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614 J. Bang-Jensen, B. Reed, M. Shaht, R. �S�amal, B. Toft and U. Wagner1 Minimally Asymmetri Oriented GraphsLet G be an oriented graph. Suppose G is asymmetri, but every vertex-deleted subgraph G� v fails to be asymmetri. Is it true that G must be K1?Jaroslav Ne�set�ril, Oberwolfah seminar, 1988A (di)graph is asymmetri if its automorphism group is trivial, that is,ontains only the identity element. A (di)graph is symmetri if it has at leastone non-trivial automorphism. An asymmetri (di)graphG isminimally asym-metri if G is asymmetri, but G� v is symmetri for every vertex v of G.The problem was posed by Ne�set�ril at several onferenes and aordingto W�ojik [W�oj96℄ at least as early as during the Oberwolfah seminar in1988. It is probably even older than that. At the Oberwolfah seminar in1988 Ne�set�ril also onjetured that there are only �nitely many minimallyasymmetri undireted graphs.In [NS92℄ and [Sab91℄ undireted minimally asymmetri graphs are stud-ied. It turns out [Sab91℄ that a useful property to use in this ontext is thelength � of a longest indued path. It is shown in that paper that there are nominimally asymmetri graphs with � � 6 and preisely two minimally asym-metri graphs with � = 5. In [NS92℄ it is shown that there are exatly seven�nite minimal asymmetri graphs with � = 4.Clearly, for every minimally asymmetri graph G one obtains a minimallyasymmetri digraph D by replaing eah edge of G by a direted 2-yle. Anoriented graph is a digraph obtained from a graph by orienting eah of itsedges. In partiular an oriented yle is obtained form an undireted yle inthis way. In [W�oj96℄ W�ojik proved the following result. Reall that a yle issymmetri if it has a non-trivial automorphism.Theorem 1.1. Every minimally asymmetri digraph ontains a symmetriyle.This implies in partiular that there are no minimally asymmetri trees(a fat also proved earlier by Ne�set�ril) and that the onjeture holds formany lasses of asymmetri ayli digraphs. One example is a transitivetournament. Note that ayli digraphs may ontain symmetri yles (e.g.1 ! 2  3 ! 4  1 whih has a non-trivial automorphism without �x-points) so Theorem 1.1 does not immediately seem to imply that there are nominimally asymmetri ayli digraphs.Referenes[Ne�s71℄ J. Ne�set�ril, A ongruene theorem for asymmetri trees, Pai� Journal ofMathematis 37, 771{778.



On Six Problems Posed by Jarik Ne�set�ril 615[Ne�s99℄ J. Ne�set�ril, Asymmetri graphs and olouring problems, Problems presentedat the 6th midsummer ombinatorial workshop, Prague 1999.[NS92℄ J. Ne�set�ril and G. Sabidussi, Minimal asymmetri graphs of induedlength 4, Graphs and Combinatoris 8 (1992), 343{359.[Sab91℄ G. Sabidussi, Clumps, minimal asymmetri graphs, and involutions, J.Combin. Th. Ser. B 53 (1991), 40{79.[W�oj96℄ P. W�ojik, On automorphisms of digraphs without symmetri yles, Com-ment. Math. Univ. Carolinae 37 (1996), 457{467.2 Partition into Indued Mathings alias The StrongChromati IndexThe edges of a graph G of maximum degree � an be partitioned into at most54�2 olour lasses, eah of whih indues a mathing.Paul Erd}os and Jaroslav Ne�set�ril, a ombinatorialseminar at Charles University, Prague, 1985This onjeture was made by Erd}os and Ne�set�ril at a ombinatorial semi-nar at Charles University in Prague in 1985. One year later it was presentedat Colloquium on Irregularities of Partitions in Fert}od, Hungary (see [EN89℄).For every graph H , the hromati number of H is at most �(H) + 1 and thehromati number of its square is at most �(H)2 + 1. Vizing's theorem tellsus that for line graphs, we an improve the �rst result, essentially by a fatorof 2. The onjeture above suggests that a similar improvement is possible forthe seond result.Erd}os and Ne�set�ril had notied that if we take a yle of length �ve andreplae eah vertex by a stable set of size k, joining two new verties preiselyif the orresponding two verties of the �ve yle are adjaent, then the squareof the line graph of the resultant graph is a lique. This shows that the aboveonjeture is tight when � is even. For odd �, Erd}os and Ne�set�ril atuallymade the stronger onjeture that the hromati number of the square of aline graph of maximum degree � is at most 54�2� �2 + 14 , whih again is tightbeause of a similar example.The onjeture was proven for � = 3 by Andersen [And92℄ and indepen-dently Horak et al [HQT93℄. Cranston [Cra06+℄ proved that the hromatinumber of the square of a line graph of a graph of maximum degree � = 4 isat most 22, improving on the bound of 23, obtained by Horak [Hor90℄. Notethat this does not quite math the onjetured bound of 20. For larger �, Mol-loy and Reed [MR97℄ showed that there is an " > 0 suh that the hromatinumber of the square of the line graph of G is at most (2� ")�(G)2.It is not even known if the lique number of the square of the line graphof G is at most 54�(G)2, although Chung et al. [CGTT90℄ did prove that agraph G whose line graph is a lique has at most 54�(G)2 edges.



