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Abstract. The aim of this paper is to prove a Turán type theorem for random

graphs. For 0 < γ ≤ 1 and graphs G and H, write G→γ H if any γ-proportion

of the edges of G spans at least one copy of H in G. We show that for every
l ≥ 2 and every fixed real 1/(l − 1) > δ > 0 almost every graph G in the

binomial random graph model G(n, q), with q = q(n) � ((log n)4/n)1/(l−1),

satisfies G→(l−2)/(l−1)+δ Kl, where Kl is the complete graph on l vertices.
Our result naturally extends to the case where H is a d-degenerate graph.

In this case we show that almost every graph G in G(n, q) with q = q(n) �
((log n)4/n)1/d satisfies G →(χ(H)−2)/(χ(H)−1)+δ H, where as usual χ(H)
denotes the chromatic number of H.
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1. Introduction

A classical area of extremal graph theory investigates numerical and structural
problems concerning H-free graphs, namely graphs that do not contain a copy of
a given fixed graph H as a subgraph. Let ex(n, H) be the maximal number of
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edges that an H-free graph on n vertices may have. A basic question is then to
determine or estimate ex(n, H) for any given H and large n. A solution to this
problem is given by the celebrated Erdős–Stone–Simonovits theorem, which states
that, as n →∞, we have

ex(n, H) =
(

1− 1
χ(H)− 1

+ o(1)
)(

n

2

)
, (1)

where as usual χ(H) is the chromatic number of H. Furthermore, as proved in-
dependently by Erdős and Simonovits, every H-free graph G = Gn that has as
many edges as in (1) is in fact ‘very close’ (in a certain precise sense) to the densest
n-vertex (χ(H)− 1)-partite graph. For these and related results, see, for instance,
Bollobás [1].

Here we are interested in a variant of the function ex(n, H). Let G and H
be graphs, and write ex(G, H) for the maximal number of edges that an H-free
subgraph of G may have. Formally, ex(G, H) = max{|E(F )| : H 6⊂ F ⊂ G}. For
instance, if G = Kn, the complete graph on n vertices, then ex(Kn,H) = ex(n, H)
is the usual Turán number of H.

Our aim here is to study ex(G, H) when G is a random graph. Let 0 < q =
q(n) ≤ 1 be given. The binomial random graph G in G(n, q) has as its vertex set a
fixed set V (G) of cardinality n and two vertices are adjacent in G with probability q.
All such adjacencies are independent. (For concepts and results concerning random
graphs not given in detail below, see, e.g., Bollobás [2].) Here we wish to investigate
the random variables ex(G(n, q),H), where H = Kl (l ≥ 2) or H is a k-degenerate
graph, a graph that may be reduced to the empty graph by the successive removal
of vertices of degree less or equal k.

Let H be a graph of order |H| = |V (H)| ≥ 3. Let us write d2(H) for the
2-density of H, that is,

d2(H) = max
{

e(H ′)− 1
|H ′| − 2

: H ′ ⊂ H, |H ′| ≥ 3
}

.

A general conjecture concerning ex(G(n, q),H), first stated in [10], is as follows (as
is usual in the theory of random graphs, we say that a property P holds almost
surely or that almost every random graph G in G(n, q) satisfies P if P holds with
probability tending to 1 as n →∞).

Conjecture 1. Let H be a non-empty graph of order at least 3, and let 0 < q =
q(n) ≤ 1 be such that qn1/d2(H) → ∞ as n → ∞. Then almost every G in G(n, q)
satisfies

ex(G, H) =
(

1− 1
χ(H)− 1

+ o(1)
)
|E(G)|.

In other words, for G in G(n, q) the Conjecture 1 claims that G →γ H holds
almost surely for any fixed γ > 1−1/(χ(H)−1). There are a few results in support
of Conjecture 1.

