k).
Now, we have to verify (L.27.i ) and (L.27.ii ) for every fixed i ∈ [s27] and this

choice of G (k). So let i ∈ [s27] be fixed.
We start with property (L.27.i ). Due to (41) the two families P̂

(k−1)
RL (R)

and {G(k)
i (P̂(k−1)) : P̂(k−1) ∈ P̂

(k−1)
RL (R)} satisfy Setup 20 for j = k, and t =

2Note that we exclude the artificially added hypergraph H(k)
0 in the definition of

P̂
(k−1)
RL,H ·reg(R).
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|P̂(k−1)
RL (R)|. Consequently, in view of (43) we can apply Proposition 21 with

r = 1, δ = ε2
27/4, and d = dH ,R(i), to infer

G(k)
i is

(
ε27, dH ,R(i)

)
-regular w.r.t.

⋃{
P̂(k−1) : P̂(k−1) ∈ P̂

(k−1)
RL (R)

}
= R(k−1),

and, therefore, (L.27.i ) holds.
We now focus on (L.27.ii ) for a fixed i ∈ [s27]. We will estimate |G(k)

i 4H(k)
i | as

the sum of the symmetric difference taken over all polyads P̂(k−1) ∈ P̂
(k−1)
RL (R). In

this sum we distinguish among polyads in which some H(k) ∈ H (k) is “irregular”,
in which H(k)

i has “bad” (atypical) density and the remaining “typical” polyads in
which H(k)

i has the correct density and every H(k) ∈ H (k) is regular. With this in
mind we set

Dirreg(i) =
∑{∣∣∣G(k)

i (P̂(k−1))4
(
H(k)

i ∩ Kk(P̂(k−1))
)∣∣∣ :

P̂(k−1) ∈ P̂
(k−1)
RL (R) \ P̂

(k−1)
RL,H ·reg(R)

}
Dtyp(i) =

∑{∣∣∣G(k)
i (P̂(k−1))4

(
H(k)

i ∩ Kk(P̂(k−1))
)∣∣∣ :

P̂(k−1) ∈ P̂
(k−1)
RL,H ·reg(R) \ P̂

(k−1)
RL,BAD(R,H(k)

i )
}

Dbad(i) =
∑{∣∣∣G(k)

i (P̂(k−1))4
(
H(k)

i ∩ Kk(P̂(k−1))
)∣∣∣ :

P̂(k−1) ∈ P̂
(k−1)
RL,BAD(R,H(k)

i )
}

and note that
|G(k)

i 4H(k)
i

∣∣ ≤ Dirreg(i) + Dtyp(i) + Dbad(i) . (48)

In the following we bound each of the terms of (48) separately. We start with
Dirreg(i). Due to (RL.H ) and the definition of P̂

(k−1)
RL,H ·reg(R) in (42) we have∑{∣∣∣Kk(P̂(k−1))

∣∣∣ : P̂(k−1) ∈ P̂
(k−1)
RL (R) \ P̂

(k−1)
RL,H ·reg(R)

}
≤ s27 × δk,RLkkmk .

Clearly, the left-hand side of the last inequality is an upper bound on Dirreg(i) and
we infer

Dirreg(i) ≤ s27δk,RLkkmk
(34)

≤ ν27

6

k−1∏
h=2

d
(k

h)
h ×mk

(37)

≤ ν27

3

∣∣Kk(R(k−1))
∣∣ . (49)

We consider Dtyp(i). Since in view of (45) for each P̂(k−1) 6∈ P̂
(k−1)
RL,BAD(R,H(k)

i )

we have |dH ,R(i) − d(H(k)
i |P̂(k−1))| ≤ ν27/6, we infer from (44) that for every

P̂(k−1) ∈ P̂
(k−1)
RL,H ·reg \ P̂

(k−1)
RL,BAD(R,H(k)

i )∣∣∣G(k)
i (P̂(k−1))4

(
H(k)

i ∩ Kk(P̂(k−1))
)∣∣∣ ≤ ν27

3

∣∣Kk(R(k−1))
∣∣ .

Consequently, directly from the definition of Dtyp(i), we infer

Dtyp(i) ≤ ν27

3

∑{∣∣∣Kk(P̂(k−1))
∣∣∣ : P̂(k−1) ∈ P̂

(k−1)
RL,H ·reg(R) \ P̂

(k−1)
RL,BAD(R,H(k)

i )
}

≤ ν27

3

∣∣Kk(R(k−1))
∣∣ . (50)
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Finally, we derive a bound for Dbad(i) directly from the definition of Dbad(i)
and (46)

Dbad(i) ≤ ν27

3

∣∣Kk(R(k−1))
∣∣ . (51)

We now conclude (L.27.ii ) from (49), (50), and (51), applied to (48). In order
to complete the proof of Lemma 27 we still have to verify Claim 29 and Claim 30,
which we will do below. �

Proof of Claim 29. Let P̂(k−1) ∈ P̂
(k−1)
RL (R) be fixed. First we recall (39). Below

we will apply the slicing lemma, Proposition 22 to sub-hypergraphs of P̂(k−1). For
that, among others, we have to verify the assumption (i ) of Proposition 22, i.e.,∣∣Kk(P̂(k−1))

∣∣ ≥ mk/ lnm . (52)

This, however, follows from (39) for sufficiently large m. Therefore, we don’t have
to verify this condition in future applications of the slicing lemma. We begin with
the following consequence of the choice of ξ27 ≤ ε2

27/(192t2
k

RL) in (36)

F (k) ∩ Kk(P̂(k−1)) is
(
ε2
27/96, d(F (k)|R(k−1))

)
-regular w.r.t. P̂(k−1) . (53)

The proof of Claim 29 splits into two main cases.

Case 1 (d(F (k)|R(k−1)) > ε2
27/16). In this case we will treat “thin” hypergraphs

H(k)
i w.r.t. R(k−1) somewhat differently. To this end we set

RTHIN =
{

i ∈ [s27] : dH ,R(i) <
ε2
27

192s27

}
. (54)

Due to the definition of RTHIN and the assumption of Case 1 we have

[s27] \RTHIN 6= ∅ . (55)

We distinguish two sub-cases of Case 1 depending on P̂(k−1) ∈ P̂
(k−1)
RL,H ·reg(R).

Case 1.1 (P̂(k−1) 6∈ P̂
(k−1)
RL,H ·reg(R)). In this particular case it suffices to prove

the existence of a partition {G(k)
i (P̂(k−1)) : i ∈ [s27]} of F (k) ∩ Kk(P̂(k−1)) which

satisfies (43) only. For this we will simply use the slicing lemma, Proposition 22, to
decompose F (k) ∩ Kk(P̂(k−1)) into hypergraphs with the appropriate densities (as
required for (43)). More precisely, we apply Proposition 22, with

j = k , s0 = s27 , r = 1 , δ0 =
ε2
27

96
, %0 =

ε2
27

16
, and p0 =

ε2
27

192s27
,

to P̂(k−1) , and F (k) ∩ Kk(P̂(k−1)) with s =
∣∣[s27] \RTHIN

∣∣ ,
δ =

ε2
27

96
, % = d(F (k)|R(k−1)) , and

{
pi =

dH ,R(i)
d(F (k)|R(k−1))

: i ∈ [s27] \RTHIN

}
.

The conditions of Proposition 22 are immediate consequences of (52)–(54), and the
assumption of Case 1.1 Proposition 22 yields a family T (k)

0 ∪ {T (k)
i : i ∈ [s27] \
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RTHIN} satisfying the following properties

T (k)
0 ∪ {T (k)

i : i ∈ [s27] \RTHIN} partitions F (k) ∩ Kk(P̂(k−1)) , (56)

T (k)
i is (ε2

27/32, dH ,R(i))-regular w.r.t P̂(k−1) for i ∈ [s27] \RTHIN (57)

T (k)
0 is (ε2

27/32, dT (k)
0

)-regular w.r.t. P̂(k−1) ,where (58)

dT (k)
0

= d(F (k)|R(k−1))−
∑{

dH ,R(i) : i ∈ [s27] \RTHIN

} (54)

≤ ε2
27

192
. (59)

Fix some i0 ∈ [s27] \ RTHIN (due to (55) such an i0 exists). We then define the
family G(k)

i (P̂(k−1)) for i ∈ [s27] as follows

G(k)
i (P̂(k−1)) =


∅ if i ∈ RTHIN

T (k)
i ∪ T (k)

0 if i = i0

T (k)
i otherwise.

From (56) we infer that {G(k)
i (P̂(k−1)) ∈ [s27]} defined that way forms a partition

of F (k) ∩ Kk(P̂(k−1)) and it is left to verify (43) for every i ∈ [s27].
First, let i ∈ RTHIN. From the definition of G(k)

i (P̂(k−1)) = ∅ we infer that
G(k)

i (P̂(k−1)) is (ε′, 0)-regular w.r.t. P̂(k−1) for all ε′ > 0. Since i ∈ RTHIN,
dH ,R(i) < ε2

27/4, and, consequently, the (ε′, 0)-regularity for every ε′ > 0 implies
that G(k)

i (P̂(k−1)) is (ε2
27/4, dH ,R(i))-regular (i.e., (43) for i ∈ RTHIN).

If i ∈ [s27] \RTHIN and i 6= i0, then (57) and the definition G(k)
i (P̂(k−1)) = T (k)

i

immediately implies (43).
It is left to verify (43) for i = i0. In that case Proposition 19 applied to

T (k)
i0

and T (k)
0 implies by (57) and (58) that G(k)

i0
(P̂(k−1)) is (ε2

27/16)-regular w.r.t.
P̂(k−1), with density between dH ,R(i0) and dH ,R(i0) + ε2

27/192 (cf. (59)). Conse-
quently, G(k)

i0
(P̂(k−1)) is ((ε2

27/16+ε2
27/192), dH ,R(i0))-regular w.r.t. P̂(k−1), which

yields (43).
Having verified (43) for every i ∈ [s27], we conclude Case 1.1. ♦

Case 1.2 (P̂(k−1) ∈ P̂
(k−1)
RL,H ·reg(R)). In this case we have to guarantee the ex-

istence of a partition of F (k) ∩ Kk(P̂(k−1)) which satisfies both (43) and (44) of
Claim 29. Due to (44) we have to be more careful in defining the desired parti-
tion. On the other hand, the assumption in this case says that H(k)

i is δk,RL-regular
w.r.t. P̂(k−1) for every i ∈ [s27]. This allows us to apply the slicing lemma, to any
H(k)

i ∩ Kk(P̂(k−1)).
Below we give a short outline how we use this additional assumption. To simplify

the notation we set for every i ∈ [s27]

dH ,P̂(i) = d(H(k)
i |P̂(k−1)) .

We first consider the hypergraphs H(k)
i which are too “fat” in P̂(k−1), i.e., we

consider

IFAT(P̂) =
{

i ∈ [s27] \RTHIN : dH ,P̂(i) > dH ,R(i) +
ε2
27

192s27

}
. (60)

We apply the slicing lemma to split each H(k)
i ∩ Kk(P̂(k−1)) for i ∈ IFAT(P̂) into

a “main” part M(k)
i of density dH ,R(i) and a “leftover” L(k)

i . The M(k)
i will be
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used to define G(k)
i (P̂(k−1)). Furthermore, since each L(k)

i is regular, and since each
H(k)

i ∩Kk(P̂(k−1)) for i ∈ RTHIN is regular, as well, (by the assumption of the case),
we will infer that their union U (k) =

⋃
i∈IFAT(P̂) L

(k)
i ∪

⋃
i∈RTHIN

(H(k)
i ∩Kk(P̂(k−1))

is regular with density “very close” to

∆SLIM(P̂) =
∑{

dH ,R(i)− dH ,P̂(i) : i ∈ ISLIM(P̂)
}

, (61)

where

ISLIM(P̂) =
{

i ∈ [s27] \RTHIN : dH ,P̂(i) < dH ,R(i)− ε2
27

192s27

}
. (62)

We then apply the slicing lemma again, this time to U (k), to split it into regular
pieces of densities {dH ,R(i) − dH ,P̂(i) : i ∈ ISLIM(P̂)}. For i ∈ ISLIM(P̂) uniting

H(k)
i ∩Kk(P̂(k−1)) with the appropriate slice from U (k) then gives rise to the desired

partition. We now implement the technical details of this plan.
Let IFAT(P̂) and ISLIM(P̂) be defined as in (60) and (62). We set

IOK(P̂) =
{

i ∈ [s27] \RTHIN : dH ,P̂(i) = dH ,R(i)± ε2
27

192s27

}
(63)

and note that [s27] is the disjoint union of IFAT(P̂), IOK(P̂), ISLIM(P̂), and RTHIN.
We will later need the following observation˛̨̨̨„ X

i∈IFAT(P̂)

`
dH ,P̂(i)− dH ,R(i)

´
+

X
i∈RTHIN

dH ,P̂(i)

«
−

X
i∈ISLIM(P̂)

`
dH ,R(i)− dH ,P̂(i)

´˛̨̨̨
=

˛̨̨ X n
dH ,P̂(i) : i ∈ IFAT(P̂) ∪RTHIN ∪ ISLIM(P̂)

o
−

X n
dH ,R(i) : i ∈ IFAT(P̂) ∪ ISLIM(P̂)

o˛̨̨
=

˛̨̨ X n
dH ,P̂(i) : i ∈ [s27] \ IOK(P̂)

o
−

X n
dH ,R(i) : i ∈ [s27] \

`
IOK(P̂) ∪RTHIN

´o˛̨̨
≤

˛̨̨
d(F (k)|P̂(k−1))− d(F (k)|R(k−1))

˛̨̨
+

X
i∈IOK(P̂)

˛̨̨
dH ,R(i)− dH ,P̂(i)

˛̨̨
+

X
i∈RTHIN

dH ,R(i) .