616 J. Bang-Jensen, B. Reed, M. Shaht, R. �S�amal, B. Toft and U. WagnerInspired by the above onjeture, Faudree et al. [FGST90℄ proved that forbipartite G, the lique number of the line graph of G is at most �2. K�;�shows that this bound is tight. They onjetured the same bound holds forthe hromati number ([FGST89℄ see also [BQ93℄).If every edge of G is in 34�(G)2 yles of length four, then the square ofthe line graph of G has maximum degree less than 54�(G)2 � 1, so the resultfollows from Brooks' Theorem. Mahdian [Mah00℄ proved that if G has no C4then the square of its line graph has hromati index o(�(G)2). These twoomplementary results provide strong evidene that the onjeture holds, atleast asymptotially. We refer the reader to Mahdian's M.S. thesis for a fullerdisussion of this onjeture, inluding the origin of the use of the term strongedge olouring for a partition into indued mathings, and strong hromatiindex for the hromati number of the square of the line graph.Referenes[And92℄ L.D. Andersen, The strong hromati index of a ubi graph is at most10, Disrete Mathematis 108 (1992), 231{252.[BQ93℄ R.A. Brualdi and J. J. Quinn Massey, Inidene and strong edge olour-ings of graphs, Disrete Mathematis 122 (1993), 51{58.[CGTT90℄ F.R.K. Chung, A. Gy�arf�as, W. T. Trotter, and Z. Tuza, The maxi-mum number of edges in 2K2-free graphs of bounded degree, DisreteMathematis 81(1990), 129{135.[Cra06+℄ D. Cranston, A strong edge oloring of graphs of maximum degree 4using 22 olours, submitted (see www.math.uiu.edu/~ranston).[EN89℄ P. Erd}os and J. Ne�set�ril, Problem, pp. 162{163 in G. Hal�asz and V.T.S�os (eds.), Irregularities of Partitions, 1989.[FGST89℄ R. J. Faudree, A. Gy�arf�as, R.H. Shelp, and Z. Tuza, Indued Mathingsin Bipartite Graphs, Disrete Mathematis 78 (1989), 83{87.[FGST90℄ R. J. Faudree, A. Gy�arf�as, R.H. Shelp, and Z. Tuza, The strong hro-mati index of graphs, Ars Combinatoria 29B (1990), 205{211.[Hor90℄ P. Horak, The strong hromati index of graphs of maximum degree four,pp. 399{403 in R. Bodendeik (Ed.) Contemporary Methods in Graph The-ory, 1990.[HQT93℄ P. Horak, H. Qing, and W.T. Trotter, Indued mathings in ubi graphs,Journal of Graph Theory 17 (1993), 151{160.[Mah00℄ M. Mahdian, The strong hromati index of C4-free graphs, RandomStrutures and Algorithms 17, pp. 357{375, 2000.[MR97℄ M. Molloy and B. Reed, A bound on the strong hromati index of agraph, Journal of Combinatorial Theory (B) 69 (1997), 103{109.