Any result concerning the tree-universality of expanding graphs, or any simple
application of Szemerédi’s regularity lemma for sparse graphs (see Theorem 4 be-
low), gives Conjecture 1 for H a forest. The cases in which H = K3 and H = C4

are essentially proved in Frankl and Rödl [3] and Füredi [4], respectively, in connec-
tion with problems concerning the existence of some graphs with certain extremal
properties. The case for H = K4 was proved by Kohayakawa,  Luczak and Rödl [10]
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and the case in which H is a general cycle was settled by Haxell, Kohayakawa, and
 Luczak [5, 6] (see also Kohayakawa, Kreuter, and Steger [9]).

Our main result relates to Conjecture 1 in the following way: we deal with the
case in which H = Kl and q = q(n) � ((log n)4/n)1/(l−1). More precisely we prove
the following.

Theorem 2. Let l ≥ 2, q = q(n) �
(
(log n)4/n

)1/(l−1), and let G(n, q) be the
binomial random graph model with edge probability q. Then for every 1/(l − 1) >
δ > 0 a graph G in G(n, q) satisfies the following property with probability 1− o(1):
If F is an arbitrary, not necessarily induced subgraph of G with

|E(F )| ≥
(

1− 1
l − 1

+ δ

)
q

(
n

2

)
,

then F contains Kl, the complete graph on l vertices, as a subgraph. Moreover,
there exists a constant c = c(δ, l) such that G contains at least cq(l

2)nl copies of Kl.

In this paper we give a proof of Theorem 2. Very recently Szabó and Vu an-
nounced in [16] a slightly stronger result (namely for smaller values of q, in fact
for q(n) � n−1/(l−1.5)). Their proof is somewhat more elegant, but seems not
to extend to other graphs H, than complete graphs. Whereas, our proof extends
naturally to the case in which H is a d-degenerate graph; see Theorem 2′ below.
In Section 5 we outline the proof of Theorem 2′ (the detailed proof will be given
in [14]).

Recall that a graph H with |V (H)| = h is d-degenerate if there exists an ordering
of the vertices v1, . . . , vh such that each vi (1 ≤ i ≤ h) has at most d neighbours
in {v1, . . . , vi−1} (for more details concerning d-degenerate graphs see [13, 15]).
Since Kl is clearly (l − 1)-degenerate and l-chromatic, the following result extends
Theorem 2.
Theorem 2′. Let d be a positive integer, H a d-degenerate graph of order h, q =
q(n) �

(
(log n)4/n

)1/d, and G(n, q) the binomial random graph model with edge
probability q. Then for every 1/(χ(H) − 1) > δ > 0 a graph G in G(n, q) satisfies
the following property with probability 1−o(1): If F is an arbitrary, not necessarily
induced subgraph of G with

|E(F )| ≥
(

1− 1
χ(H)− 1

+ δ

)
q

(
n

2

)
,

then F contains H as a subgraph. Moreover, there exists a constant c = c(δ, d, h)
such that G contains at least cq(h

2)nh copies of H.
This paper is organised as follows. In Section 2 we describe a sparse version

of Szemerédi’s regularity lemma (Theorem 4) and we state the counting lemma
(Lemma 6), which are crucial in our proof of Theorem 2. We prove Theorem 2 in
Section 3. Section 4 is entirely devoted to the proof of Lemma 6. The proof of
Lemma 6 relies on the ‘Pick-Up Lemma’ (Lemma 14) and on the ‘k-tuple lemma’
(Lemma 18). We give these preliminary results in Section 4.1–4.2. In Section 4.3
we outline the proof of Lemma 6 in the case l = 4. Finally, the proof is given in
Section 4.4. We discuss the case when H is a d-degenerate graph and sketch the
proof of Theorem 2′ in Section 5.

