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Abstract. Szemerédi’s regularity lemma asserts that every graph can be de-

composed into relatively few random-like subgraphs. This random-like behav-
ior enables one to find and enumerate subgraphs of a given isomorphism type,

yielding the so-called counting lemma for graphs. The combined application

of these two lemmas is known as the regularity method for graphs and has
proved useful in graph theory, combinatorial geometry, combinatorial number

theory and theoretical computer science.
Recently, the graph regularity method was extended to hypergraphs by

Gowers and by Skokan and the authors. The hypergraph regularity method

has been successfully employed in a handful of combinatorial applications, in-
cluding alternative proofs to well-known density theorems of Szemerédi and

of Furstenberg and Katznelson. In this paper, we apply the hypergraph reg-

ularity method to a few extremal hypergraph problems of Ramsey and Turán
flavor.

1. Introduction

Szemerédi’s regularity lemma asserts that every graph can be decomposed into
a bounded number of so-called ε-regular pairs. For a graph G = (V,E) and ε > 0,
we say two non-empty disjoint subsets X, Y ⊂ V are ε-regular if for all X ′ ⊆
X, |X ′| > ε|X| and Y ′ ⊆ Y , |Y ′| > ε|Y |, we have |dG(X, Y ) − dG(X ′, Y ′)| <
ε, where dG(X ′, Y ′) = |G[X ′, Y ′]|/(|X ′||Y ′|) is the density of the bipartite sub-
graph G[X ′, Y ′] of G (consisting of all edges {x, y} ∈ E with x ∈ X ′ and y ∈ Y ′).
Szemerédi’s lemma is then given as follows.

Theorem 1.1 (Szemerédi’s regularity lemma). For every ε > 0 and integer t0,
there exist integers T0 = T0(ε, t0) and N0 = N0(ε, t0) so that for every graph G =
(V,E), |V | ≥ N0, V admits a partition V = V1 ∪ · · · ∪ Vt, t0 ≤ t ≤ T0, satisfying

(i ) |V1| ≤ · · · ≤ |Vt| ≤ |V1|+ 1 and
(ii ) all but at most ε

(
t
2

)
pairs (Vi, Vj), 1 ≤ i < j ≤ t, are ε-regular.

Partitions V = V1 ∪ · · · ∪ Vt satisfying (i ) and (ii ) as above are said to be t-
equitable and ε-regular. Szemerédi’s regularity lemma lead to many applications
in combinatorial mathematics, particularly in the area of extremal graph theory
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(see [19, 20] for surveys). Many applications of Szemerédi’s lemma depend on the
fact that within an appropriately given ε-regular partition V = V1 ∪ · · · ∪ Vt, one
may enumerate small subgraphs of a fixed isomorphism type. This result is formally
due to the following easily proved ‘counting lemma’ for graphs. In Fact 1.2 below
and elsewhere in this paper, we write x = y± ξ for reals x and y and some positive
ξ > 0 for the inequalities y − ξ < x < y + ξ.

Fact 1.2 (Graph counting lemma). For all d > 0, γ > 0 and every positive inte-
ger `, there exist ε > 0 and n0 so that whenever G is an `-partite graph with `-
partition V1∪· · ·∪V`, and |V1| = · · · = |V`| = n ≥ n0, satisfying for all 1 ≤ i < j ≤ `

(a ) dG(Vi, Vj) = d± ε and
(b ) (Vi, Vj) is ε-regular,

then the number |K`(G)| of `-cliques in G satisfies |K`(G)| = d(`
2)n`(1± γ).

We refer to a joint application of Theorem 1.1 and Fact 1.2 as the regularity
method for graphs. Perhaps one of the first applications of this method is due
to Ruzsa and Szemerédi [36] who showed it can be used to prove Roth’s theo-
rem [34, 35], i.e., Theorem 1.4 below for d = 1 and ` = 3. More formally, Ruzsa
and Szemerédi used the graph regularity method to prove that every graph Gn

on n vertices having o(n3) triangles contains a triangle-free subgraph G′
n having

only o(n2) fewer edges. Their result can be referred to as the ‘triangle removal
lemma’ (cf. Theorem 1.3 below) and implies, as a corollary, Roth’s theorem.

In what follows, a hypergraph H ⊆ 2V with vertex set V is a collection of subsets
from V . We say H(k) is a k-uniform hypergraph, or k-graph, for short, if every
subset belonging to H(k) has cardinality k.

An extension of Szemerédi’s regularity lemma for 3-graphs has been developed
in [10]. More recently, extensions to k-graphs were obtained by Gowers [12, 13]
and by Skokan and the current authors [22, 33], and based on that work, subse-
quently by Tao [41] and the second two authors [29]. Using these techniques, a
handful of 3-graph applications appear in [3, 10, 14, 17, 18, 21, 27, 28, 37, 38] and
some applications for k-graphs appear in [22, 30, 31, 32] (some of which we discuss
momentarily). Tao also obtained some deep number-theoretic applications in [40].

The goal of this paper is to use the hypergraph regularity method established
in [22, 33] to investigate some extremal hypergraph problems (see Section 2). The
components of the hypergraph regularity method, i.e., the hypergraph regularity
lemma of [33] and the hypergraph counting lemma of [22], are technical statements
which we will only present later in Section 4 (cf. Remark 2.5). The following so-
called removal lemma, however, is a direct consequence of the regularity method
for hypergraphs.

Theorem 1.3 (Removal lemma, [12, 22, 32]). For fixed k-graph F (k) on f vertices,
suppose H(k)

n is a k-graph on n vertices containing o(nf ) (not necessarily induced)
copies of F (k). Then, one may remove o(nk) edges from H(k)

n to obtain a sub-
hypergraph G(k) which is F (k)-free, i.e., G(k) contains no copy of F (k) at all.

When F (k) = K
(k)
k+1, the removal lemma generalizes Ruzsa and Szemerédi’s tri-

angle removal lemma (discussed earlier) to k-uniform hypergraphs. Frankl and the
second author [10, 26] observed that the the removal lemma (with F (k) = K

(k)
k+1)

implies Szemerédi’s theorem (see Theorem 1.4 below with d = 1). Subsequently,
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Solymosi [38, 39] showed that Theorem 1.3 also implies the multidimensional ver-
sion of Szemerédi’s theorem, originally due to Furstenberg and Katznelson [11] (see
also [31] for another consequence of Theorem 1.3 of similar flavor).

Theorem 1.4 (multidimensional Szemerédi theorem). For fixed integers ` and d,
any set Z ⊆ {1, . . . , n}d containing no homothetic copy of {1, . . . , `}d has size |Z| =
o(nd).

In Theorem 1.4, {1, . . . , n}d denotes, as usual, the d-fold cross product of the
set {1, . . . , n} with itself. A homothetic copy of {1, . . . , `}d is any set of the form a+
c{1, . . . , `}d, where a ∈ {1, . . . , n}d and c is some positive integer.

2. Results

In this paper, we consider some extremal hypergraph problems of Turán and
Ramsey flavor. We begin with some problems of Turán-type.

2.1. A Turán-type problem. Generalizing Turán’s problem for hypergraphs, the
following problem was initiated by Brown, Erdős and T. Sós [6]. Let f (r)(n, v, e)
denote the maximum number of edges in an r-graph on n vertices in which no v
vertices span e (or more) edges. Note that the determination of f (r)(n, v,

(
v
r

)
) =

ex(n, K
(r)
v ) is precisely Turán’s problem, on which we shall expand in Section 2.2. It

was first proved by Brown, Erdős and T. Sós [6] that f (r)(n, e(r−k)+k, e) = Θ(nk).
The same authors asked what happens if, instead of on v = e(r − k) + k vertices,
one forbids e edges to appear on v+1 = e(r−k)+k+1 vertices. In particular, they
conjectured f (r)(n, e(r − k) + k + 1, e) can be bounded by o(nk). This conjecture
was proved for e = r = 3 and k = 2 by Ruzsa and Szemerédi [36] and generalized
to arbitrary r with k = 2 and e = 3 by Erdős, Frankl and Rödl [7] and r > k and
e = 3 by Alon and Shapira [2]. Theorem 1.3 easily implies the upper bound for
r > k ≥ 2 and e = k + 1. We present the details in Section 3.

Theorem 2.1. For r > k ≥ 2, f (r)(n, (k + 1)(r − k + 1), k + 1) = o(nk).

Theorem 2.1 was proved for k = 2 by Erdős, Frankl and Rödl [7], and for k = 3 by
Sárközy and Selkow [37].

Remark 2.2. In this paper, the integer notation k is usually reserved for the
uniformity of hypergraphs H(k), while our notation f (r)(n, v, e) appears to break
with that tradition (since here, r denotes uniformity). In Theorem 2.1, however,
the essential part of proving the assertion f (r)(n, (k + 1)(r− k + 1), k + 1) = o(nk),
in fact, involves appealing to specific auxiliary k-uniform hypergraphs H(k), where
the initial uniformity r plays less of a rôle. In this sense, we reserve consistent use
of uniformity notation k for later, in the proof, where we feel it is most important.

2.2. Forbidden families. For an integer k, let F(k) = {F (k)
i }i∈I be a given (pos-

sibly infinite) family of k-graphs. Let Forb(n,F(k)) denote the family of all k-
graphs H(k)

n on vertex set {1, . . . , n} containing no sub-hypergraph isomorphic to
F (k)

i for all i ∈ I. As in the classical Turán problem, set

ex(n,F(k)) = max
{∣∣H(k)

n

∣∣ : H(k)
n ∈ Forb(n,F(k))

}
.

When F(k) = {K(k)
` } consists of the single clique K

(k)
` , determining ex(n, K

(k)
` ) =

ex(n, {K(k)
` }) is the well-known Turán problem, where even the asymptotic for
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the case ` = 4 and k = 3 remains open today. For k = 2, Turán’s formula
for these numbers is a central result in extremal graph theory. Note that the
parameter ex(n, K

(k)
` ) corresponds to f (k)(n, `,

(
`
k

)
) from Section 2.1. In the context

of Turán’s problem, however, the ‘ex’ notation appears more commonly than the ‘f ’
notation, and so we shall not break from this tradition here.