On Six Problems Posed by Jarik Ne�set�ril 6173 A Ramsey-type Problem on the IntegersLet k � 3 be �xed. We ask if there exist a Æ > 0 and a set A � N with thefollowing properties:(i) for every integer ` � 2 every �nite partition A1 _[A2 _[ � � � _[A` = A yieldsone partition lass ontaining a k-AP, i.e., an arithmeti progression oflength k and(ii) every �nite subset A0 � A ontains a dense subset A00 � A0, jA00j � ÆjA0jontaining no k-AP.Paul Erd}os, Jaroslav Ne�set�ril, and Vojt�eh R�odlin [ENR90℄.\It was in the summer of 1983, when Paul Erd}os ame to Pragueand, as usual, desribed many new onjetures that he �rst introduedJarik and me to the problem of Pisier. We were initially optimistias we thought our experiene with ramsey type onstrutions mightyield some results. However, after several failed attempts we began tosuspet that Pisier's problem was beyond the sope of our abilities. Still,despite our disapointment, we found the problem very ompelling andso, together with Paul Erd}os, we onsidered several alternate versionsof the original onjeture. The question presented here is one of thosevariations that, like the original problem, resisted all our e�orts."Vojt�eh R�odlThis problem is motivated by the well known theorems of van der Waer-den [Wae27℄ and Szemer�edi [Sze75℄. The theorem of van der Waerden [Wae27℄is one of the earliest results in Ramsey theory. It asserts that every �nitepartition of the integers yields one partition lass ontaining an arithmetiprogression of any �xed length. More preisely, for positive integers k and `,we say a set of integers A has the van-der-Waerden-property vdW(k; `) if forevery partition A1 _[A2 _[ � � � _[A` = A there is some i (1 � i � `) suh that Aiontains a k-AP, i.e., an arithmeti progression of length k. The theorem ofvan der Waerden an then be stated as follows.Theorem 3.1 (van der Waerden (1927)). For all integers k � 3 and ` � 2there exist nvdW = nvdW(k; `) suh that for every n � nvdW the set [n℄ =f1; 2; : : : ; ng has vdW(k; `).Solving a longstanding standing onjeture of Erd}os and Tur�an [ET36℄ Sze-mer�edi proved the following famous generalization of Theorem 3.1, whih stim-ulated a lot of researh and today several proofs using tools from quite di-verse areas of mathematis are known [Fur77, Gow06+, Gow01, NRS06, RS04,Tao06+b℄ (see also [Tao06+a℄ for a survey of those proofs).Theorem 3.2 (Szemer�edi (1975)). For every integer k � 3 and Æ > 0 thereexist nSz = nSz(k; Æ) suh that for every n � nSz every subset A � [n℄ withjAj � Æn ontains a k-AP.



618 J. Bang-Jensen, B. Reed, M. Shaht, R. �S�amal, B. Toft and U. WagnerSimilarly as above we say a �nite set of integers A has the Szemer�edi-property Sz(k; Æ) if every subset A0 � A with jA0j � ÆjAj ontains a k-AP.Then Szemer�edi's theorem asserts that every suÆiently large subset of the�rst n integers has Sz(k; Æ). Moreover, sine Theorem 3.2 implies Theorem 3.1,it implies, e.g., that every suÆiently large arithmeti progression A displaysboth properties vdW(k; `) and Sz(k; Æ) and one may wonder if all sets ofintegers admitting the van-der-Waerden-property may have the Szemer�edi-property as well. That would be somewhat surprising and a proof of suh astatement would give a new proof of Szemer�edi's theorem. Erd}os, Ne�set�ril, andR�odl [ENR06+, ENR90℄ onjetured that this is not true. In other words, theyonjetured that for �xed k � 3 there exist Æ > 0 and a set A � N whih, onone hand, has the van-der-Waerden-property vdW(k; `) for every `, but, onthe other hand, no �nite subset A0 � A has the Szemer�edi-property Sz(k; Æ).For the ase k = 3 a related question (motivated by this problem) was on-sidered by Davenport, Hindman, and Strauss [DHS02℄.The problem was also motivated by \negative" results onerning problemsrelated to the well known problem of Pisier (see Problem 3.3 below). Supposesome family I of subsets of the integers is given. We all the elements I 2 Iindependent sets. For an integer k � 3 let Ik = fI � N: I ontains no k-APg.Then showing that no suh set A with properties (i ) and (ii ) in the statementof the problem exists means to prove the following. For every Æ > 0 andA � N there exist ` suh that if every �nite subset A0 � A ontains anindependent set A00 2 Ik of size jA00j � ÆjA0j, then A = A1 _[A2 _[ : : : _[A` anbe partitioned into ` independent sets, i.e., Ai 2 Ik for every i = 1; 2; : : : ; `.This formulation is formally related to Pisier's problem. To state this problemwe say a set I � N is independent if all �nite sums of I are distint, i.e., forall �nite, distint subsets I1, I2 � IXx2I1 x 6=Xx2I2 xand let IP be the olletion of all those sets. In [Pis83℄ Pisier asked whetherthe following is true.Problem 3.3 (Pisier (1983)). For every Æ > 0 and A � N there exist ` suhthat if every �nite subset A0 � A ontains an independent set A00 2 IP of sizejA00j � ÆjA0j, then A = A1 _[A2 _[ : : : _[A` an be partitioned into ` independentsets, i.e., Ai 2 IP for every i = 1; 2; : : : ; `.The aÆrmative answer of Problem 3.3 would give an arithmeti harateriza-tion of Sidon sets in terms of this ondition.As pointed out in [ENR06+℄ there are only very few non-trivial notions ofindependent families known, for whih the Pisier-type problem was solved inthe aÆrmative way. In [ENR06+℄ a few \negative" examples were shown, i.e.,results whih are formally similar to the problem.