Thus in view of (61) and (53), (54), and (63) we derive the following bound on the
left-hand side from above∣∣∣∣( ∑

i∈IFAT(P̂)

(
dH ,P̂(i)− dH ,R(i)

)
+

∑
i∈RTHIN

dH ,P̂(i)
)
−∆SLIM(P̂)

∣∣∣∣ ≤ ε2
27

48
. (64)

Case 1.2 splits into two sub-cases depending on the size of ∆SLIM(P̂).

Case 1.2.1 (∆SLIM(P̂) > ε2
27/12). For every i ∈ IFAT(P̂) we have, due to the

assumption of Case 1.2, that H(k)
i ∩ Kk(P̂(k−1)) is (δk,RL, dH ,P̂(i))-regular w.r.t.
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P̂(k−1). We apply the slicing lemma, Proposition 22, with

j = k , s0 = 2 , r = 1 , δ0 = δk,RL , %0 =
ε2
27

192s27
, p0 =

ε2
27

192s27
,

to P̂(k−1) , and H(k)
i ∩ Kk(P̂(k−1)) with

s = 2 , δ = δk,RL , % = dH ,P̂(i) , p1 =
dH ,R(i)
dH ,P̂(i)

, and p2 =
dH ,P̂(i)− dH ,R(i)

dH ,P̂(i)
.

For this choice of parameters the assumptions of Proposition 22 are satisfied. Indeed
we have (52), % ≥ %0 since i ∈ IFAT(P̂) and (60), %0 ≥ 2δ = δk,RL (cf. (34)), p1 ≥ p0

since i 6∈ RTHIN by definition of IFAT(P̂), and p2 ≥ p0 since i ∈ IFAT(P̂).
Since p1 + p2 = 1, Proposition 22 yields a partition M(k)

i ∪ L(k)
i of H(k)

i ∩
Kk(P̂(k−1)) for every i ∈ IFAT(P̂), where

M(k)
i is (3δk,RL, dH ,R(i))-regular w.r.t. P̂(k−1) and (65)

L(k)
i is (3δk,RL, (dH ,P̂(i)− dH ,R(i)))-regular w.r.t. P̂(k−1) . (66)

We now collect all “leftovers” and distribute them among the hypergraphs H(k)
i

which are too “slim” in P̂(k−1). For that we set

U (k) =
⋃

i∈IFAT(P̂)

L(k)
i ∪

⋃
i∈RTHIN

(
H(k)

i ∩ Kk(P̂(k−1))
)

.

From (66) and the assumption of Case 1.2 we infer with Proposition 19 that U (k) is
(3s27δk,RL)-regular w.r.t. P̂(k−1). Moreover, by the choice of δk,RL in (34) we have
3s27δk,RL ≤ ε2

27/48 and by (64) it follows that

U (k) is
(
ε2
27/24,∆SLIM(P̂)

)
-regular w.r.t. P̂(k−1) . (67)

We then apply the slicing lemma again, this time with

j = k , s0 = s27 , r = 1 , δ0 =
ε2
27

24
, %0 =

ε2
27

12
, p0 =

ε2
27

192s27
,

to P̂(k−1) , and U (k) with s =
∣∣ISLIM(P̂)

∣∣ ,
δ =

ε2
27

24
, % = ∆SLIM(P̂) , and

{
pi =

dH ,R(i)− dH ,P̂(i)

∆SLIM(P̂)
: i ∈ ISLIM(P̂)

}
.

Here the assumptions of Proposition 22 are immediate consequences of (52) (show-
ing (i ) of Proposition 22), (67) (showing that U (k) is sufficiently regular), the as-
sumption of Case 1.2.1 (yielding % ≥ %0), and the definition of ISLIM(P̂) in (62)
combined with ∆SLIM(P̂) ≤ 1 (yielding pi ≥ p0).

Also, note that
∑

i∈ISLIM(P̂) pi = 1 and, consequently, Proposition 22 yields

a partition {T (k)
i : i ∈ ISLIM(P̂)} of U (k), which by (67) has density “close” to

∆SLIM(P̂), so that

T (k)
i is

(
ε2
27/8, (dH ,R(i)− dH ,P̂(i))

)
-regular w.r.t. P̂(k−1) . (68)
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Finally, we are ready to define the family {G(k)
i (P̂(k−1)) : i ∈ [s27]}. Set

G(k)
i (P̂(k−1)) =


∅ if i ∈ RTHIN

M(k)
i if i ∈ IFAT(P̂)

H(k)
i ∩ Kk(P̂(k−1)) if i ∈ IOK(P̂)(
H(k)

i ∩ Kk(P̂(k−1))
)
∪ T (k)

i if i ∈ ISLIM(P̂) .

It is obvious that {G(k)
i (P̂(k−1)) : i ∈ [s27]} defined this way is a partition of F (k) ∩

Kk(P̂(k−1)). We still have to verify (43) and (44).
We start with showing (43). First let i ∈ RTHIN. By definition of G(k)

i (P̂(k−1)) it
is (ε′, 0)-regular for every ε′ > 0 and, hence, it is ((ε′ + dH ,R(i)), dH ,R(i))-regular.
Therefore, (43) follows from dH ,R(i) ≤ ε2

27/(192s27) < ε2
27/4 (cf. (54)).

If i ∈ IFAT(P̂), then (43) follows from (65) and 3δk,RL < ε2
27/4 (cf. (34)).

Now let i ∈ IOK(P̂). Then G(k)
i (P̂(k−1)) = H(k)

i ∩Kk(P̂(k−1)) is (δk,RL, dH ,P̂(i))-
regular due to the assumption of Case 1.2. Since (63) |dH ,P̂(i) − dH ,R(i)| ≤
ε2
27/(192s27) and, hence, G(k)

i (P̂(k−1)) is (δk,RL + ε2
27/(192s27), dH ,R(i))-regular.

Now (43) follows, since δk,RL + ε2
27/(192s27) ≤ ε2

27/4 (cf. (34)).
Finally, let i ∈ ISLIM(P̂). Then Proposition 19 applied to H(k)

i ∩Kk(P̂(k−1)) and
Ti yields that G(k)

i (P̂(k−1)) is ((δk,RL + ε2
27/8), dH ,R(i))-regular (cf. assumption of

Case 1.2 and (68)). Consequently, (43) follows since δk,RL+ε2
27/8 ≤ ε2

27/4 (cf. (34)).
It is left to verify (44) for i ∈ [s27] to conclude this case, Case 1.2.1. Again

our argument is different for each partition classes RTHIN, IFAT(P̂), IOK(P̂), and
ISLIM(P̂) of [s27].

For i ∈ RTHIN, due to notational reasons it will be easier to verify (44) in terms
of the corresponding density

d
(
G(k)

i (P̂(k−1))4H(k)
i

∣∣∣P̂(k−1)
)

=

∣∣G(k)
i (P̂(k−1))4

(
H(k)

i ∩ Kk(P̂(k−1))
)∣∣∣∣Kk(P̂(k−1))

∣∣ .

If i ∈ RTHIN, then dH ,R(i) ≤ ε2
27/(192s27) and, consequently,

d
(
G(k)

i (P̂(k−1))4H(k)
i

∣∣∣P̂(k−1)
)

= dH ,P̂(i) ≤ |dH ,R(i)− dH ,P̂(i)|+ ε2
27/(192s27) .

Therefore, (44) follows for i ∈ RTHIN from ε2
27/(192s27) ≤ ν27/6 (cf. (32)).

If i ∈ IFAT(P̂), then by definition of G(k)
i (P̂(k−1)) = M(k)

i we have

|G(k)
i (P̂(k−1))4 (H(k)

i ∩ Kk(P̂(k−1)))| = |L(k)
i | .

Moreover, due to (66) we have |L(k)
i | ≤ (dH ,P̂(i)− dH ,R(i) + 3δk,RL)|Kk(P̂(k−1))|,

which combined with the choice of δk,RL ≤ ν27/18 (cf. (34)) yields (44) for i ∈
IFAT(P̂).

If i ∈ IOK(P̂), then (44) is a consequence of the definition G(k)
i (P̂(k−1)) = H(k)

i ∩
Kk(P̂(k−1)), which yields that the left-hand side in (44) is 0.

Finally, we consider the case i ∈ ISLIM(P̂). It follows from the definition of
G(k)

i (P̂(k−1)) and (68) that

|G(k)
i (P̂(k−1))4 (H(k)

i ∩ Kk(P̂(k−1)))| = |T (k)
i |

≤ (dH ,R(i)− dH ,P̂(i) + ε2
27/8)|Kk(P̂(k−1))|.
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Consequently, (44) for i ∈ ISLIM(P̂) follows from (32).
Having verified (43) and (44) for every i ∈ [s27] we conclude Claim 29 in

Case 1.2.1. In order to finish Case 1.2, we have to consider the complementing
and rather trivial sub-case when ∆SLIM(P̂) is small. ♦

Case 1.2.2 (∆SLIM(P̂) ≤ ε2
27/12). In this case we set for every i ∈ [s27]

G(k)
i (P̂(k−1)) = H(k)

i ∩ Kk(P̂(k−1)) .

Therefore, (44) of Claim 29 holds trivially, and we only have to show (43). For
that we note, that due to the assumption of Case 1.2 we have G(k)

i (P̂(k−1)) is
(δk,RL, dH ,P̂(i))-regular w.r.t. P̂(k−1) and consequently for every i ∈ [s27]

G(k)
i (P̂(k−1)) is

(
δk,RL + |dH ,P̂(i)− dH ,R(i)|, dH ,R(i)

)
-regular w.r.t. P̂(k−1) .

(69)
In what follows we show that∣∣∣dH ,R(i)− dH ,P̂(i)

∣∣∣ ≤ ε2
27

6
for every i ∈ [s27] , (70)

which combined with (69) and δk,RL +ε2
27/6 ≤ ε2

27/4 (cf. (34)), yields (43) for every
i ∈ [s27].

First we consider i ∈ RTHIN. Due to (64) and the assumption of Case 1.2.2 we
have∑

i∈IFAT(P̂)

(
dH ,P̂(i)− dH ,R(i)

)
+

∑
i∈RTHIN

dH ,P̂(i) ≤
(

1
12

+
1
48

)
ε2
27 <

ε2
27

6
, (71)

where all terms on the left-hand side are positive (cf. (60)). Therefore, dH ,P̂(i) ≤
ε2
27/6 for every i ∈ RTHIN. Moreover, since dH ,R(i) ≤ ε2

27/(192s27) for every
i ∈ RTHIN, (70) holds for every i ∈ RTHIN.

If i ∈ IFAT(P̂), then (71) yields 0 ≤ dH ,P̂(i) − dH ,R(i) ≤ ε2
27/6 and conse-

quently (70) holds for those i.
For i ∈ IOK(P̂), (70) follows from the definition of IOK(P̂) in (63).
Finally, we consider i ∈ ISLIM(P̂). From the assumption of this case, Case 1.2.2,

and the definition of ∆SLIM(P̂) in (61) we infer 0 ≤ dH ,R(i) − dH ,P̂(i) ≤ ε2
27/12,

which clearly implies (70) for i ∈ ISLIM(P̂).
This concludes Case 1.2.2 the last sub-case of Case 1. ♦

Case 2 (d(F (k)|R(k−1)) ≤ ε2
27/16). In this case we set

G(k)
1 (P̂(k−1)) = F (k) ∩ Kk(P̂(k−1)) and G(k)

2 (P̂(k−1)) = · · · = G(k)
s27

(P̂(k−1)) = ∅ .

Again we have to show (43) and (44) of Claim 29. We start with (43). Note that
G(k)

i (P̂(k−1)) is (ε2
27/96)-regular w.r.t. P̂(k−1) for every i ∈ [s27]. (This is trivial

for i ≥ 2 and follows from (53) for i = 1.) In order to show that G(k)
i (P̂(k−1)) is

also (ε2
27/4, dH ,R(i))-regular recall the assumption d(F (k)|R(k−1)) ≤ ε2

27/16, which
implies that dH ,R(i) ≤ ε2

27/16 for every i ∈ [s27]. Consequently, G(k)
i (P̂(k−1)) is(

(ε2
27/96 + ε2

27/16), dH ,R(i)
)
-regular for every i ∈ [s27] and (43) follows.