Our result in Theorem 2.3 below aims to relate ex(n,F(k)) with the cardi-
nality |Forb(n,F(k))|. Observe that since all sub-hypergraphs of a fixed H(k)

n ∈
Forb(n,F(k)) also belong to Forb(n,F(k)), we have |Forb(n,F(k))| ≥ 2ex(n,F(k)).
We show that this bound is, in a sense, best possible.

Theorem 2.3. For every (possibly infinite) family of k-graphs F(k) = {F (k)
i }i∈I ,

we have
log2 |Forb(n,F(k))| = ex(n,F(k)) + o(nk) .

Theorem 2.3 was proved for k = 2 and F(2) = {K(2)
` } by Erdős, Kleitman and

Rothschild [9] and for general F(2) by Erdős, Frankl and Rödl [7]. Theorem 2.3 was
proved for k = 3 by the first two authors [21]. Bollobás and Thomason [4] showed
that limn→∞ log2 |Forb(n,F(k))|/

(
n
k

)
exists for any family F(k) and so Theorem 2.3

provides a combinatorial evaluation of this limit.
We mention that for k = 2, an induced version of Theorem 2.3 was established

by Prömel and Steger [25] and by Bollobás and Thomason [5]. These results were
extended to k = 3 by Kohayakawa and the first two authors in [18]. Using the
hypergraph regularity method, one may prove an induced version of Theorem 2.3
for general k ≥ 2, and we hope to address this problem in a forthcoming paper.

2.3. An induced Ramsey theorem. For a fixed k-graph F (k), a k-graph G(k) is
said to be an induced Ramsey k-graph for F (k) if every 2-coloring of G(k) admits
a monochromatic sub-hypergraph isomorphic to F (k) which appears as an induced
sub-hypergraph of G(k). Nešetřil and Rödl [23, 24] and independently Abramson
and Harrington [1] proved that every k-graph F (k) has a Ramsey k-graph G(k)

for F (k). In this paper, we present another proof of the induced Ramsey theorem
(based on the hypergraph regularity method).

Theorem 2.4. For every integer k ≥ 2 and every k-graph F (k), there exists an
induced Ramsey k-graph G(k) for F (k).

2.4. Organization of paper. In Section 3, we prove Theorem 2.1 using the re-
moval lemma, Theorem 1.3. While Theorem 2.1 is a consequence of the removal
lemma, we prove Theorem 2.3 and Theorem 2.4 using the hypergraph regularity
method. In Section 4, we present the hypergraph regularity lemma and hyper-
graph counting lemma. In Section 5, we prove Theorem 2.3. In Section 6, we prove
Theorem 2.4.

We conclude the introduction with the following remark.

Remark 2.5. The components of the hypergraph regularity method, the hyper-
graph regularity lemma and hypergraph counting lemma, take different forms in
the versions [12, 13] and [22, 33] and subsequent versions [29] and [41]. While any
of these versions would suffice to prove the applications in this paper, we find the
recent version of this method due to the second two authors [29] (based on ideas
from [22, 33]) most convenient for our purposes. We present these tools in Section 4.
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3. Proof of Theorem 2.1

We use Theorem 1.3, the removal lemma, to prove Theorem 2.1. In particular,
we use the following corollary of the removal lemma to prove Theorem 2.1.

Corollary 3.1. For fixed integer k ≥ 2, let k-graph H(k)
n on n vertices have the

property that each k-tuple K ∈ H(k)
n belongs to precisely one copy of the clique K

(k)
k+1.

Then, |H(k)
n | = o(nk).

Proof. Corollary 3.1 follows easily from Theorem 1.3 in the case when F (k) consists
of the single k-clique K

(k)
k+1 on k + 1 vertices.

Let H(k)
n be given as in the hypothesis of Corollary 3.1. Since each k-tuple K ∈

H(k)
n belongs to precisely one copy of K

(k)
k+1, we see that the number of such

cliques, |Kk+1(H(k)
n )|, satisfies∣∣Kk+1(H(k)

n )
∣∣ = 1

k + 1
|H(k)

n | = o(nk+1). (1)

Putting F (k) = K
(k)
k+1, Theorem 1.3 then asserts that one may delete o(nk) many k-

tuples K ∈ H(k)
n to obtain a K

(k)
k+1-free sub-hypergraph H̃(k)

n ⊆ H(k)
n . However,

since deleting a k-tuple K ∈ H(k)
n destroys exactly one clique K

(k)
k+1, we must have

|Kk+1(H(k)
n )| = o(nk) and Corollary 3.1 follows from (1). �

Proof of Theorem 2.1. Our proof follows the lines of [7, 36, 37], where the earlier
established removal lemmas for graphs and 3-graphs were used to prove the special
cases k = 2, 3. Let r > k ≥ 2 be given as in Theorem 2.1. Suppose, on the contrary,
that there exists c = c(r, k) > 0 and positive integer n0 = n0(r, k, c) for which

f (r)(n, (k + 1)(r − k + 1), k + 1) > cnk (2)

holds for all n > n0. Let G(r) be an r-graph on n > n0(r, k, c) vertices with cnk

many r-tuples with the property that no (k + 1)(r − k + 1) vertices span (k + 1)
many r-tuples. We shall demonstrate that the existence of such G(r) contradicts
Corollary 3.1.

We begin by reducing the r-graph G(r) to an r-partite sub-hypergraph G̃(r). A
simple averaging argument (see, e.g., [8]) implies that the vertex set V (G(r)) admits
an r-partition V (G(r)) = V1 ∪ · · · ∪ Vr for which∣∣∣G(r)

[
V1, . . . , Vr

]∣∣∣ ≥ r!
rr
|G(r)| > r!

rr
cnk, (3)

where G(r)[V1, . . . , Vr] is the sub-hypergraph of G(r) consisting of all r-tuples R ∈
G(r) with |R ∩ Vi| = 1 for all 1 ≤ i ≤ r. For simplicity, set G̃(r) = G(r)[V1, . . . , Vr].

We now reduce the r-graph G̃(r) to (k + 1)-graph G̃(k+1) with vertex set V1 ∪
· · ·∪Vk+1 as follows: for a (k +1)-tuple K+ satisfying |K+∩Vi| = 1, 1 ≤ i ≤ k +1,
put K+ ∈ G̃(k+1) if, and only if, K+ ⊆ R for some R ∈ G̃(r). We make the following
claim.

Claim 3.2. |G̃(k+1)| ≥ |eG(r)|
k

(3)

> cr!
krr nk.

Proof. The second inequality immediately follows from (3). To establish the first,
we observe that for each K+ ∈ G̃(k+1), there are at most k many r-tuples R ∈
G̃(r) for which K+ ⊆ R (from which Claim 3.2 then follows). Otherwise, if for
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some K+ ∈ G̃(k+1), there exist (k + 1) distinct r-tuples R1, . . . , Rk+1 ∈ G̃(r) each
containing K+, we would have (k + 1) many r-tuples spanned on∣∣∣ k+1⋃

i=1

Ri

∣∣∣ ≤ (r − k − 1)(k + 1) + k + 1 = (r − k)(k + 1) < (r − k + 1)(k + 1)

vertices, contradicting our choice of G(r). �

We proceed with the following claim.

Claim 3.3. Let K0 ⊂ K+
0 ∈ G̃(k+1) with |K0| = k. There are at most k − 1

distinct (k+1)-tuples K+
1 , . . . ,K+

k−1 ∈ G̃(k+1) for which K+
0 ∩K+

i = K0, 1 ≤ i ≤ k.

Proof. Suppose, on the contrary, that some fixed K0 ⊂ K+
0 ∈ G̃(k+1), |K0| = k,

admits k distinct (k + 1)-tuples K+
1 , . . . ,K+

k ∈ G̃(k+1) for which K+
0 ∩K+

i = K0,
1 ≤ i ≤ k. Then, for some R0, R1, . . . , Rk ∈ G̃(r), we would have (k + 1)-many
distinct r-tuples R0 ⊃ K+

0 , R1 ⊃ K+
1 , . . . , Rk ⊃ K+

k spanned on∣∣∣ k+1⋃
i=0

Ri

∣∣∣ ≤ k +k +1+(k +1)(r−k−1) = (k +1)(r−k +1)−1 < (k +1)(r−k +1)

vertices, contradicting our choice of G(r). �

Claim 3.3 immediately implies that for each K+
0 ∈ G̃(k+1), at most (k+1)(k−1) =

k2 − 1 distinct (k + 1)-tuples K+
1 , . . . ,K+

k2−1 ∈ G̃(k+1) satisfy |K+
0 ∩ K+

i | = k,

1 ≤ i ≤ k2−1. As such, the (k+1)-graph G̃(k+1) contains a sub-hypergraph G̃(k+1)
0

of size ∣∣∣G̃(k+1)
0

∣∣∣ ≥ |G̃(k+1)|
k2 − 1

Claim 3.2

≥ cr!
k(k2 − 1)rr

nk (4)

consisting of (k + 1)-tuples K+
0 ∈ G̃(k+1), no two of which overlap in k vertices.

Indeed, iteratively construct (k+1)-graph G̃(k+1)
0 by starting with an arbitrary (k+

1)-tuple K+
0 ∈ G̃(k+1), deleting all (k + 1)-tuples K+ which overlap with K+

0 in k

vertices, and repeating this procedure until G̃(k+1)
0 is produced.

We are now able to conclude the proof of Theorem 2.1. Define (k + 1)-partite
k-graph H(k) on vertex set V1 ∪ · · · ∪ Vk+1 as follows: for a k-tuple K0 satisfying
|K0 ∩ Vi| ≤ 1, 1 ≤ i ≤ k + 1, put K0 ∈ H(k) if, and only if, K0 ⊂ K+

0 for
some (k + 1)-tuple K+

0 ∈ G̃(k+1)
0 . We make the following observations.