On Six Problems Posed by Jarik Ne�set�ril 619Referenes[DHS02℄ D. Davenport, N. Hindman, and D. Strauss, Triangle free sets and arith-meti progressions { two Pisier type problems, Eletroni J. Combina-toris 9 (2002), no. #R22, 1{19.[ET36℄ P. Erd}os and P. Tur�an, On some sequenes of integers, J. London. Math.So. 11 (1936), 261{264.[ENR06+℄ P. Erd}os, J. Ne�set�ril, and V. R�odl, On olorings and independent sets(Pisier type theorems), submitted.[ENR90℄ P. Erd}os, J. Ne�set�ril, and V. R�odl, On Pisier type problems and results(ombinatorial appliations to number theory), Mathematis of Ramseytheory, Algorithms Combin., vol. 5, Springer, Berlin, 1990, pp. 214{231.[Fur77℄ H. Furstenberg, Ergodi behavior of diagonal measures and a theoremof Szemer�edi on arithmeti progressions, J. Analyse Math. 31 (1977),204{256.[Gow06+℄ W.T. Gowers, Hypergraph regularity and the multidimensional Sze-mer�edi theorem, submitted.[Gow01℄ W.T. Gowers, A new proof of Szemer�edi's theorem, Geom. Funt. Anal.11 (2001), no. 3, 465{588.[NRS06℄ B. Nagle, V. R�odl, and M. Shaht, The ounting lemma for regular k-uniform hypergraphs, Random Strutures Algorithms 28 (2006), no. 2,113{179.[Pis83℄ G. Pisier, Arithmeti haraterizations of Sidon sets, Bull. Amer. Math.So. (N.S.) 8 (1983), no. 1, 87{89.[RS04℄ V. R�odl and J. Skokan, Regularity lemma for k-uniform hypergraphs,Random Strutures Algorithms 25 (2004), no. 1, 1{42.[Sze75℄ E. Szemer�edi, On sets of integers ontaining no k elements in arith-meti progression, Ata Arith. 27 (1975), 199{245, Colletion of artilesin memory of Juri�� Vladimirovi� Linnik.[Tao06+a℄ T. Tao, The dihotomy between struture and randomness, arithmetiprogressions, and the primes, submitted.[Tao06+b℄ T. Tao, A quantitative ergodi theory proof of Szemer�edi's theorem,submitted.[Wae27℄ B. L. van der Waerden, Beweis einer Baudetshen Vermutung, NieuwArh. Wisk. 15 (1927), 212{216, German.4 The Pentagon ProblemLet G be a 3-regular graph that ontains no yle of length shorter than g. Isit true that for large enough g there is a homomorphism from G to C5?Expliitly, is there a vertex oloring of G by f1; 2; 3; 4; 5g, suh that olors ofadjaent verties di�er by 1 modulo 5? Jaroslav Ne�set�ril in [Ne�s99℄.Apart from being published in [Ne�s99℄, this question was asked by Ne�set�rilat numerous problem sessions. By Brook's theorem any triangle-free ubi (i.e.



620 J. Bang-Jensen, B. Reed, M. Shaht, R. �S�amal, B. Toft and U. Wagner3-regular) graph is 3-olorable. Does a stronger assumption on girth of thegraph imply existene of a more restrited oloring? (The girth of a graph Gis the minimum length of a yle in G.)This problem is motivated by omplexity onsiderations [GHN00℄ and alsoby exploration of density of the homomorphism order: We write G �h H ifthere is a homomorphism from G to H but not from H to G. It is knownthat whenever G �h H holds and H is not bipartite then there is a graph Ksatisfying G �h K �h H . In other words, the order �h is dense (if we donot onsider edgeless graphs). A negative solution to the Pentagon problemwould have the following density onsequene: for eah ubi graph H forwhih C5 �h H holds, there exists a ubi graph K satisfying C5 �h K �h H(see [Ne�s99℄).If we replaed C5 in the statement of the problem by a longer odd yle,we would get a stronger statement. It is known that no suh strenghthening istrue. This was proved by Kostohka, Ne�set�ril, and Smol��kov�a [KNS98℄ for C11(hene for all Cl with l � 11), by Wanles and Wormald [WW01℄ for C9, andreently by Hatami [Hat05℄ for C7. Eah of these results uses probabilistiarguments (random regular graphs), no onstrutive proof is known.H�aggkvist and Hell [HH93℄ proved that for every integer g there is agraph Ug with odd girth at least g (that is, Ug does not ontain odd y-le of length less than g) suh that every ubi graph of odd girth at least gmaps homomorphially to Ug. Here, the graph Ug may have large degrees.This leads to a weaker version of the Pentagon problem: Is it true that forevery k there exists a ubi graph Hk of girth k and an integer g suh thatevery ubi graph of girth at least g maps homomorphially to Hk? A par-tiular question in this diretion: does a high-girth ubi graph map to thePetersen graph?As an approah to this, we mention a result of DeVos and �S�amal [D�S06+℄: aubi graph of girth at least 17 admits a homomorphism to the Clebsh graph.In ontext of the Pentagon problem, the following reformulation is partiularlyappealing: If G is a ubi graph of girth at least 17, then there is a ut-ontinuous mapping from G to C5; that is, there is a mapping f : E(G) !E(C5) suh that for any ut X � E(C5) the preimage f�1(X) is a ut.(Here by ut we mean the edge-set of a spanning bipartite subgraph. A morethorough exposition of ut-ontinuous mappings an be found in [DNR02℄.)Referenes[DNR02℄ M. DeVos, J. Ne�set�ril, and A. Raspaud, On ow and tension-ontinuousmaps, KAM-DIMATIA Series 567 (2002).[D�S06+℄ M. DeVos and R. �S�amal, High girth ubi graphs map to the Clebshgraph, submitted.[GHN00℄ A. Galluio, P. Hell, and J. Ne�set�ril, The omplexity of H-olouring ofbounded degree graphs, Disrete Math. 222 (2000), no. 1{3, 101{109.