In order to infer (44) we observe that for i ∈ [s27]

G(k)
i (P̂(k−1))4 (H(k)

i ∩ Kk(P̂(k−1)) ⊆ F (k) ∩ Kk(P̂(k−1)) .
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Moreover, due to the assumption d(F (k)|R(k−1)) ≤ ε2
27/16 and (53) we have

|F (k) ∩ Kk(P̂(k−1))| ≤ (ε2
27/16 + ε2

27/96)|Kk(P̂(k−1))| .

Property (44) then follows from ε2
27/16 + ε2

27/96 ≤ ν27/6 (see (32)). ♦

In all cases we ensured the existence of a partition of F (k) ∩ Kk(P̂(k−1)), which
satisfies the conclusions of Claim 29. This concludes the proof of Claim 29. �

Proof of Claim 30. We assume the contrary, i.e.,∣∣∣⋃{
Kk(P̂(k−1)) : P̂(k−1) ∈ P̂

(k−1)
RL,BAD(R,H(k)

i )
}∣∣∣ > ν27

3
|Kk(R(k−1))| .

We may assume that P̂
(k−1)
RL,FAT(R,H(k)

i ) ⊆ P̂
(k−1)
RL,BAD(R,H(k)

i ) defined by

P̂
(k−1)
RL,FAT(R,H(k)

i ) =
{
P̂(k−1) ∈ P̂

(k−1)
RL (R) : d(H(k)

i |P̂(k−1)) > dH ,R(i) +
ν27

6

}
satisfies∣∣∣⋃{

Kk(P̂(k−1)) : P̂(k−1) ∈ P̂
(k−1)
RL,FAT(R,H(k)

i )
}∣∣∣ ≥ ν27

6

∣∣Kk(R(k−1))
∣∣ . (72)

(The case concerning P̂
(k−1)
RL,SLIM(R,H(k)

i )instead of P̂
(k−1)
RL,FAT(R,H(k)

i ) is very simi-

lar.) In what follows we will show that (72) contradicts the (ν27/12, ∗, t2k

27)-regularity
of H(k)

i w.r.t. R(k−1) (see (L.27.d )). Since

∣∣P̂(k−1)
RL,FAT(R,H(k)

i )
∣∣ ≤ |P̂(k−1)

RL | =
k−1∏
h=1

(aPRL
h )(

k
h) ≤ t2

k

RL

(36)
= t2

k

27

this contradiction follows once we establish the following inequality∣∣∣∣H(k)
i ∩

⋃{
Kk(P̂(k−1)) : P̂(k−1) ∈ P̂

(k−1)
RL,FAT(R,H(k)

i )
}∣∣∣∣∣∣∣∣⋃{Kk(P̂(k−1)) : P̂(k−1) ∈ P̂

(k−1)
RL,FAT(R,H(k)

i )
}∣∣∣∣ ≥ dH ,R(i) +

ν27

12
. (73)

By definition of P̂
(k−1)
RL,FAT(R,H(k)

i ) we have d(H(k)
i |P̂(k−1)) ≥ dH ,R(i) + ν27/6

for every P̂(k−1) ∈ P̂
(k−1)
RL,FAT(R,H(k)

i ) and, since Kk(P̂(k−1)
1 ) ∩Kk(P̂(k−1)

2 ) = ∅ for

all distinct P̂(k−1)
1 , P̂(k−1)

2 ∈ P̂
(k−1)
RL,FAT(R,H(k)

i ) ⊆ P̂
(k−1)
RL (cf. 41) it suffices to

verify

(
dH ,R(i) +

ν27

6

) min
{
|Kk(P̂(k−1))| : P̂(k−1) ∈ P̂

(k−1)
RL,FAT(R,H(k)

i )
}

max
{
|Kk(P̂(k−1))| : P̂(k−1) ∈ P̂

(k−1)
RL,FAT(R,H(k)

i )
}

≥ dH ,R(i) +
ν27

12
to infer (73). In view of (39) we derive the following upper bound on the right-hand
side of the last inequality(

dH ,R(i) +
ν27

6

) 1− ν27/48
1 + ν27/48

≥
(
dH ,R(i) +

ν27

6

)(
1− ν27

24

)
≥ dH ,R(i) +

ν27

12
,

which concludes the proof of Claim 30. �
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6. Proof of: RAL(k) =⇒ RL(k + 1)

In what follows we give a proof of RL(k + 1), Lemma 23, based on RAL(k),
Lemma 25. The proof presented here resembles the main ideas from [5, 26, 31]
combined with some techniques from [20]. In the next section we recall the concept
of an index of a partition (cf. Definition 32) and derive some facts about it. We
then give the proof of RL(k + 1) in Section 6.2.

6.1. The index of a partition. The following propositions center around the
notion of an index. Throughout this section we will work under the following
setup.

Setup 31. Let R
(1)
0 be a fixed partition of some vertex set V and H (k+1) be a

partition of [V ]k. Moreover, let X (k) be a partition refining Crossk(R(1)
0 ), i.e.,

for every X (k) ∈ X (k) we have X (k) ⊆ Crossk(R(1)
0 ) or X (k) ∩ Crossk(R(1)

0 ) = ∅.

Let U(X (k)) =
⋃
{X (k) : X (k) ∈ X (k)} ⊇ Crossk(R(1)

0 ) be the set of k-tuples

partitioned by X (k).
For any K ∈ U(X (k)) let X (k)(K) be that partition class of X (k) which contains

K, i.e.,

X (k)(K) = X (k) ∈ X (k) so that K ∈ X (k) .

Moreover, for every (k + 1)-tuple K ′ ∈ [V ]k+1 satisfying [K ′]k ⊆ U(X (k)) we set

X̂ (k)(K ′) =
⋃{

X (k)(K) : K ∈ [K ′]k
}

and X̂ (k) =
{
X̂ (k)(K ′) : K ′ ∈ [V ]k+1 s.t. [K ′]k ⊆ U(X (k))

}
.

Note that every K ′ ∈ Crossk+1(R
(1)
0 ) satisfies [K ′]k ⊆ U(X (k)), since X (k) refines

Crossk(R(1)
0 ). �

We then define the index of a partition X (k) (satisfying the above setup) with
respect to R

(1)
0 and H (k+1) as follows.

Definition 32 (Index). Given V , R
(1)
0 , H (k+1), and X (k) as in Setup 31. We set

the index of X (k) w.r.t. R
(1)
0 and H (k+1) equal to

ind(X (k)) =
1

|V |k+1

∑
H(k+1)∈H (k+1)

∑
K′∈Crossk+1(R

(1)
0 )

d2
(
H(k+1)

∣∣X̂ (k)(K ′)
)

=
1

|V |k+1

∑
H(k+1)∈H (k+1)

∑
X̂ (k)∈X̂ (k)

X̂ (k)⊆Crossk(R
(1)
0 )

d2
(
H(k+1)

∣∣X̂ (k)
)∣∣Kk+1(X̂ (k))

∣∣ .
The next observation follows straight from the definition of the index.

Fact 33. For all V , R
(1)
0 , H (k+1), and X (k) as in Setup 31, ind(X (k)) is bounded

between 0 and 1. �

We now derive a few more propositions related to the index , which allow a
simpler presentation of the the proof of RL(k + 1).
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Proposition 34. Let V , R
(1)
0 , and H (k+1) be given as in Setup 31. Suppose

X (k) = {X (k)
1 , . . . ,X (k)

s } and Y (k) = {Y(k)
1 , . . . ,Y(k)

s } are partitions which re-
fine Crossk(R(1)

0 ). Moreover, let ν be a given positive real. If for every ` ∈ [s] we
have

(i )
∣∣X (k)

` 4Y(k)
`

∣∣ ≤ ν|V |k and
(ii ) if X (k)

` ⊆ Crossk(R(1)
0 ) then Y(k)

` ⊆ Crossk(R(1)
0 ),

then
ind(Y (k)) ≥ ind(X (k))−3(k + 1)sk+1|H (k+1)|ν . (74)

Proof. For every (k + 1)-tuple I ∈ [s]k+1 we set

X̂ (k)
I =

⋃
i∈I

X (k)
i and Ŷ(k)

I =
⋃
i∈I

Y(k)
i .

From (i ) we infer that for every I ∈ [s]k+1 we have∣∣∣∣∣Kk+1(X̂ (k)
I )

∣∣− ∣∣Kk+1(Ŷ(k)
I )

∣∣∣∣∣ ≤ ∣∣Kk+1(X̂ (k)
I )4Kk+1(Ŷ(k)

I )
∣∣

≤ ν(k + 1)|V |k+1 . (75)

Suppose the partition classes of H (k+1) are labeled H(k+1)
1 , . . . ,H(k+1)

h . For a more
concise notation we set for every I ∈ [s]k+1 and ζ ∈ [h]

d(ζ|X̂ (k)
I ) = d

(
H(k+1)

ζ

∣∣X̂ (k)
I

)
and d(ζ|Ŷ(k)

I ) = d
(
H(k+1)

ζ

∣∣Ŷ(k)
I

)
.

The triangle inequality and (75) gives for every I ∈ [s]k+1 and ζ ∈ [h]∣∣∣∣∣Kk+1(X̂ (k)
I )

∣∣d2(ζ|X̂ (k)
I )−

∣∣Kk+1(Ŷ(k)
I )

∣∣d2(ζ|Ŷ(k)
I )

∣∣∣
≤
∣∣∣∣∣Kk+1(X̂ (k)

I )
∣∣d(ζ|X̂ (k)

I )−
∣∣Kk+1(Ŷ(k)

I )
∣∣d(ζ|Ŷ(k)

I )
∣∣∣d(ζ|X̂ (k)

I )

+
∣∣∣∣∣Kk+1(Ŷ(k)

I )
∣∣− ∣∣Kk+1(X̂ (k)

I )
∣∣∣∣∣d(ζ|Ŷ(k)

I )d(ζ|X̂ (k)
I )

+
∣∣∣∣∣Kk+1(X̂ (k)

I )
∣∣d(ζ|X̂ (k)

I )−
∣∣Kk+1(Ŷ(k)

I )
∣∣d(ζ|Ŷ(k)

I )
∣∣∣d(ζ|Ŷ(k)

I )

≤ 3
∣∣∣∣∣Kk+1(Ŷ(k)

I )
∣∣− ∣∣Kk+1(X̂ (k)

I )
∣∣∣∣∣ (75)

≤ 3ν(k + 1)|V |k+1 . (76)

Now let X̂ (k) and Ŷ (k) be defined as in Setup 31. Clearly, for every X̂ (k) ∈ X̂ (k)

there exist a unique I ∈ [s]k+1 so that X̂ (k) = X̂ (k)
I , while the converse fails to be

true in general. We define

S(X (k)) =
{

I ∈ [s]k+1 : X̂ (k)
I ∈ X̂ (k) and X̂ (k)

I ⊆ Crossk(R(1)
0 )

}
.

Then we have

ind(X (k)) =
1

|V |k+1

∑
ζ∈[h]

∑
I∈S(X (k))

∣∣Kk+1(X̂ (k)
I )

∣∣d2(ζ|X̂ (k)
I )

and applying (76) for every ζ ∈ [h] and I ∈ S(X (k)) yields

ind(X (k)) ≤ 1
|V |k+1

∑
ζ∈[h]

∑
I∈S(X (k))

∣∣Kk+1(Ŷ(k)
I )

∣∣d2(ζ|Ŷ(k)
I ) + 3ν(k + 1)h

∣∣S(X (k))
∣∣

(77)
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Due to assumption (ii ) we have that Ŷ(k)
I ⊆ Crossk(R(1)

0 ) for every I ∈ S(X (k)).
Consequently, Ŷ(k)

I is either in Ŷ (k) or Kk+1(Ŷ(k)
I ) = ∅ for every I ∈ S(X (k)) and,

hence,

ind(Y (k)) ≥ 1
|V |k+1

∑
ζ∈[h]

∑{∣∣Kk+1(Ŷ(k)
I )

∣∣d2(ζ|Ŷ(k)
I ) : I ∈ S(X (k))

}
.

Therefore, the last inequality combined with (77) implies

ind(X (k)) ≤ ind(Y (k)) +3ν(k + 1)hsk+1 ,

which concludes the proof of Proposition 34. �

The following proposition is a simple consequence of Jensen’s inequality.

Proposition 35. Suppose Ŷ(k) is an (m, k +1, k)-hypergraph and {Ẑ(k)
1 , . . . , Ẑ(k)

z }
is a family of (m, k + 1, k)-hypergraphs such that {Kk+1(Ẑ(k)

i ) : i ∈ [z]} partitions
Kk+1(Ŷ(k)), then

d2
(
H(k+1)

∣∣Ŷ(k)
)∣∣Kk+1(Ŷ(k))

∣∣ ≤ ∑
i∈[z]

d2
(
H(k+1)

∣∣Ẑ(k)
i

)∣∣Kk+1(Ẑ(k)
i )

∣∣ (78)

for every hypergraph H(k+1) ⊆ Kk+1(Ŷ(k)).