(O1) each copy of the clique K
(k)
k+1 in H(k) corresponds to an edge of G̃(k+1)

0 , and
vice-versa;

(O2) by construction of H(k), each edge K ∈ H(k) belongs to at least one copy
of the clique K

(k)
k+1 in H(k);

(O3) by construction of G̃(k+1)
0 , each edge K ∈ H(k) belongs to at most one copy

of the clique K
(k)
k+1 in H(k);

(O4)

|H(k)| =
(

k + 1
k

)∣∣∣G̃(k+1)
0

∣∣∣ (4)

≥ cr!(k + 1)
k(k2 − 1)rr

nk = Ω(nk).
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Combining observations (O2), (O3) and (O4), we see that H(k) is a ‘dense’ k-graph
whose every edge K ∈ H(k) belongs to precisely one copy of the clique K

(k)
k+1. This

contradicts Corollary 3.1 and hence concludes the proof of Theorem 2.1. �

4. Regularity method for hypergraphs

In this section, we present the hypergraph regularity lemma the hypergraph
counting lemma from [29]. We first present all needed definitions and notation in
Section 4.1. In Section 4.2, we state both lemmas.

4.1. Definitions. We start with some basic concepts and notation.

4.1.1. Basic concepts. For integers ` ≥ j ≥ 1, the notation [`] denotes the set of
integers {1, . . . , `} and [`]j =

(
[`]
j

)
denotes the set of all unordered j-tuples from [`].

In this paper `-partite, j-uniform hypergraphs play a special rôle, where j ≤ `.
Given vertex sets V1, . . . , V`, we denote by K

(j)
` (V1, . . . , V`) the complete `-partite, j-

uniform hypergraph (i.e., the family of all j-element subsets J ⊆
⋃

i∈[`] Vi satisfying
|Vi ∩ J | ≤ 1 for every i ∈ [`]). If |Vi| = m for every i ∈ [`], then an (m, `, j)-
cylinder H(j) on V1∪· · ·∪V` is any subset of K

(j)
` (V1, . . . , V`). The vertex partition

V1 ∪ · · · ∪ V` is an (m, `, 1)-cylinder H(1). (This definition may seem artificial right
now, but it will simplify later notation.) For j ≤ i ≤ ` and set Λi ∈ [`]i, we denote
by H(j)[Λi] = H(j)

[⋃
λ∈Λi

Vλ

]
the sub-hypergraph of the (m, `, j)-cylinder H(j)

induced on
⋃

λ∈Λi
Vλ.

For an (m, `, j)-cylinderH(j) and an integer 2 ≤ j ≤ i ≤ `, we denote by Ki(H(j))
the family of all i-element subsets of V (H(j)) which span complete sub-hypergraphs
in H(j) of order i. For 1 ≤ i ≤ `, we denote by Ki(H(1)) the family of all i-element
subsets of V (H(1)) which ‘cross’ the partition V1 ∪ · · · ∪ V`, i.e., I ∈ Ki(H(1)) if,
and only if, |I ∩ Vs| ≤ 1 for all 1 ≤ s ≤ `. For 2 ≤ j ≤ i ≤ `, |Ki(H(j))| is the
number of all copies of K

(j)
i in H(j). Given an (m, `, j − 1)-cylinder H(j−1) and

an (m, `, j)-cylinder H(j), we say H(j−1) underlies H(j) if H(j) ⊆ Kj(H(j−1)). This
brings us to one of the main concepts of this paper, the notion of a complex.

Definition 4.1 ((m, `, h)-complex). Let m ≥ 1 and ` ≥ h ≥ 1 be integers. An
(m, `, h)-complex H is a collection of (m, `, j)-cylinders {H(j)}h

j=1 such that

(a ) H(1) is an (m, `, 1)-cylinder, i.e., H(1) = V1 ∪ · · · ∪ V` with |Vi| = m for
i ∈ [`], and

(b ) H(j−1) underlies H(j) for 2 ≤ j ≤ h, i.e., H(j) ⊆ Kj(H(j−1)).

We sometimes shorten the terminology (m, `, h)-complex to (`, h)-complex, when
the cardinality m = |V1| = · · · = |Vs| isn’t of primary concern.

4.1.2. Relative density and hypergraph regularity. We begin by defining a relative
density of a j-uniform hypergraph w.r.t. (j − 1)-uniform hypergraph on the same
vertex set.

Definition 4.2 (relative density). Let H(j) be a j-uniform hypergraph and let
H(j−1) be a (j − 1)-uniform hypergraph on the same vertex set. We define the
density of H(j) w.r.t. H(j−1) as

d
(
H(j)

∣∣H(j−1)
)

=


|H(j)∩Kj(H(j−1))|
|Kj(H(j−1))| if

∣∣Kj(H(j−1))
∣∣ > 0

0 otherwise .
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We also define a notion of regularity for (m, j, j)-cylinders w.r.t. some underly-
ing (m, j, j − 1)-cylinders.

Definition 4.3 ((ε, d)-regular). Let reals ε > 0 and d ≥ 0 be given along with
an (m, j, j)-cylinder H(j) and underlying (m, j, j−1)-cylinder H(j−1). We say H(j)

is (ε, d)-regular w.r.t. H(j−1) if whenever Q(j−1) ⊆ H(j−1) satisfies∣∣Kj(Q(j−1))
∣∣ ≥ ε

∣∣Kj(H(j−1))
∣∣ , then d

(
H(j)

∣∣Q(j−1)
)

= d± ε .

Before continuing, we pause for the following remark.

Remark 4.4. We compare the notion of regularity in Definition 4.3 for j = 2 with
the traditional definition of an ε-regular pair (given in the beginning of the Intro-
duction). The (m, 2, 2)-cylinder H(2) is, in the traditional terminology, a bipartite
graph. The underlying (m, 2, 1)-cylinderH(1) is the bipartition ofH(2), written here
asH(1) = V1∪V2 where |V1| = |V2| = m. The sub-cylinder Q(1) ⊆ V1∪V2 is a subset
of vertices, which we could write as Q(1) = V ′

1 ∪ V ′
2 , where V ′

1 ⊆ V1 and V ′
2 ⊆ V2.

The assumption of Definition 4.3 saying |K2(Q(1))| ≥ ε|K2(H(1))| is identical to
saying |V ′

1 ||V ′
2 | ≥ ε|V1||V2|. As such, the definition ensures d(H(2)|Q(1)) = d ± ε,

or equivalently, |d(H(2)|Q(1)) − d| < ε. The quantity d(H(2)|Q(1)) is the same
as dH(2)(V ′

1 , V ′
2). The constant d is not necessarily the density d(H(2)|H(1)), but it

is, of course, close to it.
There is only one real difference, therefore, between the notion of graph regularity

given in Definition 4.3 when j = 2 and the traditional definition of an ε-regular pair.
In the traditional definition, we would assume that the subsets V ′

1 ⊆ V1, V ′
2 ⊆ V2

individually satisfy the conditions |V ′
1 | ≥ ε|V1| and |V ′

2 | ≥ ε|V2|. In Definition 4.3,
we assume the product |V ′

1 ||V ′
2 | satisfies the single condition |V ′

1 ||V ′
2 | ≥ ε|V1||V2|.

Quite obviously, however, these two notions are equivalent: if H(2) is (ε, d)-regular
w.r.t. H(1), then H(1) is an ε-regular pair, and if H(1) is an ε-regular pair, then H(2)

is (ε2, d(H(2),H(1)))-regular w.r.t. H(1).

We now extend the notion of (ε, d)-regularity to (m, `, j)-cylinders H(j).

Definition 4.5 ((ε, d)-regular cylinder). We say an (m, `, j)-cylinder H(j) is
(ε, d)-regular w.r.t. an (m, `, j−1)-cylinder H(j−1) if for every Λj ∈ [`]j, the restric-
tion H(j)[Λj ] = H(j)

[⋃
λ∈Λj

Vλ

]
is (ε, d)-regular w.r.t. the restriction H(j−1)[Λj ] =

H(j−1)
[⋃

λ∈Λj
Vλ

]
.

We now extend the notion of (ε, d)-regularity from cylinders to complexes.

Definition 4.6 ((ε, d)-regular complex). Let ε be a positive real and let d =
(d2, . . . , dh) be a vector of non-negative reals. We say an (m, `, h)-complex H =
{H(j)}h

j=1 is (ε, d)-regular if H(j) is (ε, dj)-regular w.r.t. H(j−1) for every j =
2, . . . , h.

4.1.3. Partitions. The regularity lemma for k-uniform hypergraphs provides a well-
structured family of partitions P = {P(1), . . . ,P(k−1)} of vertices, pairs, . . . , and
(k − 1)-tuples of some vertex set. We now discuss the structure of these partitions
recursively, following the approach of [33].

Let k be a fixed integer and V be a set of vertices. Let P(1) = {V1, . . . , V|P(1)|}
be a partition of V . For every 1 ≤ j ≤ |P(1)|, let Crossj(P(1)) be the family of
all crossing j-tuples J , i.e., the set of j-tuples which satisfy |J ∩ Vi| ≤ 1 for every
Vi ∈ P(1).
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Suppose that partitions P(i) of Crossi(P(1)) for 1 ≤ i ≤ j−1 have been defined.
Then for every (j − 1)-tuple I in Crossj−1(P(1)), there exist a unique P(j−1) =
P(j−1)(I) ∈ P(j−1) so that I ∈ P(j−1). For every j-tuple J in Crossj(P(1)), we
define the polyad of J

P̂(j−1)(J) =
⋃{

P(j−1)(I) : I ∈ [J ]j−1
}

.

In other words, P̂(j−1)(J) is the unique set of j partition classes of P(j−1) each
containing a (j−1)-subset of J . Observe that P̂(j−1)(J) can be viewed as a (j, j−1)-
cylinder, i.e., a j-partite, (j−1)-uniform hypergraph. More generally, for 1 ≤ i < j,
we set

P̂(i)(J) =
⋃{

P(i)(I) : I ∈ [J ]i
}

and P(J) =
{
P̂(i)(J)

}j−1

i=1
. (5)

Remark 4.7. In this paper, we use P(j), read “script P”, to denote the partition
of j-tuples. Partition classes P(j) ∈ P(j) (which are j-uniform hypergraphs on [n])
are denoted with “calligraphic P”. Unions of special sub-collections of j-graphs P(j)

(which we call polyads) are denoted with “calligraphic P” equipped with a “hat”.