On Six Problems Posed by Jarik Ne�set�ril 621[HH93℄ R. H�aggkvist and P. Hell, Universality of A-mote graphs, European J.Combin. 14 (1993), no. 1, 23{27.[Hat05℄ H. Hatami, Random ubi graphs are not homomorphi to the yle ofsize 7, J. Combin. Theory Ser. B 93 (2005), no. 2, 319{325.[KNS98℄ A.V. Kostohka, J. Ne�set�ril, and P. Smol��kov�a, Colorings and homomor-phisms of degenerate and bounded degree graphs, Disrete Math. 233(2001), no. 1{3, 257{276, Fifth Czeh-Slovak International Symposiumon Combinatoris, Graph Theory, Algorithms and Appliations, (Prague,1998).[Ne�s99℄ J. Ne�set�ril, Aspets of strutural ombinatoris (graph homomorphismsand their use), Taiwanese J. Math. 3 (1999), no. 4, 381{423.[WW01℄ I.M. Wanless and N.C. Wormald, Regular graphs with no homomor-phisms onto yles, J. Combin. Theory Ser. B 82 (2001), no. 1, 155{160.5 Critial GraphsDoes every large k-ritial graph ontain a large (k � 1)-ritial subgraph?Jaroslav Ne�set�ril and Vojt�eh R�odl, International Col-loquium on Finite and In�nite Sets, Keszthely, 1973.\In 1973 Paul Erd}os' 60th birthday was elebrated by the Interna-tional Colloquium on Finite and In�nite Sets in Keszthely, Hungary.During the onferene the partiipants had a memorable exursion byboat on Lake Balaton, with Erd}os onduting a problem session on-board and the whole rowd visiting a vineyard on the northern oast. Atthe boat I met two young Czehoslovaks, Jaroslav Ne�set�ril and Vojt�ehR�odl. They had asked Erd}os whether every large k-ritial graph al-ways ontains a large (k � 1)-ritial subgraph. Erd}os obviously likedthe problem, and knowing my interest in ritial graphs [Toft70℄ hethen got us in ontat." Bjarne ToftA k-hromati graph is k-ritial if all proper subgraphs are (k � 1)-olourable. For k = 1, 2 and 3 the k-ritial graphs are the omplete1-graph K1, the omplete 2-graph K2 and the odd yles, respetively. Fork = 4 the lass of k-ritial graphs is already very ompliated. They arethe forbidden subgraphs for 3-olourability, and it is an NP-omplete prob-lem type to deide about 3-olourability, as is well known. Thus for k = 3the answer to the question in the title is obviously NO sine 2-ritial graphshave only two verties and odd yles may be large. However for k = 4 thesituation is less lear. It turned out to be not so diÆult to see that the answerfor k = 4 is YES. However, for values of k � 5 the question is still unsettled.