For a general remark about the notation we use throughout this paper see Re-
mark 5.
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2. Preliminary results

2.1. Preliminary definitions. Let a graph G = Gn of order |V (G)| = n be fixed.
For U , W ⊂ V = V (G), we write

E(U,W ) = EG(U,W ) =
{
{u, w} ∈ E(G) : u ∈ U, w ∈ W

}
for the set of edges of G that have one end-vertex in U and the other in W . Notice
that each edge in U∩W occurs only once in E(U,W ). We set e(U,W ) = eG(U,W ) =
|E(U,W )|.

If G is a graph and V1, . . . , Vt ⊂ V (G) are disjoint sets of vertices, we write
G[V1, . . . , Vt] for the t-partite graph naturally induced by V1, . . . , Vt.

2.2. The regularity lemma for sparse graphs. Our aim in this section is to
state a variant of the regularity lemma of Szemerédi [17].

Let a graph H = Hn = (V,E) of order |V | = n be fixed. Suppose ξ > 0, C > 1,
and 0 < q ≤ 1.

Definition 3 ((ξ, C)-bounded). For ξ > 0 and C > 1 we say that H = H(V,E) is a
(ξ, C)-bounded graph with respect to density q, if for all U , W ⊂ V , not necessarily
disjoint, with |U |, |W | ≥ ξ|V |, we have

eH(U,W ) ≤ Cq

(
|U ||W | −

(
|U ∩W |

2

))
.

For any two disjoint non-empty sets U , W ⊂ V , let

dH,q(U,W ) =
eH(U,W )
q|U ||W |

. (2)

We refer to dH,q(U,W ) as the q-density of the pair (U,W ) in H. When there is no
danger of confusion, we drop H from the subscript and write dq(U,W ).

Now suppose ε > 0, U , W ⊂ V , and U ∩W = ∅. We say that the pair (U,W ) is
(ε, H, q)-regular, or simply (ε, q)-regular, if for all U ′ ⊂ U , W ′ ⊂ W with |U ′| ≥ ε|U |
and |W ′| ≥ ε|W | we have

|dH,q(U ′,W ′)− dH,q(U,W )| ≤ ε. (3)

Below, we shall sometimes use the expression ε-regular with respect to density q to
mean that (U,W ) is an (ε, q)-regular pair.

We say that a partition P = (Vi)t
0 of V = V (H) is (ε, t)-equitable if |V0| ≤ εn,

and |V1| = · · · = |Vt|. Also, we say that V0 is the exceptional class of P . When the
value of ε is not relevant, we refer to an (ε, t)-equitable partition as a t-equitable
partition. Similarly, P is an equitable partition of V if it is a t-equitable partition
for some t.

We say that an (ε, t)-equitable partition P = (Vi)t
0 of V is (ε, H, q)-regular, or

simply (ε, q)-regular, if at most ε
(

t
2

)
pairs (Vi, Vj) with 1 ≤ i < j ≤ t are not

(ε, q)-regular. We may now state a version of Szemerédi’s regularity lemma for
(ξ, C)-bounded graphs.

Theorem 4. For any given ε > 0, C > 1, and t0 ≥ 1, there exist constants ξ =
ξ(ε, C, t0) and T0 = T0(ε, C, t0) ≥ t0 such that any sufficiently large graph H that
is (ξ, C)-bounded with respect to density 0 < q ≤ 1 admits an (ε, H, q)-regular
(ε, t)-equitable partition of its vertex set with t0 ≤ t ≤ T0.



THE TURÁN THEOREM FOR RANDOM GRAPHS 5

A simple modification of Szemerédi’s proof of his lemma gives Theorem 4. For
applications of this variant of the regularity lemma and its proof, see [8, 12].

2.3. The counting lemma for complete subgraphs of random graphs. Let
t ≥ l ≥ 2 be fixed integers and n a sufficiently large integer. Let α and ε be
constants greater than 0. Let G ∈ G(n, q) be the binomial random graph with
edge probability q = q(n), and suppose J is an l-partite subgraph of G with vertex
classes V1, . . . , Vl. For all 1 ≤ i < j ≤ l we denote by Jij the bipartite graph
induced by Vi and Vj . Consider the following assertions for J .