Next, we define P̂(j−1), the family of all polyads

P̂(j−1) =
{
P̂(j−1)(J) : J ∈ Crossj(P(1))

}
.

Note that P̂(j−1)(J) and P̂(j−1)(J ′) are not necessarily distinct for different j-
tuples J and J ′. We view P̂(j−1) as a set and, consequently, {Kj(P̂(j−1)) : P̂(j−1) ∈
P̂(j−1)} is a partition of Crossj(P(1)).

The structural requirement on the partition P(j) of Crossj(P(1)) is

P(j) ≺ {Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)} , (6)

where ‘≺’ denotes the refinement relation of set partitions. In other words, we
require that the set of cliques spanned by a polyad in P̂(j−1) is sub-partitioned
in P(j) and every partition class in P(j) belongs to precisely one polyad in P̂(j−1).
Note that (6) implies (inductively) that P(J) defined in (5) is a (j, j− 1)-complex.
On a related note, we shall often drop the argument J ∈ Crossj(P(1)) from the no-
tation P̂(j−1)(J) (as the families P with which we work always satisfy Kj(P̂(j−1)) 6=
∅).

Throughout this paper, we want to control the number of partition classes in
P(j), and more specifically, over the number of classes contained in Kj(P̂(j−1)) for
a fixed polyad P̂(j−1) ∈ P̂(j−1). We make this precise in the following definition.

Definition 4.8 (family of partitions). Suppose V is a set of vertices, k ≥ 2 is
an integer and a = (a1, . . . , ak−1) is a vector of positive integers. We say P =
P(k − 1,a) = {P(1), . . . ,P(k−1)} is a family of partitions on V , if it satisfies the
following:

(i ) P(1) is a partition of V into a1 classes,
(ii ) P(j) is a partition of Crossj(P(1)) satisfying:

P(j) refines {Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)}

and
∣∣{P(j) ∈ P(j) : P(j) ⊆ Kj(P̂(j−1))

}∣∣ = aj for every P̂(j−1) ∈ P̂(j−1) .

Moreover, we say P = P(k − 1,a) is t-bounded, if max{a1, . . . , ak−1} ≤ t.
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It is easy to see that for a t-bounded family of partitions P and an integer 2 ≤ j ≤
k − 1, we have

|P̂(j−1)| =
(

a1

j

) j−1∏
h=2

a
(j

h)
h ≤ t2

t

. (7)

We continue with a few final definitions needed to state the hypergraph regularity
lemma and corresponding counting lemma.

4.1.4. Regular partitions. The following definition describes some of the structure
the regularity lemma shall provide.
Definition 4.9 ((η, ε, a)-equitable). Suppose V is a set of n vertices, η and ε are
positive reals, a = (a1, . . . , ak−1) is a vector of positive integers where a1 divides n.

We say a family of partitions P = P(k−1,a) on V (as defined in Definition 4.8)
is (η, ε, a)-equitable if it satisfies the following:

(a )
∣∣[V ]k \ Crossk(P(1))

∣∣ ≤ η
(
n
k

)
,

(b ) P(1) = {Vi : i ∈ [a1]} is an equitable vertex partition, i.e., |Vi| = |V |/a1

for i ∈ [a1], and
(c ) for every K ∈ Crossk(P(1)) the (n/a1, k, k − 1)-complex P(K) (see (5))

is (ε, (1/a2, . . . , 1/ak−1))-regular.

To describe the remaining structure of the regularity lemma, we extend Defini-
tion 4.5.

Definition 4.10 ((δk, dk, r)-regular). Let δk and dk be positive reals and r be a
positive integer. Suppose H(k−1) is a (k − 1)-graph and H(k) is a k-graph, both of
which share the same vertex set. We say H(k) is (δk, dk, r)-regular w.r.t. H(k−1)

if for every collection Q(k−1) = {Q(k−1)
1 , . . . ,Q(k−1)

r } of not necessarily disjoint
sub-hypergraphs of H(k−1) satisfying∣∣∣∣ ⋃

i∈[r]

Kk(Q(k−1)
i )

∣∣∣∣ > δk

∣∣∣Kk(H(k−1))
∣∣∣ ,

we have ∣∣H(k) ∩
⋃

i∈[r]Kk(Q(k−1)
i )

∣∣∣∣⋃
i∈[r]Kk(Q(k−1)

i )
∣∣ = dk ± δk .

We write (δk, ∗, r)-regular to mean
(
δk, d

(
H(k)

∣∣H(k−1)
)
, r
)
-regular.

We need one last definition to state the regularity lemma.

Definition 4.11 ((δk, r)-regular w.r.t. P). Suppose δk is a positive real and
r is a positive integer. Let H(k) be a k-uniform hypergraph with vertex set V and
P = P(k − 1,a) be a family of partitions on V . We say H(k) is (δk, r)-regular
w.r.t. P, if∣∣∣⋃{

Kk(P̂(k−1)) : P̂(k−1) ∈ P̂(k−1)

and H(k) is not (δk, ∗, r)-regular w.r.t. P̂(k−1)
}∣∣∣ ≤ δk

(
|V |
k

)
.
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4.2. Hypergraph regularity lemma and counting lemma. The regularity
lemma of [29] is given as follows.

Theorem 4.12 (Regularity lemma). Let k ≥ 2 be a fixed integer. For all positive
constants η and δk and functions r : Nk−1 → N and δ : Nk−1 → (0, 1] there are
integers tThm.4.12 and nThm.4.12 so that the following holds.

For every k-uniform hypergraph H(k) satisfying |V (H(k))| = n ≥ nThm.4.12

and tThm.4.12! dividing n, there exists a family of partitions P = P(k − 1,aP)
so that

(i ) P is (η, δ(aP),aP)-equitable and tThm.4.12-bounded;
(ii ) H(k) is (δk, r(aP))-regular w.r.t. P.

The following hypergraph counting lemma corresponds to Theorem 4.12.

Theorem 4.13 (Counting lemma). For all integers ` ≥ k ≥ 2 and positive con-
stants γ > 0 and dk > 0, there exists δk > 0 such that for all integers ak−1, . . . , a2,
there are a constant δ > 0 and positive integers r and m0 so that the following
holds. Suppose

(i ) R = {R(j)}k−1
j=1 is a (δ, (1/a2, . . . , 1/ak−1))-regular (m, `, k − 1)-complex

with m ≥ m0, and
(ii ) for every Λk ∈ [`]k, the k-graph H(k) ⊆ Kk(R(k−1)) is (δk, dΛk

, r)-regular
w.r.t. R(k−1)[Λk] for some dΛk

≥ dk.
Then ∣∣K`(H(k))

∣∣ ≥ (1− γ)d(`
k)

k

k−1∏
j=2

(
1
aj

)(`
j)
×m` .

5. Proof of Theorem 2.3

The main idea in proving Theorem 2.3 is not difficult, but since it involves
appealing to the regularity lemma and counting lemma for hypergraphs, its ap-
pearance is technical. We therefore begin this section by sketching this main idea
in the (more transparent) case of graphs, following the work of [7]. In the following
outline, we restrict our attention to the special case when F(2) = {K(2)

3 } consists
of the (single) triangle K3 = K

(2)
3 . We mention that, if we focus our attention to

when F(2) consists of a single graph, our choice here of K3 makes little difference
in the argument. However, restricting our attention to when F(2) consists of only
finitely many graphs frees us from one detail which is similarly technical for graphs
as it is for hypergraphs.

5.1. The graph case with F(2) = K3. Fix ν > 0. We sketch the proof that∣∣Forb(n, K3)
∣∣ ≤ 2ex(n,K3)+νn3

holds for all large integers n. The main components of the proof are the Szemerédi
regularity lemma, Theorem 1.1, and the counting lemma (for graphs), Fact 1.2.

We begin by ‘regularizing’ every graph G = G(2) in the collection Forb(n, K3).
To that end, we pick some ‘small’ 0 < ε = ε(ν) � ν (we won’t determine a formula
for ε at this time since we plan to bypass, in this outline, the calculations using
this formula) and ‘large’ integer t0 = t0(ν) � 1/ν. As we make these choices, we
also pick an auxiliary constant ε � d0 � ν which is ‘small’ w.r.t. ν but ‘large’
w.r.t. ε. Theorem 1.1 guarantees an integer T0 = T0(ε, t0) so that, with n large,
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every graph G ∈ Forb(n, K3) admits an ε-regular, tG-equitable partition V (G) =
V G

1 ∪ · · · ∪ V G
tG

where t0 ≤ tG ≤ T0. For G ∈ Forb(n, K3), we shall write PG for
the ε-regular, tG-equitable partition V (G) = V G

1 ∪· · ·∪V G
tG

, t0 ≤ tG ≤ T0, obtained
above. We fix, for each G ∈ Forb(n, K3), the partition PG now obtained (and if G
admits multiple such, we simply pick one, arbitrarily). In all that follows, n =
n(ν, d0, ε, t0, T0) is sufficiently large w.r.t. all the constants mentioned above.

We first decompose Forb(n, K3) into equivalence classes. We say two graphs G1

and G2 ∈ Forb(n, K3) are equivalent if, and only if, PG1 = PG2 . (In other words,
the ε-regular partitions PG1 and PG2 fixed above split the vertices {1, . . . , n} in pre-
cisely the same way.) Let Forb(n, K3) = Π1∪· · ·∪ΠN be the partition of Forb(n, K3)
associated with this equivalence relation. Then |Forb(n, K3)

∣∣ =
∑N

a=1 |Πa|, and
clearly, there are at most N ≤ Tn

0 = 2o(n2) partitions of the vertices {1, . . . , n}.
Thus, it suffices to estimate |Πa| for an arbitrary index 1 ≤ a ≤ N .