622 J. Bang-Jensen, B. Reed, M. Shaht, R. �S�amal, B. Toft and U. WagnerThe ase k = 4Does every large 4-ritial graph ontain a large odd yle? Or more general:does every large 4-ritial graph ontain a large yle? The answer to thisseond question was �rst given by Kelly and Kelly [KK54℄. Let L(n) denotethe minimum taken over all 4-ritial graphs G on n verties of the maximumlength of a yle in G (this is alled the irumferene of G). Kelly and Kellyproved that indeed L(n) ! 1 for n ! 1. How fast does L(n) tend toin�nity? After subsequent improvements by Dira [Dir55℄ and Reid [Reid57℄,Gallai [Gal63℄ obtained the so far best upper bound, namely that there is aonstant  suh that L(n) <  logn. This means that the growth of the lengthof longest yles in 4-ritial graphs may be slow. It is seemingly still notknown if this is best possible. The best lower bound is of order of magnitudeplogn, due to Alon, Krivelevih and Seymour [AKS00℄. A large 4-ritialgraph therefore ontains a long yle. Sine it is 2-onneted and ontainsodd yles, it is an easy exerise to show that it also must ontain a longodd yle. Thus the question of Ne�set�ril and R�odl has answer YES for k = 4.The ase k = 4 was solved in a di�erent manner by Voss [Voss77, Voss91℄. Hebased his aÆrmative solution on the theory of bridges with respet to ylesin graphs.The ases k � 5Toft [Toft74℄ haraterized the lass of k-ritial graphs in terms of the be-haviour of the (k�1)-ritial subgraphs they ontain. One easy observation isthat the (k � 1)-ritial subgraphs together over the whole k-ritial graph.In other words: any edge of a k-ritial graph is ontained in a (k� 1)-ritialsubgraph. More generally, given two edges e1 and e2 of a k-ritial graph, thereis a (k�1)-ritial subgraph ontaining e1, but not e2. The proof is simple, yetthis seems to be useful. For example it follows easily from this that a k-ritialgraph is (k� 1)-edge-onneted, a result �rst obtained in a more ompliatedway by Dira [Dir53℄. Another onsequene of the `distinguishing property'of (k � 1)-ritial graphs was obtained by Stiebitz [Sti87℄. He proved that ifall (k� 1)-ritial subgraphs of a k-ritial graph G are smallest possible, i.e.they are all omplete (k� 1)-graphs, then G is also smallest possible, i.e. G isthe omplete k-graph. This is related to the problem of Ne�set�ril and R�odl,giving an upper bound for the size of a k-ritial graph in terms of its (k�1)-ritial subgraphs, in a very speial ase. This problem was �rst thought ofby Ne�set�ril and Toft during one of their later enounters, when they togethervisited G.A. Dira at Aarhus in the mid 1970'ies. This speial ase, when allthe (k � 1)-ritial subgraphs are omplete, has the avor of perfet graphtheory, but is muh, muh easier to deal with (the main di�erene is that herewe deal with all subgraphs, not just the indued ones). In onnetion withthese results, the following is an interesting question: Given two arbitraryedges e1 and e2 of a k-ritial graph with k � 5 is there a (k � 1)-ritial



On Six Problems Posed by Jarik Ne�set�ril 623subgraph ontaining both e1 and e2? The answer is not known, even whenthe two edges e1 and e2 form a path of length 2. There seems to be no easyproof|this indiates that there may well be ounterexamples. An example ofa k-ritial graph G, k � 5, without any (k � 1)-ritial subgraph ontainingtwo given edges e1 and e2 would be extremely interesting. Based on suh a Gone would be able to get a negative answer to the question of Ne�set�ril andR�odl, using opies of G and Haj�os' onstrution [Haj61℄:Haj�os' onstrutionLet G1 and G2 be disjoint graphs with edges x1y1 and x2y2 respetively.Remove x1y1 from G1 and x2y2 from G2, identify x1 and x2 to one newvertex x and join y1 and y2 by a new edge. Use this onstrution reursivelyon q disjoint opies G1, G2, . . . , Gq of the above G, with edges e1 and e2,removing edge e2 from the opy Gi and edge e1 from the opy Gi+1, i = 1,2, . . . , q � 1, identifying two endverties from the removed edges and joiningthe two other ends by a new edge. The obtained k-ritial graph H is largeif q is large, yet any (k � 1)-ritial subgraph of H must be ontained withintwo onseutive opies of G and hene be small (for k � 5).RemarksWe saw in the previous setions that an example of a k-ritial graph G, k � 5,ontaining edges e1 and e2 without any (k � 1)-ritial subgraph ontaininge1 and e2 would give the answer NO to the question of Ne�set�ril and R�odl.We know however that the answer is YES for k = 4. The ase k = 4 behavesdi�erently, and in fat for any 4-ritial graph G and any path P of length 2in G, there is an odd yle in G ontaining P . This statement follows froman argument of Dira [Dir64℄ and was also obtained by Wessel [Wes81℄. Theabove potential ounterexamples to the question of Ne�set�ril and R�odl haveseparating sets of size 2. It seems likely that suh ounterexamples exist.However most probably no ounterexample is of onnetivity at least 3 (orhigh enough). Is it possible (easy?) to prove that any large k-ritial graphof onnetivity at least 3 (or at least (k)) ontains a large (k � 1)-ritialsubgraph? If we instead of just subgraphs ask for indued subgraphs, thenit is not lear what to expet and what is known and what is not. The bestway to look at this is perhaps to onsider vertex-k-ritial graphs, i.e. graphsG that are k-hromati and G � x is (k � 1)-olourable for all verties xin G. If all indued vertex-i-ritial subgraphs of a vertex-k-ritial graph G,k � 4, are smallest possible, i.e. omplete i-graphs for all i < k, then G issmall, more preisely G is either the omplete k-graph or G is an odd yleomplement (with 2k � 1 verties). As observed �rst by Wessel ([Wes77℄, seealso [Toft85℄) this is an equivalent statement to the very deep strong perfetgraph onjeture, reently proved by Chudnovsky, Robertson, Seymour andThomas [CRST06+℄.