Proof. For K ′ ∈ Kk+1(Ŷ(k)) let Ẑ(k)(K ′) be the unique member of {Ẑ(k)
1 , . . . , Ẑ(k)

z }
so that K ′ ∈ Kk+1(Ẑ(k)(K ′)). Then we have

d
(
H(k+1)

∣∣Ŷ(k)
)

=

∑
i∈[z] d

(
H(k+1)

∣∣Ẑ(k)
i

)∣∣Kk+1(Ẑ(k)
i )

∣∣∣∣Kk+1(Ŷ(k))
∣∣

=

∑
K′∈Kk+1(Ŷ(k)) d

(
H(k+1)

∣∣Ẑ(k)(K ′)
)∣∣Kk+1(Ŷ(k))

∣∣ ,

and Jensen’s inequality yields (78), since

d2
(
H(k+1)

∣∣Ŷ(k)
)∣∣Kk+1(Ŷ(k))

∣∣ =
(∑

K′∈Kk+1(Ŷ(k)) d
(
H(k+1)

∣∣Ẑ(k)(K ′)
))2

∣∣Kk+1(Ŷ(k))
∣∣

≤
∑

K′∈Kk+1(Ŷ(k))

d2
(
H(k+1)

∣∣Ẑ(k)(K ′)
)

=
∑
i∈[z]

d2
(
H(k+1)

∣∣Ẑ(k)
i

)∣∣Kk+1(Ẑ(k)
i )

∣∣ .
�

The following proposition is a corollary of Proposition 35 and asserts that the
refinement of a family of partitions has the same or bigger index.

Proposition 36. Let V , R
(1)
0 , H (k+1), and Y (k) be given as in Setup 31 and

let Z (k) be a partition refining Crossk(R(1)
0 ). If Z (k) ≺ Y (k), then ind(Y (k)) ≤

ind(Z (k)) .
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Proof. We observe that for every Ŷ(k) ∈ Ŷ (k) satisfying Ŷ(k) ⊆ Crossk(R(1)
0 ) the

family {Kk+1(Ẑ(k)) : Ẑ(k) ∈ Ẑ (k) and Ẑ(k) ⊆ Ŷ(k)} partitions Kk+1(Ŷ(k)). Conse-
quently, we can apply Proposition 35 to every H(k+1) ∈ H (k+1) and Ŷ(k) ∈ Ŷ (k),
which yields the proposition. �

In the proof of RL(k + 1) we will also deal with partitions which “almost” refine
each other (see Definition 37 below) and we need approximations of their index
(Proposition 38).

Definition 37. Given V , R
(1)
0 , and Z (k) as in Setup 31. Moreover, let β ≥ 0

and let T (k) be a partition refining Crossk(R(1)
0 ). We say the partition T (k) is a

β-refinement of Z (k) if∑{∣∣T (k)
∣∣ : T (k) ∈ T (k) , T (k) * Z(k) for every Z(k) ∈ Z (k)

}
≤ β|V |k .

The following proposition extends Proposition 36 and its proof is very similar
to [5, Lemma 3.6].

Proposition 38. Let V , R
(1)
0 , H (k+1), and Z (k) be given as in Setup 31, let T (k)

be a β-refinement of Z (k) for some β ≥ 0. Then ind(T (k)) ≥ ind(Z (k))−β .

Proof. We first define an auxiliary partition S (k) which is a refinement of T (k)

and Z (k). For that set

S (k) =
{
T (k) ∩ Z(k) : T (k) ∈ T (k) and Z(k) ∈ Z (k)

}
.

Due to Proposition 36 we have

ind(Z (k)) ≤ ind(S (k)) . (79)

Let T̂
(k)

0 be the family of polyads T̂ (k) ∈ T̂ (k) which are sub-hypergraphs of
Crossk(R(1)

0 ) and for which there exists a T (k) ∈ T (k) such that

T (k) ⊆ T̂ (k) and T (k) * Z(k) for all Z(k) ∈ Z (k) .

Since H (k+1) is a partition of [V ]k+1 and T (k) is a β-refinement of Z (k) we have∑
H(k+1)∈H (k+1)

∑
T̂ (k)∈T̂

(k)
0

∑
Ŝ(k)∈Ŝ (k)

Ŝ(k)⊆T̂ (k)

d
(
H(k+1)|Ŝ(k)

)∣∣Kk+1(Ŝ(k))
∣∣ ≤ β|V |k × |V | . (80)

Note that for every T̂ (k) 6∈ T̂
(k)

0 there exist some Ŝ(k) ∈ Ŝ (k) such that Ŝ(k) = T̂ (k).
Consequently,

ind(S (k))− ind(T (k))

=
1

|V |k+1

∑
H(k+1)∈H (k+1)

∑
T̂ (k)∈T̂

(k)
0

( ∑
Ŝ(k)∈Ŝ (k)

Ŝ(k)⊆T̂ (k)

d2
(
H(k+1)|Ŝ(k)

)∣∣Kk+1(Ŝ(k))
∣∣

− d2
(
H(k+1)|T̂ (k)

)∣∣Kk+1(T̂ (k))
∣∣)

≤ 1
|V |k+1

∑
H(k+1)∈H (k+1)

∑
T̂ (k)∈T̂

(k)
0

∑
Ŝ(k)∈Ŝ (k)

Ŝ(k)⊆T̂ (k)

d
(
H(k+1)|Ŝ(k)

)∣∣Kk+1(Ŝ(k))
∣∣ (80)

≤ β ,
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and the proposition follows from (79). �

The last proposition in this section concerns the index of a family of partitions R
failing to satisfy (H ) of RL(k + 1). It can be shown that a certain refinement of R
has an index of at least the index of R plus some positive constant depending
on δk+1. This observation is the crucial idea in the proof of RL(k + 1). Since, it
roughly shows (together with Fact 33) that there are only finitely many refinements
which violate (H ). The same idea was already used in [5, 26, 31].

Proposition 39. Let V , R
(1)
0 , and H (k+1) be given as in Setup 31 and let R(k)

be a partition refining Crossk(R(1)
0 ). Moreover, let δ be a positive real and r ≥ 1 be

an integer. If ∣∣Crossk+1(R
(1)
0 )

∣∣ ≥ (1− δ

2

)(
|V |

k + 1

)
(81)

and if there is some H(k+1)
irr ∈ H (k+1) which is (δ, ∗, r)-irregular3 w.r.t. R(k), then

there exists a partition X (k) of [V ]k+1 satisfying

(i ) X (k) ≺ R(k),
(ii ) |X (k)| ≤ |R(k)| × 2r×|R̂(k)|, and
(iii ) ind(X (k)) ≥ ind(R(k)) +δ4/2.

In the proof of Proposition 39 we will use the defect form of the Cauchy–Schwarz
inequality, which we state first (see, e.g., [31] for a similar statement).

Proposition 40 (Defect Cauchy–Schwarz inequality). Suppose ∅ 6= J ( I are
some index sets and di ≥ 0 is some non-negative real number for every i ∈ I. If

1
|J |
∑
j∈J

dj =
1
|I|
∑
i∈I

di + α (82)

for some (not necessarily non-negative) real α and if |α| ≥ δ and |J | ≥ δ|I| for
some δ ≥ 0, then ∑

i∈I

d2
i ≥

1
|I|

(∑
i∈I

di

)2

+ δ3|I| .

�

Proof of Proposition 39. Let R̂
(k)
irr,0 be the set of those polyads R̂(k) ∈ R̂(k) such

that

H(k+1)
irr is (δ, ∗, r)-irregular w.r.t. R̂(k) and (83)

R̂(k) ⊆ Crossk(R(1)
0 ). (84)

From the definition (δ, ∗, r)-regularity w.r.t. R(k) (see footnote 3) and (81) we infer
that ∑{∣∣Kk

(
R̂(k)

)∣∣ : R̂(k) ∈ R̂
(k)
irr,0

}
≥ δ

2
|V |k+1 . (85)

3Strictly speaking in Definition 16 we only defined the regularity with respect to a fam-
ily of partitions while here we only have a partition R(k) of k-tuples. However, we can eas-

ily alter the definition based on R̂(k) meaning that H(k+1) is (δ, ∗, r)-regular w.r.t. R(k) if˛̨ S ˘
Kk(R̂(k)) : R̂(k) ∈ R̂(k) and H(k+1) is not (δ, ∗, r)-regular w.r.t. R̂(k)

¯˛̨
≤ δ|V |k+1.
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For R̂(k) ∈ R̂
(k)
irr,0 there exist a witness of irregularity, i.e., there exits Q̂

(k)
(R̂(k)) =

{Q̂(k)
1 , . . . , Q̂(k)

r } such that Q̂(k)
i ⊆ R̂(k) for every i ∈ [r] and∣∣∣ ⋃

i∈[r]

Kk

(
Q̂(k)

i

)∣∣∣ ≥ δ
∣∣∣Kk+1

(
R̂(k)

)∣∣∣ > 0 , (86)

d
(
H(k+1)

irr

∣∣Q̂(k)
(R̂(k))

)
= d
(
H(k+1)

irr

∣∣R̂(k)
)∣∣+ αR̂(k) for αR̂(k) with |αR̂(k) | > δ ,

(87)

where d
(
H(k)

∣∣Q̂(k)
(R̂(k))

)
=
∣∣H(k+1)

irr ∩
⋃

i∈[r]Kk+1(Q̂(k))
∣∣ / ∣∣⋃

i∈[r]Kk+1(Q̂(k))
∣∣.

Moreover we define for every R(k) ∈ R(k) the family W(k)(R(k)) of those sub-

hypergraphs of R(k) which are contained in some witness Q̂
(k)

(R̂(k)) with R(k) ⊆
R̂(k). More precisely we set

W(k)(R(k)) =
{
R(k)∩Q̂(k) : R̂(k)∈R̂

(k)
irr,0 withR(k)⊆R̂(k) and Q̂(k) ∈ Q̂

(k)
(R̂(k))

}
.

We observe that W(k)(R(k)) might be empty (e.g., if R(k) * Crossk(R(1)
0 )), that

the hypergraphs in W(k)(R(k)) are not necessarily disjoint, and that for every
R(k) ∈ R(k) we have the following trivial upper bound wR(k) on the number of
hypergraphs in W(k)(R(k))

wR(k) =
∣∣W(k)(R(k))

∣∣ ≤ r ×
∣∣R̂(k)

∣∣ . (88)

We now define the promised refinement X (k) of R(k). We construct X (k) for each
R(k) ∈ R(k) separately. This partition of R(k) will be called X (k)(R(k)) and is
given by the atoms arising from the intersection of the hypergraphs in W(k)(R(k))
(i.e., the regions of the Venn diagram of the family W(k)(R(k))). More precisely,
if W(k)(R(k)) 6= ∅ let W(k)(R(k)) = {W(k)

i : i ∈ [wR(k) ]} be some enumeration of
the elements of W(k)(R(k)) and set

X (k)(R(k)) =
{⋂

i∈I

W(k)
i ∩

⋂
i∈Ic

(
R(k) \W(k)

i

)
: {I, Ic} partitions [wR(k) ]

}
.

If W(k)(R(k)) = ∅, then we set X (k)(R(k)) = {R(k)}. Collecting “contributions”
for every R(k) ∈ R(k) in that way defines X (k)

X (k) =
⋃{

X (k)(R(k)) : R(k) ∈ R(k)
}

.

Owing to the construction above, the partition X (k) clearly refines R(k), i.e., it
satisfies (i ) of Proposition 39. Moreover, (88) and the construction yields (ii ) of
the proposition.

It is left to verify (iii ). For that we first fix some R̂(k) ∈ R̂
(k)
irr,0 and consider the

witness of irregularity Q̂
(k)

(R̂(k)) = {Q̂(k)
1 , . . . , Q̂(k)

r }. Since, X (k) refines R(k) it
satisfies the assumptions of Setup 31 with V , R

(1)
0 , and H (k+1). In particular, the

family of polyads X̂ (k) is well defined and for every K ′ ∈ Kk+1(R̂(k)) there exist a
X̂ (k)(K ′) ∈ X̂ (k) so that K ′ ∈ Kk+1(X̂ (k)). We are heading towards an application
of Proposition 40 with

I = Kk+1(R̂(k))) , J =
r⋃

i=1

Kk+1(Q̂(k)
i ) , and dK′ = d

(
H(k+1)

irr |X̂ (k)(K ′)
)

(89)
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for every K ′ ∈ I and verify (82) below for αR̂(k) and the choice above

1

|J |
X

K′∈J

dK′
(89)
= d

`
H(k+1)

irr |Q̂(k)
(R̂(k))

´
(87)
= d

`
H(k+1)

irr |R̂(k)´ + αR̂(k)
(89)
=

1

|I|
X

K′∈I

dK′ + αR̂(k) .