For the remainder of this outline, fix 1 ≤ a ≤ N . There is a common partition Pa

of {1, . . . , n} that every graph G ∈ Πa admits as its fixed ε-regular partition PG.
We write Pa as V1 ∪ · · · ∪ Vt, where t0 ≤ t ≤ T0. Now, for a fixed G ∈ Πa, we
shall record for which pairs (Vi, Vj) of the partition Pa the graph G is ‘dense’ and
‘regular’. More formally, for 1 ≤ i < j ≤ t, write xG = (xG

ij : 1 ≤ i < j ≤ t), where

xG
ij =

{
1 if dG(Vi, Vj) ≥ d0 and Vi, Vj is ε-regular w.r.t. G,
0 otherwise.

For fixed x ∈ {0, 1}(
t
2), we set Πa(x) = {G ∈ Πa : xG = x} and observe

|Πa| =
∑{

|Πa(x)| : x ∈ {0, 1}(
t
2)
}

.

Since there are only 2(t
2) ≤ 2T 2

0 = 2O(1) = 2o(n2) vectors x ∈ {0, 1}(
t
2), it suffices to

estimate |Πa(x)| for a fixed but arbitrary x ∈ {0, 1}(
t
2).

With x fixed, and a fixed before, we now define Da(x) as the graph with vertex
set {1, . . . , t} and edges {i, j}, 1 ≤ i < j ≤ t, corresponding to when the pair (Vi, Vj)
is ‘dense’ and ‘regular’ w.r.t. every graph G ∈ Πa(x), i.e., when xij = 1. If we can
show

|Da(x)| ≤ ex(t, K3) (8)

then it will be easy to show

|Πa(x)| ≤ 2ex(n,K3)+
ν
2 n2

. (9)

Establishing the implication (8) =⇒ (9) is standard, and so we only highlight it
here. Indeed, using standard considerations of ε-regular partitions, one may easily
show that for any G ∈ Πa(x)∣∣∣{{vi, vj} ∈ E(G) : vi ∈ Vi, vj ∈ Vj , either i = j or xij = 0

}∣∣∣
<

(
1
t0

+ ε + d0

)
n2 � ν

2
n2

(10)

where the last ‘inequality’ holds by virtue of the fact that we chose 1/t0, ε, and d0

much smaller than ν. Hence there are essentially 2
ν
2 n2

choices for the subgraphs of
graphs G ∈ Πa(x) induced on vertex classes Vi (i = 1, . . . , t) and on pairs (Vi, Vj)
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with xij = 0. The number of subgraphs on pairs (Vi, Vj) with xij = 1 is (ignoring
precise error calculations) approximately

2
P
{i,j}∈Da(x) |Vi||Vj | ∼ 2

P
{i,j}∈Da(x)

n2

t2
(8)∼ 2ex(n,K3) (11)

where the last asymptotic employs (8) and makes use of the fact that ex(t, K3)/
(

t
2

)
∼

ex(n, K3)/
(
n
2

)
whenever t and n are large (recall t ≥ t0, where we picked t0 ‘large’).

Since every graph G ∈ Πa(x) behaves ‘identically’ on the common partition Pa, ev-
ery graph G ∈ Πa(x) must consist of one of the (essentially) 2

ν
2 n2

many subgraphs
counted in (10), and one of the (essentially) 2ex(n,K3) subgraphs counted in (11).
This completes the sketch of (8) =⇒ (9).

We finish the present outline by proving (8), and to that end, we use the counting
lemma, Fact 1.2. Indeed, if |Da(x)| > ex(t, K3), then Da(x) contains a copy of the
triangle K3. Let i, j, k denote the vertices of this triangle (which correspond to the
vertex classes Vi, Vj , Vk of the partition Pa) and fix any graph G0 ∈ Πa(x). By
definition of Da(x), each of the pairs {Vi, Vj}, {Vj , Vk} and {Vi, Vk} are ε-regular
w.r.t. G0 and also satisfy

dG0(Vi, Vj), dG0(Vj , Vk), dG0(Vi, Vk) ≥ d0.

By the counting lemma, Fact 1.2, the graph G0 contains at least ∼ d3
0(n/t)3 > 0

many triangles K3, which contradicts that G0 ∈ Forb(n, K3). This completes the
outline.

Before proceeding to the actual proof of Theorem 2.3, we make the following
remark.

Remark 5.1. As we mentioned before, one has to work a little harder, whether
for graphs or hypergraphs, when the set F(k) consists of infinitely many elements
rather than finitely many. These details were not addressed in our outline, but
are addressed in our proof of Theorem 2.3. As well, in our proof of Theorem 2.3,
we shall define a k-graph Dα(x) in (26) which is an analogue to the graph Da(x)
(cf. (8)). For reasons we do not mention here, we define Dα(x) in a slightly different
way than we defined Da(x). In the end, however, the invocation of the counting
lemma will be precisely the same as in the outline above.

5.2. Setting up the proof of Theorem 2.3. In our proof of Theorem 2.3, we
use the following notation. For an integer n and a family of k-graphs F(k), set

ẽx(n,F(k)) =
ex(n,F(k))(

n
k

) .

It is well known (see [16]) that the sequence (ẽx(n,F(k)))∞n=1 is non-increasing, and
hence,

π(F(k)) = lim
n→∞

ẽx(n,F(k)) (12)

exists. Note that when π(F(k)) = 0 the assertion of Theorem 2.3 is trivial. Indeed,

|Forb(n,F(k))| ≤
o(nk)∑
s=0

((n
k

)
s

)
= 2o(nk) .

Henceforth, we shall assume π(F(k)) > 0.
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It suffices to prove Theorem 2.3 for n divisible by a fixed but arbitrary integer T .
In particular, suppose that, for fixed ν > 0 and fixed integer T , for every integer m >
m0(k, ν, T ), we have

|Forb(mT,F(k))| ≤ 2ex(mT,F(k))+ν(mT )k

.

Then it easily follows that for all integers n > n0(k, ν, T ),

|Forb(n,F(k))| ≤ 2ex(n,F(k))+2νnk

.

Indeed, for an integer n, write (m − 1)T ≤ n < mT for some integer m. Then,
with m and n sufficiently large, we have

log2 |Forb(n,F(k))| ≤ log2 |Forb(mT,F(k))| ≤ ex(mT,F(k)) + ν(mT )k

= ẽx(mT,F(k))
(

mT

k

)
+ ν(mT )k ≤ π(F(k))

(
mT

k

)
+ ν(mT )k + o((mT )k)

≤ π(F(k))
(

n + T

k

)
+ ν(n + T )k + o((n + T )k) = π(F(k))

(
n

k

)
+ νnk + o(nk)

≤ ẽx(n,F(k))
(

n

k

)
+ νnk + o(nk) ≤ ẽx(n,F(k))

(
n

k

)
+ 2νnk

= ex(n,F(k)) + 2νnk,

where the next to last inequality follows from the sequence (ẽx(s,F(k)))∞s=1) being
non-increasing with limit π(F(k)).

We now prove that for every ν > 0, there exist integers T = T (ν) and n0 =
n0(ν, T ) so that for every n ≥ n0 divisible by T ,

log2 |Forb(n,F(k))| ≤ ex(n,F(k)) + ν

(
n

k

)
. (13)

As our proof depends on Theorems 4.12 and 4.13, we first discuss a sequence of
auxiliary constants.

5.3. Constants. Let ν > 0 be given. Let f0 ∈ N be sufficiently large so that

ẽx(f0,F(k)) < π(F(k)) +
ν

8
. (14)

Choose 0 < η = d0 < 1/9 so that

(1− η)1/(k−1) ≥ 1− 1
f0

and 4d0 log2

e
3d0

≤ ν

4
(15)

(note that the last inequality uses x log2 x → 0 as x → 0+). For fixed integers f0

and k and constants γ = 1/2 and dk = d0, let

δk = δ
(4.13)
k (f0, k, 1/2, d0) (16)

be the constant guaranteed by Theorem 4.13. We may assume, without loss of
generality, that

δk ≤ d0 . (17)
For positive integer variables yk−1, . . . , y2, let

δ(yk−1, . . . , y2) = δ(4.13)(f0, k, 1/2, d0, δk, yk−1, . . . , y2) (18)

r(yk−1, . . . , y2) = r(4.13)(f0, k, 1/2, d0, δk, yk−1, . . . , y2) (19)

be the functions guaranteed by Theorem 4.13.
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We now define further constants in terms of the regularity lemma, Theorem 4.12.
With input parameters η and δk and functions 1 δ(yk−1, . . . , y2) and r(yk−1, . . . , y2)
defined above, Theorem 4.12 guarantees integer constants

t = t(4.12)(η, δk, δ, r) and n0 = n(4.12)(η, δk, δ, r). (20)

The constant T mentioned in (13) is set to be

T = t! .

Now, for n > n0 divisible by T and sufficiently large, we verify (13).

5.4. Proof of (13). According to Theorem 4.12, every k-graph G(k) on n ver-
tices (n defined above) admits an (η, δ(aP),aP)-equitable t-bounded family of
partitions P with respect to which G(k) is (δk, r(aP))-regular. As such, for each
G(k) ∈ Forb(n,F(k)), we may associate a family of partitions PG(k) (if G(k) admits
multiple such partitions, we simply choose one of them). Accordingly, we may
impose an equivalence relation ∼ on Forb(n,F(k)) according to the following rule:
for G(k), G̃(k) ∈ Forb(n,F(k)),

G(k) ∼ G̃(k) ⇐⇒ PG(k) = PeG(k) . (21)

Let Forb(n,F(k)) = Π1 ∪ · · · ∪ ΠN be the partition of Forb(n,F(k)) induced by ∼.
To prove (13), we first seek to bound the parameter N = N(n).

Clearly, N is at most the number of t-bounded families of partitions on the vertex

set [n]. For a fixed vector a = (a1, . . . , ak−1), there are at most
∏k−1

j=1 a
(n

j)
j families

of partitions P(k − 1,a) on the vertex set [n]. Consequently,

N ≤
∑

a

{ k−1∏
j=1

a
(n

j)
j : 1 ≤ aj ≤ t for j = 1, . . . , k−1

}
≤ tk−1×t

Pk−1
j=1 (n

j) = 2O(nk−1) .