624 J. Bang-Jensen, B. Reed, M. Shaht, R. �S�amal, B. Toft and U. WagnerReferenes[AKS00℄ N. Alon, M. Krivelevih and P. Seymour, Long yles in ritial graphs,J. Graph Theory 35 (2000), 193{196.[CRST06+℄ M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strongperfet graph theorem, Annals of Mathematis, to appear.[Dir53℄ G.A. Dira, The struture of k-hromati graphs, Fund. Math. 40 (1953),42{55.[Dir55℄ G.A. Dira, Ciruits in ritial graphs, Monatsh. Math. 59 (1955), 178{187.[Dir64℄ G.A. Dira, On the struture of 5- and 6-hromati abstrat graphs, J.Reine Angew. Math. 214/215 (1964), 43{52.[Gal63℄ T. Gallai, Kritishe Graphen I, Publ. Math. Inst. Hungar. Aad. Si. 8(1963), 165{192.[Haj61℄ G. Haj�os, �Uber eine Konstruktion niht n-f�arbbarer Graphen, Wiss.Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961),116{117.[KK54℄ J. B. Kelly and L.M. Kelly, Paths and iruits in ritial graphs, Amer. J.Math. 76 (1954), 786{792.[Reid57℄ R.C. Reid, Maximal iruits in ritial graphs, J. London Math. So. 32(1957), 456{462.[Sti87℄ M. Stiebitz, Subgraphs of olour-ritial graphs, Combinatoria 7 (1987),303{312.[Toft70℄ B. Toft, Some ontributions to the theory of olour-ritial graphs, Ph.D.-thesis University of London 1970, published by Aarhus University in Var-ious Publiation Series 14 (1970).[Toft74℄ B. Toft, On ritial subgraphs of olour-ritial graphs, Disrete Math. 7(1974), 377{392.[Toft85℄ B. Toft, Some problems and results related to subgraphs of olour rit-ial graphs, in: R. Bodendiek, H. Shumaher and G. Walther (editors),Graphen in Forshung und Unterriht, Festshrift K. Wagner, BarbaraFranzbeker Verlag 1985, 178{186.[Voss77℄ H.-J. Voss, Graphs with presribed maximal subgraphs and ritial hro-mati graphs, Comment. Math. Univ. Carolinae 18 (1977), 129{142.[Voss91℄ H.-J. Voss, Cyles and bridges in graphs, Deutsher Verlag der Wis-senshaften, Kluwer Aademi Publishers, 1991.[Wes77℄ W. Wessel, Some olour-ritial equivalents of the strong perfet graphonjeture, in: Pro. Int. Koll. Graphentheorie und deren Anwendungen,Oberhof DDR, Matematishes Gesellshaft der DDR 1977, 300{309.[Wes81℄ W. Wessel, Critial lines, ritial graphs and odd yles, Tehnial report,Akademie der Wissenshaften der DDR, Institut f�ur Mathematik 1981.