Since, |αR̂(k) | ≥ δ (cf. (87)) and

|J | (89)
=
∣∣∣∣ r⋃

i=1

Kk+1(Q̂(k)
i )
∣∣∣∣ (86)

≥ δ
∣∣∣Kk+1(R̂(k))

∣∣∣ (89)
= δ|I| ,

Proposition 40 yields ∑
K′∈I

d2
K′ ≥

1
|I|

( ∑
K′∈I

dK′

)2

+ δ3|I| . (90)

In view of (89) and since∑
K′∈Kk+1(R̂(k))

d
(
H(k+1)

irr |X̂ (k)(K ′)
)

=
∑

X̂ (k)∈X̂ (k)

X̂ (k)⊆R̂(k)

d
(
H(k+1)

irr |X̂ (k)
)∣∣Kk+1(X̂ (k))

∣∣
= d
(
H(k+1)

irr |R̂(k)
)∣∣Kk+1(R(k))

∣∣
we can reformulate inequality (90) to∑

K′∈Kk+1(R̂(k))

d2
(
H(k+1)

irr |X̂ (k)(K ′)
)
≥

∑
K′∈Kk+1(R̂(k))

(
d2
(
H(k+1)

irr |R̂(k)
)
+ δ3

)
. (91)

Note that (91) holds for every irregular polyad R̂(k) ∈ R̂
(k)
irr,0. Summing over all

such polyads inequality (91) together with (85) yields∑
R̂(k)∈R̂

(k)
irr,0

∑
K′∈Kk+1(R̂(k))

d2
(
H(k+1)

irr |X̂ (k)(K ′)
)

≥
∑

R̂(k)∈R̂
(k)
irr,0

∑
K′∈Kk+1(R̂(k))

d2
(
H(k+1)

irr |R̂(k)
)

+
δ4

2
|V |k+1 .

Since X (k) refines R(k), we can apply Proposition 35 to every R̂(k) ∈ R̂(k) \ R̂
(k)
irr,0

which is contained in Crossk(R(1)
0 ) and we infer∑

K′∈Crossk+1(R
(1)
0 )

d2
(
H(k+1)

irr |X̂ (k)(K ′)
)

≥
∑

K′∈Crossk+1(R
(1)
0 )

d2
(
H(k+1)

irr |R̂(K ′)
)

+
δ4

2
|V |k+1 .

Finally, part (iii ) of Proposition 39 follows from the last inequality and Proposi-
tion 35 applied to every H(k+1) ∈ H (k+1), H(k+1) 6= H(k+1)

irr and every R̂(k) ∈ R̂(k)

contained in Crossk(R(1)
0 ). �
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6.2. Proof of RL(k + 1). In what follows we give a proof of RL(k + 1) based on
RAL(k), or more precisely, based on Lemma 25. In the next section, Section 6.2.1,
we define all constants involved in the proof of this implication. In Section 6.2.2 we
state the so called index pumping lemma and deduce RL(k + 1) from it. We then
prove the index pumping lemma in Section 6.3.

6.2.1. Constants. We first recall the quantification of RL(k + 1), Lemma 23 for
k + 1

∀ oRL, sRL, ηRL, δk+1,RL, rRL : Nk → N, δRL : Nk → (0, 1] ∃ µRL > 0, tRL, nRL .

So let positive integers oRL and sRL, positive reals ηRL and δk+1,RL, and positive
functions rRL and δRL be given. Without loss of generality we assume that

ηRL ≤ δk+1,RL/2 and rRL and δRL are monotone in every variable. (92)

For the definition of the promised constants µRL, tRL, and nRL we need auxiliary
sequences of constants ti, oi, si, ηi, and νi and a sequence of functions εi : Nk−1 →
(0, 1] for i ≥ 0. First we define t0

t0 = min
{

t ≥
⌈

(k+1)k+1

2ηRL

⌉
: (oRL)! divides t

}
> oRL . (93)

Without loss of generality we may assume that the given function δRL is bounded
for every a = (a1, . . . , ak) ∈ Nk by

δRL(a) ≤
δ4
k+1,RL

24t0
<

2
t0

, and δRL(a) ≤ 3
2ak

. (94)

For convenience we define the following integer-valued function f : N → N

f(s) = min
{

x ∈ N : x ≥ 24t0s

δ4
k+1,RL

and (t0)! divides x

}
. (95)

We then define oi, si, ηi, and νi in terms of ti, δk+1,RL, ηRL, and rRL(ti, . . . , ti)

oi = t0 , si = t2
k

i 2rRL(ti,...,ti)t
2k+1
i , ηi = ηRL , and νi = δ4

k+1,RL

12(k+1)sRLsk+1
i

. (96)

Moreover, for i ≥ 0 we define the function εi : Nk−1 → (0, 1] defined for every
a = (a1, . . . , ak−1) ∈ Nk−1 as

εi(a) = min
{

δRL(a1,...,ak−1,f(si))
18si

, εDCL

(
k − 1, k, 1

2 , min
2≤j≤k−1

1
aj

)
, 1

2f(si)
,

δ4
k+1,RL
72sit0

}
,

(97)
where εDCL is given by Theorem 18. Moreover, with out loss of generality we
assume that εi is monotone in every variable.

We then define ti+1 using tRAL(o, s, η, ν, ε(·, . . . , ·)) given by Lemma 25 and set

ti+1 = max
{

ti , tRAL

(
oi, si, ηi, νi, εi(·, . . . , ·)

)
, f(si)

}(95)

≥ si . (98)

This concludes the definition of the sequences ti, oi, si, ηi, νi and εi : Nk−1 → (0, 1]
for i ≥ 0. We note that the sequence ti is monotone by definition. In a similar way
we define the monotone sequences µi for i ≥ 1 by setting µ1 = δRL(t0, . . . , t0) and

µi+1 = min

{
µi , µRAL

(
oi, si, ηi, νi, εi(·, . . . , ·)

)
,
δRL(

(k−1)-times︷ ︸︸ ︷
ti+1, . . . , ti+1, f(si))

12t2
k

i+1

}
(99)
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and we define ni by setting n1 = 1 and

ni+1 = max
{

ni , nRAL

(
oi, si, ηi, νi, εi(·, . . . , ·)

)
, ti+1mDCL

(
k − 1, k, 1

2 , 1
ti+1

)
,

ti+1mSL

(
k, f(si), 1, εi

(
ti+1, . . . , ti+1

)
, 1

f(si)
, 1

f(si)

)
, (100)

ti+1mSL

(
k, f(si), 1, 1

3δRL

(
ti+1, . . . , ti+1, f(si)

)
,

1
2δRL

(
ti+1, . . . , ti+1, f(si)

)
, 1

f(si)

)}
.

We also define auxiliary constants

µ∗ = min
{

min
2≤j≤k

{
εDCL

(
j, j + 1, 1

2 , 1
t0

)}
, µd8/δ4

k+1,RLe

}
,

n∗ = max
2≤j≤k

max
{

t0mDCL

(
j, j + 1, 1

2 , 1
t0

)
, t0mSL

(
j + 1, oRL, 1, µ∗

3 , 1, 1
oRL

)}
.

(101)

Finally, we fix the constants µRL, tRL, and nRL promised by Lemma 23 in the
following way

µRL = µ∗/(2t2
k

0 ) , tRL = td8/δ4
k+1,RLe , and nRL = max

{
n∗, nd8/δ4

k+1,RLe
}

.

(102)

For the rest of this section let all constants and functions be fixed as stated in (93)–
(102).

6.2.2. The index pumping lemma. Now let a set V , a family of partitions O =
O(k, aO) and a family of (k + 1)-uniform hypergraphs H (k+1) satisfying the as-
sumptions (a )–(c ) of RL(k + 1) be given, i.e.,

(RL.a ) |V | = n ≥ nRL and (tRL)! divided n,
(RL.b ) O = O(k, aO) is an (ηO , µRL,aO)-equitable (for some ηO > 0) and oRL-

bounded family of partitions on V , and
(RL.c ) H (k+1) = {H(k+1)

1 , . . . ,H(k+1)
sRL } is a partition of [V ]k+1.

The main idea of the proof is to inductively define a sequence of families of partitions
Ri = Ri(k, aRi) on V for i ≥ 0, which will satisfy

(R0.1 ) R0 = {R(j)
0 }k

j=1 is (ηRL, µd8/δ4
k+1,RLe,a

R0)-equitable and t0-bounded,
(R0.2 ) R0 ≺ O,
(Ri.1 ) Ri = {R(j)

i }k
j=1 is an (ηRL, δRL(aRi),aRi)-equitable and ti-bounded, and

(Ri.2 ) Ri ≺ R0.

Note that due to the fact that µd8/δ4
k+1,RLe ≤ δRL(aR0) (cf. (99)), a family of

partitions R0 which satisfies (R0.1 ) and (R0.2 ) also satisfies (Ri.1 ) and (Ri.2 )
for i = 0.

Moreover, we will show that if there is a hypergraph H(k+1) ∈ H (k+1) which is
not (δk+1,RL, ∗, r(aRi))-regular w.r.t. Ri, then Ri+1 can be chosen in such a way
that the index increases by δ4

k+1,RL/8, More precisely we will show the following
so-called index pumping lemma, which proof merges some ideas from [26] and [20,
Cleaning Phase I].
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Lemma 41 (Index pumping lemma). Let 0 ≤ i < d8/δ4
k+1,RLe be an integer and

let R0 be a family of partitions satisfying (R0.1 ) and (R0.2 ).
If Ri = Ri(k, aRi) satisfies (Ri.1–2 ), but fails to satisfy (H ) of RL(k + 1) for

r(aRi), then there exists a family of partitions Ri+1 = Ri+1(k, aRi+1) satisfy-
ing (Ri+1.1 ) and (Ri+1.2 ) and

ind(R(k)
i+1) ≥ ind(R(k)

i ) +δ4
k+1,RL/8 , (103)

where the index is defined with respect to R
(1)
0 and H (k+1) (cf. Definition 32).

Next we deduce RL(k + 1) (i.e., Lemma 23) from Lemma 41. We then give the
proof of Lemma 41 in Section 6.3.

Proof of Lemma 23. Suppose all constants are fixed as in Section 6.2.1 and let V ,
O = O(k, aO), and H (k+1) satisfying (RL.a )–(RL.c ) be given. We have to ensure
the existence of a family of partitions P = P(k, aP) on V satisfying
(RL.P1 ) P is (ηRL, δRL(aP),aP)-equitable and tRL-bounded,
(RL.P2 ) P ≺ O, and
(RL.H ) H(k+1)

i is (δk+1,RL, ∗, rRL(aP))-regular w.r.t. P for every i ∈ [sRL].

Construction of a family R0. In view of Lemma 41 we first need an appropriate
family of partitions R0. We distinguish two cases depending on the size of ηO .

Case 1 (ηO ≤ ηRL). In this case we simply set R0 = O. It then follows from
(RL.b ) that R0 is (ηRL, µd8/δ4

k+1,RLe,a
R0)-equitable, since µRL ≤ µ∗ ≤ µd8/δ4

k+1,RLe
by (101) and (102). Also R0 = O is oRL-bounded by (RL.b ) and, hence, it is t0-
bounded by (93). Therefore, R0 chosen this way satisfies (R0.1 ). Moreover, (R0.2 )
holds trivially. ♦

Case 2 (ηO > ηRL). We construct a refinement R0 of O so that |Crossk+1(R
(1)
0 ) | ≥

(1 − ηRL)
(

n
k+1

)
. We construct R0 = {R(1)

0 , . . . ,R
(k)
0 } inductively. More precisely

we show for every j = 1, . . . , k that the following statement (Sj ) holds.

(Sj) there is a
(
ηRL, µ∗, (aR0

1 , . . . , aR0
j )
)
-equitable, t0-bounded family of parti-

tions R0(j)={R(1)
0 , . . . ,R

(j)
0 } on V , which refines O(j) = {O(1), . . . ,O(j)}.

Since, µ∗ ≤ µd8/δ4
k+1,RLe it then follows that there is a family of partitions R0 so

that (R0.1 ) and (R0.2 ) are satisfied.

Induction start j = 1. We split each vertex class W ∈ O(1) into t0/aO
1 classes of

size n/(aO
1 t0), where t0 is given in (93). Note that t0/aO

1 is an integer by definition
of t0 and oRL ≥ aO

1 . Moreover, n/(aO
1 t0) is an integer due to the choice of tRL ≥

t0 > oRL ≥ aO
1 (cf. (102) and (93)) and (RL.a ). This defines the partition R

(1)
0

with aR0
1 = t0. Note that∣∣∣[V ]k+1 \ Crossk+1(R

(1)
0 )

∣∣∣ ≤ t0

(
n/t0

2

)
nk−1 ≤ nk+1

2t0

(93)

≤ ηRL

(
n

k + 1

)
.

Consequently, R
(1)
0 is an

(
ηRL, µ∗, (aR0

1 )
)
-equitable, t0-bounded refinement of O(1),

which establishes the induction start.
Induction step. Assume there exist a

(
ηRL, µ∗, (aR0

1 , . . . , aR0
j )
)
-equitable, t0-

bounded family of partitions R0(j) = {R(1)
0 , . . . ,R

(j)
0 } refining O(j). We define
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R
(j+1)
0 for each polyad R̂(j) ∈ R̂

(j)
0 . We set aR0

j+1 = aO
j+1 and in view of state-

ment (Sj+1 ) we have to show that for every R̂(j) ∈ R̂
(j)
0 there exists a partition

{R(j+1)
a : a ∈ [aR0

j+1]} of Kj+1(R̂(j)) so that for every a ∈ [aR0
j+1] the following two

assertions hold

(I) R(j+1)
a is (µ∗, 1/aR0

j+1)-regular w.r.t. R̂(j) and

(II) either R(j+1)
a ⊆ Crossj+1(R

(1)
0 ) \Crossj+1(O(1)) or R(j+1)

a ⊆ O(j+1) for
some O(j+1) ∈ O(j+1).