(22)
We now seek to bound |Πα| for every α = 1, . . . , N . Fix 1 ≤ α ≤ N and,

correspondingly, family of partitions Pα = {P(1)
α , . . . ,P

(k−1)
α }, i.e., the family

associated to every G(k) ∈ Πα. With each G(k) ∈ Πα, we associate the vector

xG(k) =
(
xP̂(k−1) : P̂(k−1) ∈ P̂(k−1)

α

)
∈ {0, 1}|P̂

(k−1)
α | , (23)

where, for fixed P̂(k−1) ∈ P̂
(k−1)
α ,

xP̂(k−1) =


1 if d(G(k)|P̂(k−1)) ≥ d0 and

G(k) is (δk, ∗, r(aPα))-regular w.r.t. P̂(k−1),
0 otherwise.

(24)

From (7) and the t-boundedness of the family Pα,

|{xG(k) : G(k) ∈ Πα}| ≤ 2t2
k

= O(1) . (25)

1Note that the input functions functions δ(yk−1, . . . , y2) and r(yk−1, . . . , y2) have k − 2 vari-

ables while Theorem 4.12 would allow us to consider k− 1 variables. In particular, Theorem 4.12

would allow us to include a variable y1 corresponding to the number of vertex classes the output
family of partitions P will have. We have no need for this feature in our argument here, so we
hold the variable y1 constant.
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With α ∈ [N ] fixed, fix vector x ∈ {0, 1}|P̂(k−1)
α | and define

Πα(x) =
{
G(k) ∈ Πα : xG(k) = x

}
.

We prove the following lemma.

Lemma 5.2. log2 |Πα(x)| ≤ ex(n,F(k)) + ν
2

(
n
k

)
.

Lemma 5.2, combined with (22) and (25), easily implies (13) (and hence, Theo-
rem 2.3). Indeed

|Forb(n,F(k))| =
N∑

α=1

|Πα| =
N∑

α=1

∑
x

|Πα(x)|

≤ 2O(nk−1) ×O(1)× 2ex(n,F(k))+ ν
2 (n

k) ≤ 2ex(n,F(k))+ν(n
k)

where the last inequality holds for sufficiently large n.
We now proceed to prove Lemma 5.2.

5.5. Proof of Lemma 5.2. Fix α ∈ [N ] and, correspondingly, Pα = Pα(k −
1,aPα) with aPα = (a1, . . . , ak−1) and fix x = (xP̂(k−1) : P̂(k−1) ∈ P̂

(k−1)
α ). De-

fine Dα(x) to be the set of k-tuples K ∈ Crossk(P(1)
α ) for which each G(k) ∈ Πα(x)

is ‘dense and regular’ w.r.t. P̂(k−1)(K):

Dα(x) =
⋃{

Kk(P̂(k−1)) : xP̂(k−1) = 1 (cf. (24))
}

. (26)

We make the following claim.

Claim 5.3. |Dα(x)| ≤ (ẽx(n,F(k)) + ν
4 )
(
n
k

)
.

Our proof of Claim 5.3 is based on the counting lemma, Theorem 4.13. On the
other hand, Lemma 5.2 is a simple consequence of Claim 5.3. As such, we go ahead
and assume Claim 5.3, for the moment, and finish the proof of Lemma 5.2, before
we verify Claim 5.3.

Finishing the proof of Lemma 5.2, note that every edge K ∈
(
[n]
k

)
\Dα(x) satisfies

that either

(I) K is non-crossing in P(1),
(II) or xP̂(k−1)(K) = 0, i.e., by (24), polyad P̂(k−1)(K) is either ‘sparse’ or

‘irregular’ (for every G(k) ∈ Πα(x)).

However, since every G(k) ∈ Πα(x) is (δk, r(aP))-regular w.r.t. (η, δ(aPα),aPα)-
equitable family Pα, the number of edges K ∈

(
[n]
k

)
satisfying (I) or (II) is at

most

(η + δk + d0)
(

n

k

)
(15), (17)

≤ 3d0

(
n

k

)
.

(Indeed, the equitability of family Pα ensures that there are at most η
(
n
k

)
non-

crossing edges. The fact that every G(k) ∈ Πα(x) is (δk, r(aP))-regular w.r.t.
family Pα ensures that at most δk

(
n
k

)
many k-tuples belong to irregular polyads.

Finally, sparse polyads (with density smaller than d0), in total, can only give rise
to at most d0

(
n
k

)
many k-tuples.)
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Now, every G(k) ∈ Πα(x) can be written as a disjoint union G(k) = G(k)
1 ∪ G(k)

2

where G(k)
1 ⊆ Dα(x) and |G(k)

2 | ≤ 3d0

(
n
k

)
. As such,

|Πα(x)| ≤ 2|Dα(x)|×
3d0(n

k)∑
j=0

((n
k

)
j

)
Claim 5.3
≤ 2( eex(n,F(k))+ ν

4 )(n
k)×nk

(
e

3d0

)3d0(n
k)

,

which implies (with n large)

log2

∣∣Πα(x)
∣∣ ≤ (ẽx(n,F(k)) +

ν

4
+ 4d0 log

e
3d0

)(n

k

)
(15)

≤ ex(n,F(k)) +
ν

2

(
n

k

)
,

as promised by Lemma 5.2.
It now only remains to prove Claim 5.3.

5.6. Proof of Claim 5.3. Let α ∈ [N ] and x ∈ {0, 1}|P̂(k−1)
α | be fixed. For crossing

set A ∈ Crossa1(P
(1)
α ), define auxiliary k-graph

Dense(A) =
{
K ∈

(
A
k

)
: xP̂(k−1)(K) = 1 (cf. (24))

}
.

Double-counting pairs (A,K) where K ∈ Dense(A) and A ∈ Crossa1(P
(1)
α ) yields∣∣Dα(x)

∣∣ ( n

a1

)a1−k

=
∑

A∈Crossa1 (P
(1)
α )

|Dense(A)|. (27)

As such, we may infer Claim 5.3 from the the following assertion:

max{|Dense(A)| : A ∈ Crossa1(P
(1)
α )} <

(
ẽx(a1,F(k)) +

ν

8

)(a1

k

)
. (28)

Indeed, since |Crossa1(P
(1)
α )| = (n/a1)a1 , we combine (27) and (28) to say∣∣Dα(x)

∣∣ < (ẽx(a1,F(k)) +
ν

8

)(a1

k

)(
n

a1

)k

≤
(
ẽx(a1,F(k)) +

ν

8

)(n

k

)
.

Since2 a1 ≥ f0 (where f0 is given in (14)) and the sequence (ẽx(s,F(k)))∞s=1 is
non-increasing with limit π(F(k)) (see (12)), we have∣∣Dα(x)

∣∣ < (ẽx(f0,F(k))+
ν

8

)(n

k

)
(14)
<
(
π(F(k))+

ν

4

)(n

k

)
≤
(
ẽx(n,F(k))+

ν

4

)(n

k

)
.

Thus, it remains to prove the assertion in (28).

Proof of (28). On the contrary, suppose there exists A ∈ Crossa1(P
(1)
α ) so that

|Dense(A)| ≥
(
ẽx(a1,F(k)) +

ν

8

)(a1

k

)
. (29)

As such, we claim there must also exist B ∈
(

A
f0

)
(see (14)) such that the sub-

hypergraph DenseB(A) of Dense(A) induced on B contains at least ex(f0,F(k))+1

2It is easy to see a1 ≥ f0. Indeed, since Pα is an (η, δ(aPα ), aPα )-equitable family of

partitions and since |Crossk(P
(1)
α )| =

`a1
k

´
( n

a1
)k, we have

1− η ≤ |Crossk(P
(1)
α )|

“n

k

”−1
≤

„
1−

1

a1

«k−1

where the last inequality holds with n sufficiently large. The assertion a1 ≥ f0 then follows from

our choice of η in (15), i.e., 1− η ≥ (1− f−1
0 )k−1.
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edges. Indeed, supposing otherwise, the number M of pairs (K, B), K ∈
(
B
k

)
,

B ∈
(

A
f0

)
, would, on the one hand, satisfy

M ≤
(

a1

f0

)
ex(f0,F(k)) = ẽx(f0,F(k))

(
f0

k

)(
a1

f0

)
. (30)

On the other hand, by the choice of A in (29),

M ≥
(
ẽx(a1,F(k)) +

ν

8

)(a1

k

)(
a1 − k

f0 − k

)
.

The monotonicity of the sequence (ẽx(s,F(k)) : s ≥ 1) then gives

M ≥
(
ẽx(a1,F(k)) +

ν

8

)(a1

k

)(
a1 − k

f0 − k

)
≥
(
π(F(k)) +

ν

8

)(a1

k

)(
a1 − k

f0 − k

)
(14)
> ẽx(f0,F(k))

(
a1

k

)(
a1 − k

f0 − k

)
,

contradicting (30).
Fix B ∈

(
A
f0

)
for which the f0-vertex sub-hypergraph DenseB(A) of Dense(A)

induced on B contains at least ex(f0,F(k))+1 edges. Then, there exists F (k) ∈ F(k)

so that its copy F (k)
0 appears as a sub-hypergraph of DenseB(A). In order to

derive a contradiction from our assumption in (29), we use the counting lemma,
Theorem 4.13, to find a copy of the same F (k) ∈ F(k) in any (and every) G(k) ∈
Πα(x). Since Πα(x) ⊆ Forb(F(k)), we have an immediate contradiction.

To that end, fix G(k) ∈ Πα(x) and let F = V (F (k)
0 ) ⊆ B. For each K ∈

(
F
k

)
, set

H(k)
K =

{
G(k) ∩ Kk(P̂(k−1)(K)) if K ∈ F (k)

0 ,

Kk(P̂(k−1)(K)) otherwise.

Set
H(k) =

⋃{
H(k)

K : K ∈
(
F
k

)}
.