On Six Problems Posed by Jarik Ne�set�ril 6256 The CLIQUE Problem in Geometri IntersetionGraphsDetermine the omputational omplexity of the CLIQUE problem restritedto intersetion graphs of straight line segments in the plane.Jan Kratohv��l and Jaroslav Ne�set�ril in [KN90℄.\This reolletion illustrates Jarik Ne�set�ril's gentle understandingof students' feelings, as well as his exellent instint in �nding rewardingproblems. Bak in the beginning of the 1980's a group of undergraduatestudents of Charles University in Prague was disussing an urgent mat-ter of seleting a researh seminar. None of the oÆially o�ered oneswas a winning favorite, and we had just three days to �le our deision atthe registrar. The disussion was held during a regular Graph Theoryleture of Jarik. Instead of expelling us from the lass for disturbing,he quikly got himself involved in the disusion and on the spot o�eredto reate a seminar espeially for us. Who ould resist suh a generouso�er? He also suggested a problem to work on. In the following year ortwo we learned a lot about researh while working on the problem ofharaterizing string graphs. Though we did not manage to harater-ize these graphs, many side results led to a onferene presentation andan undergraduate publiation. I revived the problem for myself about5 years later when I �nally proved NP-hardness of the reognition prob-lem. And when presenting this negative solution to Jarik, we starteddisussing the omplexity of optimization problems in restrited lassesof graphs and the CLIQUE question was born." Jan Kratohv��lAn abstrat graph G is a K-intersetion graph, for some lass K of sets, ifthe verties of G an be represented by sets in K suh that two verties in Gare adjaent i� the orresponding sets have a nonempty intersetion.Intersetion graphs for various lasses of geometri objets (e.g., straightline segments, retangles, or disks in the plane) have been studied extensively.On the one hand, they have numerous pratial appliations (for instane,in frequeny assignment in ellular networks [Hale80, Mal97, AHKMS01℄, orin map labelling [AKS97℄). On the other hand, geometri intersetion graphsprovide a rih soure of lasses of graphs with interesting properties, andof hallenging problems that lie at the interfae between graph theory andgeometry.Deiding for graph G if it is an intersetion graph of a ertain kind, oromputing a representation, is often omputationally hard. For instane, thisreognition problem is NP-hard for intersetion graphs of disks [HK01℄ andof segments [KM94℄, respetively. Furthermore, representations may requireoordinates that are exponential in the size of the graph [KM94℄, so it is notlear if these problems even belong to the lass NP; only PSPACE member-ship is known [BK98, KM94℄.



626 J. Bang-Jensen, B. Reed, M. Shaht, R. �S�amal, B. Toft and U. WagnerA irle of questions naturally arising in the appliations onern theomplexity of lassial hard problems, suh as CLIQUE or INDEPENDENTSET, for intersetion graphs. In some ases, many of suh problems be-ome tratable; for instane, CLIQUE is polynomially solvable for intersetiongraphs of equal-radius disks [CCJ90℄, or of segments with a bounded numberof diretions [KN90℄. For both results, it is assumed that a suitable form ofgeometri representation is provided as part of the input, beause reognitionremains NP-hard also under the additional assumptions.Even when the problem remains hard, the geometri struture might leadto better approximation algorithms. For instane, for general graphs, it is hardto approximate the size of a maximum independent set within a fator of n1�"[H�as99℄, for any �xed " > 0. Exatly solving INDEPENDENT SET remainsNP-hard in intersetion graphs of segments [KN90℄ (even if the segments arerestrited to 2 diretions) and of disks [CCJ90℄ (even if the disks all have thesame radius). However, the problem an be approximated in polynomial timewithin a fator of roughly pn for intersetion graphs of segments [AM04℄,and within (1 + "), for any �xed " > 0, in the ase of disks [HMRRRS98,EJS05, Chan03℄. For unit disks, even the assumption that a representation isprovided an be avoided [NHK04℄.Among the most tantalizing unsolved problems in this area are the om-plexity of the CLIQUE problem for intersetion graphs of segments and ofdisks, respetively. For segments, the question was �rst posed by Kratohv��land Ne�set�ril in 1990, while for disk graphs, it seems to be folklore. We remarkthat the above-mentioned algorithm for equal-radius disks breaks down assoon as two radii are allowed, while for the ase of segments with a boundednumber d of diretions, the runtime of the algorithm depends exponentiallyon d. As for results in the opposite diretion, every omplement of a pla-nar graph an be represented as an intersetion graph of onvex polygons inthe plane [KK98℄. It follows that CLIQUE is NP-hard for suh graphs, be-ause INDEPENDENT SET is hard for planar graphs. The polygons used inthe representation are of nononstant omplexity. There are results for twotypes of geometri objets of onstant omplexity. The �rst type are interse-tion graphs of angles [MP92℄, where an angle onsist of one horizontal andone vertial segment sharing a ommon endpoint. If all the angles are \up-per" ones, say, then CLIQUE is polynomially solvable, but if opposite anglesare allowed, then the problem is NP-hard. The seond type are intersetiongraphs of ellipses [AW05℄. For these, CLIQUE is NP-hard. In fat, for suÆ-iently small Æ > 0, even approximation within (1+ Æ) is hard. Moreover, thisontinues to hold even if for all ellipses, the ratio between the two prinipalradii is required to be any given onstant �, 1 < � <1. However, the \limitases" of irles (\� = 1") and of segments (\� = 1"), respetively, remainopen.
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