So let R̂(j) ∈ R̂
(j)
0 and let R be the corresponding (n/aR0

1 , j + 1, j)-complex,
i.e., R = R(J ′) = {R̂(h)(J ′)}j

h=1 for any J ′ ∈ Kj+1(R̂(j)) (see (1)). From the
induction assumption we infer that R is an (µ∗, (1/aR0

1 , . . . , 1/aR0
j ))-regular com-

plex. Therefore, by the choice of µ∗ and nRL ≥ n∗ in (101) and (102) we can apply
Theorem 18 and infer that

∣∣Kj+1(R̂(j))
∣∣ ≥ 1

2

j∏
h=2

(
1

aR0
h

)(j+1
h )

×

(
n

aR0
1

)j+1

≥ nj+1

2t2
j+1

0

. (104)

Case 2.1 (R̂(j) * Crossj(O(1))). In this case we simply apply the slicing lemma,
Proposition 22, with

jSL = j + 1 , s0,SL = oRL , rSL = 1 , δ0,SL = µ∗/3 , %0,SL = 1 , and p0,SL = 1/oRL ,

to P̂(j)
SL = R̂(j) , and P(j+1)

SL = Kj+1(R̂(j)) with

sSL = aO
j+1 , δSL = µ∗/3 , %SL = 1 , and

{
pξ,SL = 1/aO

j+1 : ξ ∈ [aO
j+1]

}
.

It follows from (104) and the choice of n∗ in (101) that all assumptions of Propo-
sition 22 are satisfied for this choice of parameters. Consequently, there exist a
partition of Kj+1(R̂(j)) into aO

j+1 distinct (n/aR0
1 , j + 1, j + 1)-hypergraphs which

are (µ∗, 1/aR0
j+1)-regular w.r.t. R̂(j), i.e., (I) holds. Moreover, since we assume

R̂(j) * Crossj(O(1)) each of these (n/aR0
1 , j + 1, j + 1)-hypergraphs is contained in

Crossj+1(R
(1)
0 ) \Crossj+1(O(1)) and (II) holds. ♦

Case 2.2 (R̂(j) ⊆ Crossj(O(1))). Then there exists some Ô(j) ∈ Ô(j) such that
R̂(j) ⊆ Ô(j), since R0(j) ≺ O(j) by induction assumption. Moreover, there ex-
ists a family {O(j+1)

1 , . . . ,O(j+1)

aO
j+1

} ⊆ O(j+1) of (µRL, 1/aO
j+1)-regular (w.r.t. Ô(j))

(n/aO
1 , j+1, j+1)-hypergraphs which partition Kj+1(Ô(j)). Hence (104) yields that

Kj+1(R̂(j)) ∩ O(j+1)
a is (2t2

j+1

0 µRL, 1/aO
j+1)-regular w.r.t. R̂(j) for every a ∈ [aO

j+1].
Therefore, from the choice of µRL in (102) we infer that

{R(j+1)
a = Kj+1(R̂(j)) ∩ O(j+1)

a : a ∈ [aO
j+1]}

is a partition of Kj+1(R̂(j)) which satisfies (I). Moreover, (II) holds trivially. ♦

In both cases, Case 2.1 and Case 2.2, we defined a partition of Kj+1(R̂(j)) which
satisfies (I) and (II). Repeating the argument for every R̂(j) ∈ R̂

(j)
0 gives rise to

R
(j+1)
0 and establishes the induction step. Consequently, there exist a partition R0

which satisfies (R0.1 ) and (R0.2 ) in this case, Case 2. ♦
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Having constructed and appropriate family of partitions R0, the rest of the
proof of Lemma 23 is based on successive applications of Lemma 41. This idea was
introduced by Szemerédi in [31] and also used in [5, 6, 10, 13, 14, 16, 26].

Since R0 was constructed in such a way that (R0.1 ) and (R0.2 ) hold, we note
that due to

µd8/δ4
k+1,RLe

(99)

≤ δRL(t0, . . . , t0)
(92)

≤ δRL(aR0),

and t0 ≤ tRL (cf. (98) and (102)) the partition P = R0 satisfies (RL.P1 ) and
(RL.P2 ). If (RL.H ) holds as well, then we are done.

Otherwise we iterate Lemma 41 and infer the existence of a sequence of partitions
Ri for i ≥ 0, which satisfy (Ri.1 ) and (Ri.2 ). It then follows from Fact 33 and (103)
that there must be some 0 ≤ i0 ≤ d8/δ4

k+1,RLe such that Ri0 also admits (RL.H )
for rRL(aRi0 ). Since ti ≤ tRL (cf. (98) and (102)) and and Ri ≺ R0 ≺ O (cf. (Ri.2 )
and (R0.2 )) for every 0 ≤ i ≤ d8/δ4

k+1,RLe, P = Ri0 satisfies (RL.P1 ), (RL.P2 ),
and (RL.H ). This concludes the proof of Lemma 23 based on Lemma 41. �

6.3. Proof of the index pumping lemma. We prove Lemma 41 in this sec-
tion. The proof is mainly based on Lemma 25 and the propositions developed in
Section 6.1.

Proof of Lemma 41. Recall the definition of the constants and functions in (93)–
(102) in Section 6.2.1. Let 0 ≤ i < d8/δ4

k+1,RLe be some integer and suppose
Ri = Ri(k, aRi) satisfies (Ri.1 ) and (Ri.2 ) and fails to satisfy (H ) of RL(k + 1)
for rRL(aRi). In other words

(¬Hi ) there exist some s0 ∈ [sRL] such that H(k+1)
s0 is

(
δk+1,RL, ∗, rRL(aRi)

)
-

irregular w.r.t. Ri.

Then V , R
(1)
0 , H (k+1), and R

(k)
i satisfy the assumptions of Proposition 39 with

δ = δk+1,RL and r = rRL(aRi), due to (R0.1 ) combined with (92) and (¬Hi ).
Consequently, there exists a partition X (k) of [V ]k satisfying the conclusions (i )–
(iii ) of Proposition 39, i.e.,

(P.39.i ) X (k) ≺ R
(k)
i ≺ R

(k)
0 (cf. (Ri.2 ) for the second ‘≺’),

(P.39.ii ) |X (k)| ≤ |R(k)
i | × 2rRL(aRi )×|R̂(k)

i | ≤ si (cf. ti-boundedness of Ri in
(Ri.1 ), the monotonicity of rRL(·, . . . , ·) in (92), and the definition of si

in (96)), and
(P.39.iii ) ind(X (k)) ≥ ind(R(k)

i ) +δ4
k+1,RL/2.

The next step is to apply RAL(k), Lemma 25 to V , O = R0, and H (k) = X (k),
with constants oi, si, ηi, νi, and the function εi : Nk−1 → (0, 1] defined in (93)–(97).
For this we have to check the assumptions of Lemma 25;
(RAL.a ) |V | ≥ nRAL(oi, si, ηi, νi, εi(·, . . . , ·)) and (tRAL(oi, si, ηi, νi, εi(·, . . . , ·)))!

divides n,
(RAL.b ) R0 = R0(k, aR0) is a (η′, µ′,aR0)-equitable family of partitions (for some

η′ > 0 and µ′ ≤ µRAL(oi, si, ηi, νi, εi(·, . . . , ·))) and oi-bounded, and
(RAL.c ) s′ = |X (k)| ≤ si and X (k) ≺ R

(k)
0 .

Property (RAL.a ) is implied by (RL.a ) and the fact that for i < d8/δ4
k+1,RLe

nRL

(102)

≥ nd8/δ4
k+1,RLe

(100)

≥ ni+1

(100)

≥ nRAL(oi, si, ηi, νi, εi(·, . . . , ·))
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and that the same line of inequalities holds with n replaced by t.
It follows from the definition of oi in (96) and (R0.1 ) that R0 is oi-bounded.

Moreover, (R0.1 ) and (99) imply the required equitability of R0, which yields
(RAL.b ).

Finally, (RAL.c ) follows immediately from (P.39.i ) and (P.39.ii ).
Consequently, we can apply Lemma 25 to V , O = R0, and H (k) = X (k),

with constants oi, si, ηi, νi, and εi : Nk−1 → (0, 1]. Lemma 25 then asserts that
there exist a family of partitions S = S (k − 1,aS ), and a partition Y (k) =
{Y(k)

1 , . . . ,Y(k)
s′ } of [V ]k so that

(RAL.S1 ) S is (ηi, εi(aS ),aS )-equitable and ti+1-bounded family of partitions
(since ti+1 ≥ tRAL(oi, si, ηi, νi, εi(·, . . . , ·)) by (98)),

(RAL.S2 ) S ≺ R0(k − 1) = {R(j)
0 }k−1

j=1

(RAL.Y1 ) Y(k)
` is perfectly (εi(aS ))-regular w.r.t. S for every ` ∈ [s′],

(RAL.Y2 )
∣∣Y(k)

` 4X (k)
`

∣∣ ≤ νin
k for every ` ∈ [s′], and

(RAL.Y3 ) if X (k)
` ⊆ Crossk(R(1)

0 ) then Y(k)
` ⊆ Crossk(R(1)

0 ) for every ` ∈ [s′] and
Y (k) ≺ R

(k)
0 ≺ Crossk(R(1)

0 ).

In particular, (P.39.i ) and (RAL.Y3 ) show that X (k) and Y (k) refine Crossk(R(1)
0 ),

respectively. Hence, due to (RAL.Y2 ) and the first part of (RAL.Y3 ) the assump-
tions of Proposition 34 are satisfied for V , R

(1)
0 , H (k+1), X (k), Y (k), sP.34 = s′ ≤

si, and νP.34 = νi and, consequently, Proposition 34 yields

ind(Y (k)) ≥ ind(X (k))−3(k + 1)sRLsk+1
i νi

(96)

≥ ind(X (k))− δ4
k+1,RL

4

(P.39.iii )

≥ ind(R(k)
i ) + δ4

k+1,RL
4 . (105)

Our next temporary goal is to construct a partition Z (k) of Crossk(S (1)) which
forms a family of partitions together with S (k − 1,aS ). This means, that such
an Z (k) has to satisfy two conditions – it must partition Crossk(S (1)) and it must
refine {Kk(Ŝ(k−1)) : Ŝ(k−1) ∈ Ŝ (k−1)}. The partition Y (k) fails to satisfy any of
these two requirements. It partitions all of [V ]k (rather than only Crossk(S (1)))
and, more importantly, we cannot ensure that it refines {Kk(Ŝ(k−1)) : Ŝ(k−1) ∈
Ŝ (k−1)}. However, we easily “fix” these shortcomings of Y (k) and define Z (k) as
follows

Z (k) =
{
Y(k) ∩ Kk(Ŝ(k−1)) : Y(k) ∈ Y (k) and Ŝ(k−1) ∈ Ŝ (k−1)

}
. (106)

For convenience we set for every Ŝ(k−1) ∈ Ŝ (k−1)

Z (k)(Ŝ(k−1)) = {Z(k) ∈ Z (k) : Z(k) ∩ Kk(Ŝ(k−1)) 6= ∅} . (107)

The partition Z (k) has the following properties which we verify below.

(Z1 ) Z (k) partitions Crossk(S (1)) and Z (k) ≺ {Kk(Ŝ(k−1)) : Ŝ(k−1) ∈ Ŝ (k−1)},
(Z2 ) |Z (k)(Ŝ(k−1))| ≤ si for every Ŝ(k−1) ∈ Ŝ (k−1), and
(Z3 ) for every Ŝ(k−1) ∈ Ŝ (k−1) and Z(k) ∈ Z (k)(Ŝ(k−1)) we have that Z(k) is

(εi(aS ))-regular w.r.t. Ŝ(k−1),
(Z4 ) Z (k) ≺ R

(k)
0 ≺ Crossk(R(1)

0 ), and
(Z5 ) ind(Z (k)) ≥ ind(R(k)

i ) +δ4
k+1,RL/4 .
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Property (Z1 ) follows from the fact that Y (k) partitions all of [V ]k and the defi-
nition of Z (k) in (106). Assertion (Z2 ) is an immediate consequence of (107) and
|Y (k)| = s′ ≤ si (cf. (RAL.c )). We also note that (Z3 ) is simply a reformulation
of (RAL.Y1 ).

Hence, it is only left to verify (Z4 ) and (Z5 ). First we consider (Z4 ). For
that we first note that {Kk(Ŝ(k−1)) : Ŝ(k−1) ∈ Ŝ (k−1)} partitions a superset of
Crossk(R(1)

0 ) due to (RAL.S2 ). Consequently, (Z4 ) follows from the definition of
Z (k) in (106) and (RAL.Y3 ).