With H(k) defined above, observe that every element of Kf (H(k)), f = |F | corre-
sponds to a copy of F (k) appearing as a sub-hypergraph of G(k). If we show |Kf (H(k))| >
0, then we derive a contradiction, and hence, (28) follows.

To show |Kf (H(k))| > 0, we apply the counting lemma, Theorem 4.13, to H(k)

and Q = {Q(j)}k−1
j=1 where Q(j) =

⋃{
P(j)(J) : J ∈

(
F
j

)}
for j = 1, . . . , k − 1. We

first check that the assumptions of Theorem 4.13 are met by H(k) and Q:
(1) Since Pα is an (η, δ(aP),aP)-equitable family, the (n/a1, f, k−1)-complex

Q is (δ(aP), (1/a2, . . . , 1/ak−1))-regular. Moreover, we chose the function
δ in (18) appropriately for an application of Theorem 4.13;

(2) For each K ∈ F (k)
0 ⊆ DenseB(A) ⊆ Dense(A), the definition of x in (23)

guarantees thatH(k)
K = G(k)∩Kk(P̂(k−1)(K)) is (δk, ∗, r(aP))-regular w.r.t.

P̂(k−1)(K) ⊆ Q(k−1) and that d(G(k)|P̂(k−1)(K)) ≥ d0. We note that δk

and r were chosen in (16) and (19) appropriately for an application of
Theorem 4.13;

(3) For each K ∈
(
F
k

)
\ F (k)

0 , the k-graph H(k)
K = Kk(P̂(k−1)(K)) is easily seen

to be (ε, 1, s)-regular w.r.t. P̂(k−1)(K) for every ε > 0 and s ∈ N. As
such, HK is (δk, 1, r(aP))-regular w.r.t. P̂(k−1)(K).
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Hence, we can apply the hypergraph counting lemma to H(k) and Q. We conclude∣∣Kf (H(k))
∣∣ ≥ 1

2
d
(f

k)
0

k−1∏
j=2

(
1
aj

)(f
j)( n

a1

)f

≥ 1
2
d
(f0

k )
0

k−1∏
j=2

(
1
aj

)(f0
j )( n

a1

)f0

> 0.

This proves (28). �

6. Proof of Theorem 2.4

Theorem 2.4 is a simple consequence of the following lemma.

Lemma 6.1. Let k-graph F (k) on f vertices be given. For every c > 0, there
exist ε > 0 and integers r̃, T and n0 so that a given k-graph G(k) on vertex set [n] =
{1, . . . , n}, with n ≥ n0 and n divisible by T , is an induced Ramsey k-graph for F (k)

whenever the following conditions are met:

(i ) |Ks(G(k))| ≥ c
(
n
s

)
where s = R(k)(f, f) is the Ramsey number for K

(k)
f ;

(ii ) G(k) is (ε, d(G(k)|P(k−1)), r̃)-regular, d(G(k)|P(k−1)) ∈ [ 14 , 3
4 ], w.r.t. ev-

ery (k − 1)-graph P(k−1) ⊆
(

[n]
k−1

)
which satisfies |Kk(P(k−1))| ≥ nk/ log n.

Lemma 6.1 implies Theorem 2.4. Indeed, it is easy to verify that, with probability
tending to 1 as n →∞, i.e., asymptotically almost surely (a.a.s.), the binomial ran-
dom k-graph G(k)(n, 1/2) satisfies the hypothesis of Lemma 6.1 with c = (1/2)(

s
k)−1

and with arbitrary choices of ε > 0 and integers r̃ and T . In particular, Chebyshev’s
inequality verifies that G(k)(n, 1/2) satisfies (i ), a.a.s. For completeness, we verify
in the Appendix (see Fact A.1) that G(k)(n, 1/2) satisfies a.a.s. (ii ).

The goal of this section is, therefore, to prove Lemma 6.1. As our proof depends
on Theorems 4.12 and 4.13, we again first discuss a sequence of auxiliary constants.

6.1. Constants. Let k-graph F (k) on f vertices be given. Set, as in the hypothesis
of Lemma 6.1,

s = R(k)(f, f). (31)
As in the hypothesis of Lemma 6.1, let c > 0 be given. We define ε > 0 and
integers r̃ and t in terms of Theorem 4.12 and 4.13.

As in Theorem 4.13, put ` = f , γ = 1/2 and dk = 1/8 and let

δ
(4.13)
k = δ

(4.13)
k (f, k, 1/2, dk)

be the constant guaranteed by Theorem 4.13. Set

η = δk = min

{
1
2
δ
(4.13)
k ,

c

4

(
s

k

)−1
}

(32)

For positive integer variables yk−1, . . . , y2, let

δ(yk−1, . . . , y2) = δ(4.13)(f, k, 1/2, dk, yk−1, . . . , y2), (33)

r(yk−1, . . . , y2) = r(4.13)(f, k, 1/2, dk, yk−1, . . . , y2) (34)

be the functions guaranteed by Theorem 4.13. Without loss of generality, we assume
that r(yk−1, . . . , y2) is monotone increasing in every coordinate.

We now define more auxiliary constants. In Theorem 4.12, let constants η and δk

and functions r and δ be the parameters chosen in (32)–(34). Theorem 4.12 guar-
antees integer constants

t = t(4.12)(η, δk, r, δ) and n0 = n
(4.12)
0 (η, δk, r, δ). (35)
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We set
ε = δk, T = t! and r̃ = r(t, . . . , t). (36)

Let n > n0 be divisible by T and be sufficiently large whenever needed. This
concludes our discussion of the constants.

6.2. Proof of Lemma 6.1. With the constants above, let G(k) be a k-graph on
n vertices satisfying the hypothesis of Lemma 6.1. Let G(k) = R(k) ∪ B(k) be any
two-coloring with colors ‘red’ and ‘blue’. We prove that one of R(k) or B(k) contains
a copy of F (k) as a sub-hypergraph which is induced in G(k).

With constants η, and δk and functions r and δ defined above, we apply The-
orem 4.12 to the k-graph R(k) to obtain (η, δ(aP),aP)-equitable and t-bounded
family of partitions P = P(k − 1,aP) with respect to which R(k) is (δk, r(aP))-
regular. Observe, that due to our choice of r̃ in (36) and the monotonicity thereof,

r(aP) ≤ r̃. (37)

We now consider the polyads of P.
Set3

P̂
(k−1)
bad =

{
P̂(k−1) ∈ P̂(k−1) : |Kk(P̂(k−1))| < nk/ log n

}
.

Note that the t-boundedness of P gives for sufficiently large n∣∣∣∣⋃{
Kk(P̂(k−1)) : P̂(k−1) ∈ P̂

(k−1)
bad

}∣∣∣∣ ≤ (a1

k

) k−1∏
j=2

a
(k

j)
j × nk

log n
≤ c

4
(

s
k

)(n

k

)
. (38)

Set

P̂(k−1)
reg =

{
P̂(k−1) ∈ P̂(k−1) \ P̂

(k−1)
bad :

R(k) is (δk, ∗, r(aP))-regular w.r.t. P̂(k−1)
}

.
(39)

While P̂
(k−1)
reg is defined in terms of the k-graph R(k) only, the following fact ob-

serves that both R(k) and B(k) are ‘regular’ w.r.t. every polyad P̂(k−1) ∈ P̂
(k−1)
reg .

Fact 6.2.

P̂(k−1) ∈ P̂(k−1)
reg =⇒ B(k) is (2δk, ∗, r(aP))-regular w.r.t. P̂(k−1).

Proof of Fact 6.2. Indeed, for fixed P̂(k−1) ∈ P̂
(k−1)
reg , we know

(1) R(k) is (δk, ∗, r(aP))-regular w.r.t. P̂(k−1) (by definition of P̂
(k−1)
reg );

(2) G(k) is (ε, d(G(k)|P̂(k−1)), r̃)-regular w.r.t. P̂(k−1), where d(G(k)|P̂(k−1)) ∈
[ 14 , 3

4 ] (see (ii ) of Lemma 6.1).

3 We note that one could, in fact, show that P̂
(k−1)
bad = ∅. This would follow from the

fact that there are only a bounded number (independent of n) of polyads P̂(k−1) ∈ P̂(k−1)

and each of them corresponds to a (δ, (1/a2, . . . , 1/ak−1))-regular (n/a1, k, k − 1)-complex. In

this situation, one can argue that with δ � min{1/a1, . . . , 1/ak−1} we have |Kk(P̂(k−1))| =

(1± f(δ))
Qk−1

h=2(1/ah)

“
k
h

”
× (n/a1)k where f(δ) → 0 as δ → 0. Rather than making this precise,

however, we chose in our current proof to use the fact that (sparse) polyads P̂(k−1) ∈ P̂
(k−1)
bad

can have only little influence.
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As such, it may be directly verified from Definition 4.10 that the difference B(k) =
G(k) \ R(k) is (ε + δk, ∗,min{r(aP), r̃})-regular w.r.t. P̂(k−1) (with complemen-
tary density d(B(k)|P̂(k−1)) = d(G(k)|P̂(k−1)) − d(R(k)|P̂(k−1))). Recalling ε = δk

from (36) and r(aP) ≤ r̃ from (37), Fact 6.2 follows. �

We proceed with the first of two easy claims that will prove Lemma 6.1.

Claim 6.3. For s = R(k)(f, f) fixed in (31), there exists S ∈ Crosss(P(1)) so that
every K ∈

(
S
k

)
has P̂(k−1)(K) ∈ P̂(k−1)

reg .