Finally we focus on (Z5 ). For that we consider the restriction of Y (k) on
Crossk(R(1)

0 ), i.e.,

Y (k)
∣∣
Crossk(R

(1)
0 )

=
{
Y(k) ∈ Y (k) : Y(k) ⊆ Crossk(R(1)

0 )
}

.

It follows from Definition 32 that the index of Y (k)
∣∣
Crossk(R

(1)
0 )

w.r.t. R
(1)
0 and

H (k+1) satisfies

ind
(
Y (k)

∣∣
Crossk(R

(1)
0 )

)
= ind(Y (k))

(105)

≥ ind(R(k)
i ) + δ4

k+1,RL
4 . (108)

On the other hand, in view of (Z4 ) the restriction of Z (k) on Crossk(R(1)
0 )

Z (k)
∣∣
Crossk(R

(1)
0 )

=
{
Z(k) ∈ Z (k) : Z(k) ⊆ Crossk(R(1)

0 )
}

is a partition of Crossk(R(1)
0 ) and, therefore, ind(Z (k)) = ind

(
Z (k)

∣∣
Crossk(R

(1)
0 )

)
.

Moreover, we observe that Z (k)
∣∣
Crossk(R

(1)
0 )

≺ Y (k)
∣∣
Crossk(R

(1)
0 )

due to (106).
Finally, Proposition 36 then yields (Z5 )

ind(Z (k)) = ind
(
Z (k)

∣∣
Crossk(R

(1)
0 )

)
≥ ind

(
Y (k)

∣∣
Crossk(R

(1)
0 )

) (108)

≥ ind(R(k)
i ) + δ4

k+1,RL
4 .

Having verified (Z1 )–(Z5 ) we come to the last part of the proof and define the
family of partitions Ri+1. The careful reader (who managed not to get lost in details
so far) will note that due to (Z1 ) the partition Z (k) together with S (k − 1,aS )
forms a family of partitions on V . Moreover, due to (RAL.S2 ) and (Z4 ) it satis-
fies (Ri+1.2 ) and due to (RAL.S1 ), (Z2 ), and (Z3 ) it “almost” satisfies (Ri+1.1 ).
But unfortunately, the densities of the Z(k) ∈ Z (k) vary and thus this family of
partitions Z (k) ∪S (k − 1,aS ) is not equitable. In the final step of this proof we
derive Ri+1 from S (k − 1,aS ) ∪ Z (k) by “cleaning the imperfections” of Z (k)

mentioned above. For that we will use the following claim, which somewhat dry
proof is based on repeated applications of Proposition 22.

Claim 42. There exist a partition T (k) of Crossk(S (1)) such that

(T1 ) T (k) ≺ {Kk(Ŝ(k−1)) : Ŝ(k−1) ∈ Ŝ (k−1)},
(T2 )

∣∣{T (k) ∈ T (k) : T (k) ⊆ Kk(Ŝ(k−1))
}∣∣ = f(si) for every fixed Ŝ(k−1) ∈

Ŝ (k−1),
(T3 ) every T (k) ∈ T (k) is

(
δRL

(
aS , f(si)

)
, 1/f(si)

)
-regular w.r.t. the unique

Ŝ(k−1) ∈ Ŝ (k−1) which satisfies T (k) ⊆ Kk(Ŝ(k−1)),
(T4 ) T (k) ≺ R

(k)
0 , and

(T5 ) T (k) is a (δ4
k+1,RL/8)-refinement of Z (k).
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We first finish the proof of Lemma 41 and give the proof of Claim 42, which
makes use of (Z1 )–(Z4 ), afterwards. In order to conclude the proof of Lemma 41 we
have to define a family of partitions Ri+1 on V , which satisfies (Ri+1.1 ), (Ri+1.2 ),
and (103). With this in mind we set

aRi+1 =
(
aS
1 , . . . , aS

k−1, f(si)
)
,

R
(j)
i+1 =

{
S (j) for j ∈ [k − 1]
T (k) for j = k

and Ri+1(k, aRi+1) =
{
R

(j)
i+1

}k

j=1
.

We now first show that Ri+1 = Ri+1(k, aRi+1) is a family of partitions on V .
Due to the fact that S (k − 1,aS ) is a family of partitions on V , we only have
to verify that R

(k)
i+1 = T (k) fulfills both requirements of part (ii ) of Definition 10.

However, this is immediate from (T1 ) and (T2 ).
Next we consider (Ri+1.1 ). Note that (RAL.S1 ) (combined with (97)) and (T3 )

show that Ri+1 is (ηRL, δRL(aRi+1),aRi+1)-equitable. Moreover, (RAL.S1 ) and the
choice of ti+1 ≥ f(si) in (98) imply that maxj∈[k] a

Ri+1
j ≤ ti+1. In other words,

Ri+1 is ti+1-bounded and (Ri+1.1 ) holds.
The property (Ri+1.2 ) follows from (RAL.S2 ) and (T4 ) and (103) is a conse-

quence of (Z5 ) and (T5 ), combined with Proposition 38.
Hence Ri+1 has the desired properties and we conclude the proof of Lemma 41

based on Claim 42. �

Proof of Claim 42. We have to show that there is a partition T (k) of Crossk(S (1))
satisfying (T1 )–(T5 ). For technical reasons we first extend the partition R

(k)
0 from

a partition of Crossk(R(1)
0 ) to a partition of [V ]k and we set

R̃(k) = [V ]k \ Crossk(R(1)
0 ) and R̃

(k)
0 = R

(k)
0 ∪ R̃(k) . (109)

In view of (T1 ) and (T4 ) it seems natural to define T (k) separately for every pair

Ŝ(k−1) ∈ Ŝ (k−1) , R(k) ∈ R̃
(k)
0 satisfying Kk(Ŝ(k−1)) ∩R(k) 6= ∅ . (110)

In fact, we will prove the following claim.

Claim 42′. For every pair Ŝ(k−1), R(k) satisfying (110) there exists a partition
T (k)(Ŝ(k−1),R(k)) of Kk(Ŝ(k−1)) ∩R(k) satisfying the following properties
(T2 ′) ∣∣T (k)(Ŝ(k−1),R(k))

∣∣ = { f(si)

a
R0
k

if R(k) 6= R̃(k) , 4

f(si) if R(k) = R̃(k) ,

(T3 ′) every T (k) ∈ T (k)(Ŝ(k−1),R(k)) is
(
δRL(aS , f(si)), 1/f(si)

)
-regular w.r.t.

Ŝ(k−1),
(T5 ′) and∣∣⋃{

T (k) : T (k) ∈ T (k)(Ŝ(k−1),R(k)) and T (k) * Z(k) ∀Z(k) ∈ Z (k)
}∣∣

≤ δ4
k+1,RL

8

∣∣Kk(Ŝ(k−1)) ∩R(k)
∣∣ .

4Note that f(si)/aR0
k is an integer since aR0

k ≤ t0 (cf. (R0.1 )) and due to the fact that the

definition of the function f(·) in (95) ensures that f(si) is a multiple of (t0)!.
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Before we verify Claim 42′, we deduce Claim 42 from it. So let T (k)(Ŝ(k−1),R(k))
be given for every Ŝ(k−1), R(k) satisfying (110). We then set

T (k) =
⋃{

T (k)(Ŝ(k−1),R(k)) : Ŝ(k−1) and R(k) satisfy (110)
}

.

Clearly, T (k) is a partition of Crossk(S (1)), since R̃
(k)
0 is a partition of [V ]k

(cf. (109)). Furthermore, (T1 ) and (T4 ) are immediate since we constructed T (k)

separately on Kk(Ŝ(k−1)) ∩ R(k). Moreover, it is easy to see that (T2 ), (T3 ), and
(T5 ) are implied by its “prime” counterpart.

This finishes the reduction of Claim 42 to Claim 42′, which is the last missing
piece in the proof of the implication RAL(k) =⇒ RL(k + 1). �

Below we prove Claim 42′. The proof resembles some ideas from [20, Section 5].
The main tool in that proof is the somewhat technical slicing lemma, Proposition 22
and we first give an informal outline to convey the idea.

Suppose Ŝ(k−1) and R(k) satisfy (110). Let Z (k)(Ŝ(k−1),R(k)) be the collection
of those partition classes Z(k) of Z (k) which are contained in Kk(Ŝ(k−1)) ∩ R(k),
i.e.,

Z (k)(Ŝ(k−1),R(k)) =
{
Z(k) ∈ Z (k) : Z(k) ⊆ Kk(Ŝ(k−1)) ∩R(k)

}
. (111)

Note that due to (Z1 ) and (Z4 ){
Z(k) : Z(k) ∈ Z (k)(Ŝ(k−1),R(k))

}
partitions Kk(Ŝ(k−1)) ∩R(k) . (112)

Indeed by (Z1 ), Z (k) has each of its partition classes completely within or outside
Kk(Ŝ(k−1)) and by (Z4 ) the same is true for R(k).

We will use the slicing lemma twice. In the first round we apply the slic-
ing lemma separately to each Z(k) ∈ Z (k)(Ŝ(k−1),R(k)) to slice it in such a
way that all but at most one slice (“leftover” part) has density 1/f(si) w.r.t.
Ŝ(k−1). On the other hand, we infer from the choice of µi+1 ≥ µd8/δ4

k+1,RLe and

(R0.1 ) that Kk(Ŝ(k−1)) ∩R(k) is still (δ′, 1/aR0
k )-regular with δ′ � δRL(aS , f(si))

(cf. (99)). (In the special case R(k) = R̃(k) we have (δ′, 1)-regularity for any δ′ > 0.)
Consequently, the union of the earlier produced “leftovers” must have a density
very close to a multiple of 1/f(si), since it is Kk(Ŝ(k−1)) ∩ R(k) minus regular
pieces of density 1/f(si). Therefore, we can use the slicing lemma again (sec-
ond round) to “recycle” the “leftovers”, splitting it into regular pieces of density
1/f(si) and the “recycled” partition will satisfy (T2 ′) and (T3 ′). Finally, we will
show that it also exhibits (T5 ′) since we chose f(·) in (95) in such a way that
|Z (k)(Ŝ(k−1),R(k))| × 1/f(si) ≤ si/f(si) � δk+1,RL/8, which is an upper bound
on the density of the union of the “leftovers”.

Below we give the technical details of the plan outlined above.

Proof of Claim 42 ′. Let Ŝ(k−1) ∈ Ŝ (k−1) and R(k) ∈ R̃
(k)
0 satisfying (110) be

given. We start with a few observations. From the choice of the function εi in (97)
and ni in 100 combined with (S1 ) we infer by Theorem 18 that

∣∣Kk(Ŝ(k−1))
∣∣ ≥ 1

2

k−1∏
j=2

(
1

aS
j

)(k
j)
×
(

n

aS
1

)k

≥ nk

2t2
k

i+1

. (113)
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Suppose R(k) 6= R̃(k). Let R̂(k−1) be the polyad in R̂
(k−1)
0 such that R(k) ⊆

Kk(R̂(k−1)). Since, S (k−1) ≺ R
(k−1)
0 (cf. (RAL.S2 )) and R(k) ∩ Kk(Ŝ(k−1)) 6= ∅

(cf. (110)) we have that Ŝ(k−1) ⊆ R̂(k−1). Consequently, we infer from (113) and
(R0.1 ) that if R(k) 6= R̃(k) then

R(k) ∩ Kk(Ŝ(k−1)) is
(
2t2

k

i+1µd8/δ4
k+1,RLe, 1/aR0

k

)
-regular w.r.t. Ŝ(k−1) .

Moreover, if R(k) = R̃(k), then assumption (110) yields that Kk(Ŝ(k−1)) ⊆ R(k)

and R(k) ∩Kk(Ŝ(k−1)) is (δ′, 1)-regular w.r.t. Ŝ(k−1) for every δ′ > 0. Therefore, in
view of

µd8/δ4
k+1,RLe ≤ µi+1

(99)

≤ δRL(ti+1, . . . , ti+1, f(si))
12t2

k

i+1

(RAL.S1 )

≤ δRL(aS , f(si))
12t2

k

i+1

we have for every R(k) ∈ R̃
(k)
0 that

R(k) ∩ Kk(Ŝ(k−1)) is
(

1
6δRL(aS , f(si)), dR(k)

)
-regular w.r.t. Ŝ(k−1) , (114)

where

dR(k) =

{
1/aR0

k if R(k) 6= R̃(k)

1 if R(k) = R̃(k)
. (115)

Furthermore, we infer from (114) combined with dR(k) ≥ 1/aR0
k ≥ 1/t0 (cf. (R0.1 ))

that

d
(
R(k)|Ŝ(k−1)

)
≥ 1

t0
− 1

6
δRL(aS , f(si))

(94)
> max

{
1
3
δRL

(
aS , f(si)

)
,

2
3t0

}
. (116)

Recall the definition Z (k)(Ŝ(k−1),R(k)) from (111) and let {Z(k)
1 , . . . ,Z(k)

z } be an
enumeration of its members. Clearly, Z (k)(Ŝ(k−1),R(k)) ⊆ Z (k)(Ŝ(k−1)) (cf. (107))
and due to (Z2 ) we have

z ≤ si . (117)

Our plan is to apply the slicing lemma to every member Z(k)
j of Z (k)(Ŝ(k−1),R(k)).