Proof of Claim 6.3. Set

G̃(k) = G(k) ∩ Crossk(P(1))∩
{⋃

Kk(P̂(k−1)) : P̂(k−1) ∈ P̂(k−1)
reg

}
. (40)

Observe that every S ∈ Ks(G̃(k)) satisfies the properties required by the claim. As
such, it suffices to prove |Ks(G̃(k))| > 0. Recall that our hypothesis in Lemma 6.1
assumes that |Ks(G(k))| > c

(
n
s

)
. We show that, in deleting the few edges of G(k) to

obtain G̃(k), we don’t destroy all of these cliques.
First, we check that |G(k) \ G̃(k)| is small. Indeed, since P is an (η, δ(aP),aP)-

equitable family of partitions,∣∣G(k) \ Crossk(P(1))
∣∣ ≤ η

(
n

k

)
. (41)

Combining (38) with the fact that R(k) is (δk, r(aP))-regular w.r.t. P we have (in
view of (39)) that∣∣∣G(k) \

{⋃
Kk(P̂(k−1)) : P̂(k−1) ∈ P̂(k−1)

reg

}∣∣∣ ≤ (δk +
c

4
(

s
k

))(n

k

)
. (42)

Consequently, we infer from (40), (41), and (42) that

|G(k) \ G̃(k)| ≤
(

η + δk +
c

4
(

s
k

))(n

k

)
(32)

≤ 3c

4

(
s

k

)−1(
n

k

)
. (43)

Now, since each k-tuple of G(k) \ G̃(k) can belong to at most
(
n−k
s−k

)
cliques K

(k)
s ,

we see that (43) implies∣∣Ks(G̃(k))
∣∣ ≥ ∣∣Ks(G(k))

∣∣− 3c

4

(
s

k

)−1(
n

k

)(
n− k

s− k

)
=
∣∣Ks(G(k))

∣∣− 3c

4

(
n

s

)
(i )

≥ c

4

(
n

s

)
> 0

where we used property (i ) from the hypothesis of Lemma 6.1. �

As guaranteed by Claim 6.3, fix S ∈ Crosss(P(1)) of size s = R(k)(f, f) whose
every K ∈

(
S
k

)
has P̂(k−1)(K) ∈ P̂(k−1)

reg . We continue with the second of two easy
claims that will prove Lemma 6.1.

Claim 6.4. There exists a set F ∈
(
S
f

)
such that either

d(R(k)|P̂(k−1)(K)) ≥ 1
8 for every K ∈

(
F
k

)
, (44)

or
d(B(k)|P̂(k−1)(K)) ≥ 1

8 for every K ∈
(
F
k

)
. (45)
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Proof of Claim 6.4. For each K ∈
(
S
k

)
, define an auxiliary two-coloring

χ(K) =

{
‘red’ if d(R(k)|P̂(k−1)(K)) ≥ 1

8 ,

‘blue’ otherwise.

Note that, by the definition of P̂
(k−1)
bad and assumption (ii ) of Lemma 6.1, we

have d(G(k)|P̂(k−1)) ≥ 1/4 for every P̂(k−1) 6∈ P̂
(k−1)
bad . Consequently, for every

P̂(k−1) 6∈ P̂
(k−1)
bad either d(R(k)|P̂(k−1)) ≥ 1/8 or d(B(k)|P̂(k−1)) ≥ 1/8. (In this

way, χ(K) =‘blue’ implies d(B(k)|P̂(k−1)(K)) ≥ 1/8.) Now, it follows from s =
R(k)(f, f) in (31) that there exists a set F ∈

(
S
f

)
such that χ is constant on

(
F
k

)
.

Claim 6.4 then follows. �

We now deduce Lemma 6.1 from Claim 6.3 and 6.4. Let F ∈
(
S
f

)
be the set with

the properties guaranteed by Claim 6.4. Then, the polyads P̂(k−1)(K) across K ∈(
F
k

)
are all ‘dense’ in the same color R(k) or B(k). Recall Fact 6.2 ensures these

same polyads are also all ‘regular’ across K ∈
(
F
k

)
. It therefore doesn’t matter

which of (44) or (45) holds, and so we assume, without loss of generality, that the
former does.

Fix a copy F (k)
0 of F (k) on the set F , i.e., V (F (k)

0 ) = F . We construct a sub-

hypergraph H(k) ⊆ G(k) as follows. For K ∈
(
F
k

)
=
(V (F(k)

0 )
k

)
, set

H(k)
K =

{
R(k) ∩ Kk(P̂(k−1)(K)) if K ∈ F (k)

0 ,

Kk(P̂(k−1)(K)) \ G(k) otherwise.

Define

H(k) =
⋃{

H(k)
K : K ∈

(
F
k

)}
.

With H(k) defined above, observe that every element of Kf (H(k)) corresponds to a
copy of F (k) ⊂ R(k) which is induced in G(k). To conclude the proof of Lemma 6.1,
therefore, it suffices to show |Kf (H(k))| > 0. To this end, we use the counting
lemma, Theorem 4.13, and first check that it is appropriate to do so.

Indeed, for j = 1, . . . , k − 1, set

Q(j) =
⋃{

P(j)(J) : J ∈
(
F
j

)}
and Q = {Q(j)}k−1

j=1 . We observe the following.

(1) Q is a (δ(aP), r(1/a2, . . . , 1/ak−1))-regular (n/a1, f, k−1)-complex, where
the function δ was chosen in (33) appropriately for an application of The-
orem 4.13;

(2) For K ∈ F (k)
0 , we combine Claim 6.3 and Claim 6.4 to see that H(k)

K =
R(k) ∩ Kk(P̂(k−1)(K)) is (δk, ∗, r(aP))-regular w.r.t. P̂(k−1)(K) with den-
sity d(R(k)|P̂(k−1)(K)) ≥ 1

8 . We note that δk ≤ δ
(4.13)
k (f, k, 1/2, dk) and r =

r(aP) were chosen in (32) and (34), resp., appropriately for an application
of Theorem 4.13;

(3) For each K ∈
(
F
k

)
\ F (k)

0 , we have, by (ii ) of Lemma 6.1, that G(k)

is (ε, dK , r̃)-regular w.r.t. P̂(k−1)(K) with dK = d(G(k)|P̂(k−1)(K)) ∈ [ 14 , 3
4 ].
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Since ε = δk and r̃ ≥ r(aP) (cf. (36) and (37)), the k-graph G(k) is there-
fore also (δk, dK , r(aP))-regular w.r.t. P̂(k−1)(K). As such, the comple-
ment H(k)

K = Kk(P̂(k−1)(K)) \ G(k) is then also (δk, dK , r(aP))-regular
w.r.t. P̂(k−1)(K) with density d̄K = d(H(k)

K |P̂(k−1)(K)) = 1− dK ∈ [ 14 , 3
4 ].

Hence, we can apply the counting lemma to H(k) and Q. As such, we conclude∣∣∣Kf (H(k))
∣∣∣ ≥ 1

2

(
1
8

)(f
k) k−1∏

j=2

(
1
aj

)(f
j)( n

a1

)f

> 0,

and Lemma 6.1 is proved.

Appendix A.

Fact A.1. With probability at least (1−exp(−nk/ log6 n)) the binomial random hy-
pergraph G(k)(n, 1/2) is (1/ log n, 1/2, log n)-regular w.r.t. to every (k− 1)-uniform
hypergraph P(k−1) ⊆

(
[n]

k−1

)
for which |Kk(P(k−1))| ≥ nk/ log n.

Proof. The proof of Fact A.1 follows standard lines. For simplicity of notation,
set r = log n. Fix any (k − 1)-graph P(k−1) ⊆

(
[n]

k−1

)
for which∣∣∣Kk(P(k−1))

∣∣∣ > nk

log n
. (46)

Let Q(k−1) = {Q(k−1)
1 , . . . ,Q(k−1)

r } be a family of r sub-hypergraphs of P(k−1) for
which ∣∣∣∣ ⋃

i∈[r]

Kk(Q(k−1)
i )

∣∣∣∣ ≥ 1
log n

∣∣∣Kk(P(k−1))
∣∣∣ (46)

>
nk

log2 n
. (47)

Set X(Q(k−1)) = |G(k)(n, 1/2)∩
⋃

i∈[r]Kk(Q(k−1)
i )|. Then, X(Q(k−1)) is binomially

distributed random variable with expectation

E
[
X(Q(k−1))

]
= E

[∣∣∣∣G(k)(n, 1/2) ∩
⋃

i∈[r]

Kk(Q(k−1)
i )

∣∣∣∣]

=
1
2

∣∣∣∣ ⋃
i∈[r]

Kk(Q(k−1)
i )

∣∣∣∣ (47)

>
nk

2 log2 n
.

(48)

We apply the Chernoff inequality (cf. [15]) to conclude

P

(∣∣∣X(Q(k−1))− E
[
X(Q(k−1))

]∣∣∣ > 1
log n

E
[
X(Q(k−1))

])

≤ 2 exp

{
−

E
[
X(Q(k−1))

]
3 log2 n

}
(48)

< 2 exp
{
− nk

6 log4 n

}
.

(49)

For a given P(k−1) satisfying (46), let B(P(k−1)) be the event that there ex-
ist a family Q(k−1) = {Q(k−1)

1 , . . . ,Q(k−1)
r } of r sub-hypergraphs of P(k−1) such

that (47) and |X(Q(k−1))− E[X(Q(k−1))]| > E[X(Q(k−1))]/log n. As there are at
most 2r|P(k−1)| ≤ 2nk−1 log n families Q(k−1) of sub-hypergraphs of P(k−1), we see

P
(
B(P(k−1))

) (49)

< 2 · 2nk−1 log n exp
{
− nk

6 log4 n

}
< exp

{
− nk

log5 n

}
. (50)
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We now conclude the proof of Fact A.1. Note that (50) almost proves what
we want. Namely, we have fixed an appropriate (k − 1)-graph P(k−1) (i.e., which
satisfies (46)) and have proved that it is very unlikely that G(k)(n, 1/2) fails to
be (1/ log n, 1/2, log n)-regular w.r.t. P(k−1). We simply want the same assertion for
every appropriate (k−1)-graph P(k−1), Since there are at most 2( n

k−1) many (k−1)-
graphs P(k−1) satisfying (46), we see

P
(⋃{

B(P(k−1)) : P(k−1) ⊆
(

[n]
k−1

)
satisfying (46)

})
(50)

< 2( n
k−1) exp

{
− nk

log5 n

}
< exp

{
− nk

log6 n

}
.

This concludes our proof of Fact A.1. �
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[37] G. N. Sárközy and S. Selkow, On a Turán-type hypergraph problem of Brown, Erdős and T.
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