For that we have to satisfy the assumptions of the slicing lemma among which we
have to ensure that d(Z(k)

j |Ŝ(k−1)) is not “too small”. However, since the Z(k)
j arose

from an application of RAL(k), we only have limited control over their densities,
which leads to the following definition

ZTHIN =
{

j ∈ [z] : d
(
Z(k)

j |Ŝ(k−1)
)

< 1
f(si)

}
. (118)

Moreover, for every j ∈ [z] we set

ζj =
⌊
f(si)× d

(
Z(k)

j |Ŝ(k−1)
)⌋

. (119)

Clearly, ζj > 0 if and only if j 6∈ ZTHIN. We now apply the slicing lemma, Propo-
sition 22, for every j ∈ [z] \ ZTHIN separately with

jSL = k , s0,SL = s27 , rSL = 1 , δ0,SL = εi

( (k−1)-times︷ ︸︸ ︷
ti+1, . . . , ti+1

)
, %0,SL = 1

f(si)
,

and p0,SL = 1
f(si)

, to P̂(k−1)
SL = Ŝ(k−1) , and P(k)

SL = Z(k)
j withsSL = ζj ,

δSL = εi(aS ) , %SL = d(Z(k)
j |Ŝ(k−1)) , and

{
pξ,SL =

1/f(si)

d(Z(k)
j |Ŝ(k−1))

: ξ ∈ [ζj ]
}

.
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It follows from (113) that the assumption (i ) of Proposition 22 is satisfied for
P̂(k−1)

SL = Ŝ(k−1).
Moreover, (ii ) is a consequence of (Z3 ) (yielding the (δSL, %SL, rSL)-regularity

of P(k)
SL = Z(k)

j ), the definition of ZTHIN (yielding %SL ≥ %0,SL), (RAL.S1 ) and
the monotonicity of the function εi (yielding δSL ≥ δ0,SL), and the choice of εi

in (97) (yielding %0,SL ≥ 2δSL). Furthermore, assumption (iii ) of Proposition 22
is a consequence of the fact that d(Z(k)

j |Ŝ(k−1)) ≤ 1 (yielding pξ,SL ≥ p0,SL for
ξ ∈ [ζj ] = {1, . . . , ζj} and the choice of the integer parameter ζj in (119) (yielding∑

ξ∈[ζj ]
pξ,SL ≤ 1).

Having verified the assumptions of Proposition 22 for every j ∈ [z] \ ZTHIN, we
infer that for every such j there exists a family

{
T (k)

j,0 , T (k)
j,1 , . . . , T (k)

j,ζj

}
such that{

T (k)
j,0 , T (k)

j,1 , . . . , T (k)
j,ζj

}
partitions Z(k)

j , (120)

T (k)
j,ξ is

(
3εi(aS ), 1/f(si)

)
-regular w.r.t. Ŝ(k−1) for every ξ = 1, . . . , ζj , and (121)

T (k)
j,0 is (3εi(aS ), dj,0)-regular

for some 0 ≤ dj,0 ≤ d(Z(k)
j |Ŝ(k−1))− ζj

f(si)

(119)

≤ 1
f(si)

. (122)

Unfortunately, the “leftover” hypergraph T (k)
j,0 might not be empty and has a

density differing from 1/f(si). Moreover, in general ZTHIN is not empty and we
have to recycle the “leftovers” T (k)

j,0 with j 6∈ ZTHIN and the hypergraphs Z(k)
j with

j ∈ ZTHIN. For that we consider their union

U (k) =
⋃

j∈[z]\ZTHIN

T (k)
j,0 ∪

⋃
j∈ZTHIN

Z(k)
j . (123)

Clearly, U (k) is the complement of
⋃

j∈[z]\ZTHIN

⋃
ξ∈[ζj ]

T (k)
j,ξ in R(k) ∩ Kk(Ŝ(k−1)).

Consequently, in view of (121), |ZTHIN| ≤ z ≤ si (cf. (117)), and (114) an applica-
tion of Proposition 19 yields that

U (k) is
(

1
6δRL(aS , f(si)) + 3εi(aS )si, dR(k) −

P
j 6∈ZTHIN

ζj

f(si)

)
-regular w.r.t. Ŝ(k−1) .

(124)
Recall, that dR(k) is an integer multiple of 1/f(si). (This is obvious if R(k) = R̃(k)

since f(si) is an integer-valued function. Moreover, if R(k) 6= R̃(k), then dR(k) =
1/aR0

k which is a multiple of 1/f(si) since (t0)! divides f(si) (cf. (95)) and t0 ≥ aR0
k

(cf. (R0.1 )).) Consequently,

dR(k) −
∑

j 6∈ZTHIN
ζj

f(si)
=

u

f(si)
for some integer 0 ≤ u ≤ f(si) . (125)

This observation and the choice of the function εi in (97) allows us to rewrite (124)

U (k) is
(

1
3δRL(aS , f(si)), u

f(si)

)
-regular w.r.t. Ŝ(k−1) . (126)

The further treatment of U (k) depends on the value of and we consider two cases.

Case 1 (u = 0). Note that the assumption u = 0 and (126) not necessarily implies
that U (k) = ∅. It rather yields, that

d
(
U (k)|Ŝ(k−1)

)
≤ 1

3δRL

(
aS , f(si)

)
.
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On the other hand, by (116)

d
(
R(k)|Ŝ(k−1)

)
> 1

3δRL(aS , f(si)) .

Therefore, from (112), we infer that ZTHIN 6= [z] and there exist some j0 ∈ [z] \
ZTHIN with ζj0 ≥ 1 and hence T (k)

j0,1 exists. We then define, the promised partition
T (k)(Ŝ(k−1),R(k)) as follows

T (k)(Ŝ(k−1),R(k)) =
{
T (k)

j,ξ : j ∈ [z] \ ZTHIN, j 6= j0, and ξ ∈ [ζj ]
}

∪
{
T (k)

j0,ξ : ξ = 2, . . . , ζj

}
∪
{
T (k)

j0,1 ∪ U
(k)
}

.

It follows from the definition of U (k) in (123) in conjunction with (120) and (112)
that T (k)(Ŝ(k−1),R(k)) defined above indeed partitions Kk(Ŝ(k−1)) ∩ R(k). We
conclude this case with the verification of properties (T2 ′), (T3 ′), and (T5 ′).

First we consider (T2 ′). Clearly,
∣∣T (k)(Ŝ(k−1),R(k))

∣∣ =
∑

j∈[z]\ZTHIN
ζj . So in

view of (125), we infer from the assumption u = 0 in this case, that

∣∣T (k)(Ŝ(k−1),R(k))
∣∣ = ∑

j∈[z]\ZTHIN

ζj = dR(k)×f(si)
(115)
=

{
f(si)

a
R0
k

if R(k) 6= R̃(k)

f(si) if R(k) = R̃(k)
,

which is (T2 ′).
Since εi(aS ) ≤ 1

3δRL(aS , f(si)) (cf. (97)), (121) guarantees (T3 ′) for all mem-
bers of T (k)(Ŝ(k−1),R(k)) with exception T (k)

j0
∪U (k). Consequently, verifying (T3 ′)

reduces to showing that

T (k)
j0,1 ∪ U

(k) is
(
δRL(aS , f(si)), 1/f(si)

)
-regular w.r.t. Ŝ(k−1) . (127)

However, this follows from (121) and (126) by Proposition 19, since u = 0 and since
by the choice in (97) we have 3εi(aS ) ≤ 2

3δRL(aS , f(si)).
Finally, we consider (T5 ′). Here we note that due to the definition of the parti-

tion T (k)(Ŝ(k−1),R(k)) it suffices to show that

d
(
T (k)

j0,1 ∪ U
(k)|Ŝ(k−1)

)
≤

δ4
k+1,RL

8
d
(
R(k)|Ŝ(k−1)

)
. (128)

For that we first derive from (127) combined with the definition of the function f(·)
in (95) and the bound from (94) that

d
(
T (k)

j0,1 ∪ U
(k)|Ŝ(k−1)

) (127)

≤ 1
f(si)

+ δRL(aS , f(si)) ≤
δ4
k+1,RL

12t0
. (129)

Therefore, (128) follows from (129) and (116). This concludes the proof of Claim 42′

in this case. ♦

Case 2 (u > 0). Recall, due to (126), is U (k)
(

1
3δRL(aS , f(si)), u

f(si)

)
-regular

w.r.t. Ŝ(k−1). In this case we are going to apply the slicing lemma to “recycle”
the edges of U (k), i.e., to partition it into regular pieces of density 1/f(si). More
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precisely, we apply Proposition 22 with

jSL = k , s0,SL = f(si) , rSL = 1 , δ0,SL = 1
3δRL(

(k−1)-times︷ ︸︸ ︷
ti+1, . . . , ti+1, f(si)) ,

%0,SL = 1
f(si)

, and p0,SL = 1
f(si)

, to P̂(k−1)
SL = Ŝ(k−1) , and P(k)

SL = U (k) with

sSL = u , δSL =
1
3
δRL(aS , f(si)) , %SL =

u

f(si)
, and

{
pξ,SL =

1
u

: ξ ∈ [u]
}

.

It follows from (113) that the assumption (i ) of Proposition 22 is satisfied for
P̂(k−1)

SL = Ŝ(k−1). Moreover, (ii ) follows from (126) (yielding the (δSL, %SL, rSL)-
regularity of P(k)

SL = U (k)
j ), the assumption of the case u ≥ 1 (yielding %SL ≥

%0,SL), (RAL.S1 ) and the monotonicity (cf. (92)) of the function δRL (yielding
δSL ≥ δ0,SL), and of (94) (yielding %0,SL ≥ 2δSL). Furthermore, note that pξ,SL ≥
p0,SL, since u ≤ f(si) (cf. (125)) and that that∑

ξ∈[u]

pξ,SL = 1 . (130)

Consequently, assumption (iii ) of Proposition 22 holds for the choice of parameters
above.

Having verified the assumptions of Proposition 22, we infer that there exists a
family

{
U (k)

1 , . . . ,U (k)
u

}
(note that due to (130) there is “leftover” class U (k)

0 ) such
that {

U (k)
1 , . . . ,U (k)

u

}
partitions U (k) (131)

U (k)
ξ is

(
δk,RL(aS , f(si)), 1/f(si)

)
-regular w.r.t. Ŝ(k−1) for every ξ ∈ [u] . (132)

We finally define the required family T (k)(Ŝ(k−1),R(k)) in a straightforward man-
ner

T (k)(Ŝ(k−1),R(k))=
{
T (k)

j,ξ : j ∈ [z]\ZTHIN and ξ ∈ [ζj ]
}
∪
{
U (k)

1 , . . . ,U (k)
u

}
. (133)

Again it directly follows from the definition of U (k) in (123) in conjunction with (131)
and (112) that T (k)(Ŝ(k−1),R(k)) defined above partitions Kk(Ŝ(k−1)) ∩R(k) and
it is left to verify (T2 ′), (T3 ′), and (T5 ′) for this partition.

First we consider (T2 ′). By the definition of T (k)(Ŝ(k−1),R(k)) we have

∣∣T (k)(Ŝ(k−1),R(k))
∣∣ = ∑

j∈[z]\ZTHIN

ζj +u
(125)
= dR(k)f(si)

(115)
=

{
f(si)

a
R0
k

if R(k) 6= R̃(k)

f(si) if R(k) = R̃(k)
,

which is (T2 ′).
Property (T3 ′) is immediate from (132) and (121) combined with the choice of

the function εi in (97), which easily ensures 3εi(aS ) ≤ δRL(aS , f(si)).
Finally, we discuss property (T5 ′). Due to (120) and due to the definition of

T (k)(Ŝ(k−1),R(k)) in (133), the left-hand side of (T5 ′) is bounded by
∣∣U (k)

∣∣ and
thus it suffices to show that

d
(
U (k)|Ŝ(k−1)

)
≤

δ4
k+1,RL

8
d
(
R(k)|Ŝ(k−1)

)
. (134)
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From the definition of U (k) in (123), combined with (122) and the definition of
ZTHIN in (118) we infer that

d
(
U (k)|Ŝ(k−1)

)
≤
∣∣[z] \ ZTHIN

∣∣( 1
f(si)

+ 3εi(aS )
)

+
∣∣ZTHIN

∣∣ 1
f(si)

(117)

≤ si

f(si)
+ 3εi(aS )si ,

which by definition of f(·) in (95) and (97) gives d
(
U (k)|Ŝ(k−1)

)
≤ δ4

k+1,RL/(12t0) .

Therefore, (134) follows from the last inequality and (116). This verifies (Z5 ′),
which finishes the proof of Claim 42′ in this case. ♦

In both cases we constructed a partition T (k)(Ŝ(k−1),R(k)) of Kk(Ŝ(k−1))∩R(k),
which exhibits properties (T2 ′), (T3 ′), and (T5 ′), as required in Claim 42′. �
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1, 2
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