(I) |Vi| = m = n/t
(II) ql−1n � (log n)4

(III) Jij has T = pm2 edges where 1 > αq = p � 1/n, and
(IV) Jij is (ε, q)-regular.

Remark 5. Strictly speaking, in (I) we should have, say, bm/tc, because m is an
integer. However, throughout this paper we will omit the floor and ceiling signs
b c and d e, since they have no significant effect on the arguments.

Moreover, let us make a few more comments about the notation that we shall
use. For positive functions f(n) and g(n), we write f(n) � g(n) to mean that
limn→∞ g(n)/f(n) = 0. Unless otherwise stated, we understand by o(1) a function
approaching zero as the number of vertices of a given random graph goes to infinity.

Finally, we observe that our logarithms are natural logarithms.

We are interested in the number of copies of complete graphs on l vertices in
such a subgraph J satisfying conditions (I)–(IV).

Lemma 6 (Counting lemma). For every α, σ > 0 and integer l ≥ 2 there exists
ε > 0 such that for every fixed integer t ≥ l a random graph G in G(n, q) satisfies
the following property with probability 1 − o(1): Every subgraph J ⊆ G satisfying
conditions (I)–(IV) contains at least

(1− σ)p(l
2)ml

copies of the complete graph Kl.

We will prove Lemma 6 later in Section 4.

3. The main result

In this section we will prove the main result of this paper, Theorem 2. This
section is organised as follows. First, we state two properties that hold for almost
every G ∈ G(n, q). Then, in Section 3.2, we prove a deterministic statement about
the regularity of certain subgraphs of an (ε, q)-regular α-dense t-partite graph.
Finally, we prove Theorem 2.

3.1. Properties of almost all graphs. We start with a well known fact of random
graph theory which follows easily from the properties of the binomial distribution.

Fact 7. If G is a random graph in G(n, q), then

|E(G)| = (1 + o(1)) q

(
n

2

)
holds with probability 1− o(1).

The next property refers to Definition 3 and will enable us to apply Theorem 4.
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Lemma 8. For every C > 1, ξ > 0 and q = q(n) � 1/n a random graph G in
G(n, q) is (ξ, C)-bounded with probability 1− o(1).

We will apply the following one-sided estimate of a binomial distributed random
variable.

Lemma 9. Let X be a binomial distributed random variable in Bi(N, q) with ex-
pectation EX = Nq and let C > 1 be a constant. Then

P(X ≥ CEX) ≤ exp(−τCEX),

where τ = log C − 1 + 1/C > 0 for C > 1 (recall that all logarithms are to base e,
see Remark 5).

Proof. The proof is given in [7] (see Corollary 2.4). �

Proof of Lemma 8. Let G ∈ G(n, q) and let U , W ⊆ V (G) be two not necessarily
disjoint sets such that |U |, |W | ≥ ξn. Clearly, e(U,W ) is a binomial random
variable with

E[e(U,W )] = q

(
|U ||W | −

(
|U ∩W |

2

))
.

Observe that E[e(U,W )] � n since q � 1/n. Set τ = log C − 1 + 1/C. Then
Lemma 9 implies

P (e(U,W ) > CE[e(U,W )]) ≤ exp (−τCE[e(U,W )]) .

We now sum over all choices for U and W to deduce that

P(G is not (ξ, C)-bounded) ≤∑
|U |≥ξn

∑
|W |≥ξn

(
n

|U |

)(
n

|W |

)
exp (−τCE[e(U,W )])

≤ 4n exp (−τCE[e(U,W )]) = o(1),

since τC > 0 and E[e(U,W )] � n. �

3.2. A deterministic subgraph lemma. The next lemma states that every
(ε, q)-regular, bipartite graph with at least αqm2 edges contains an (3ε, q)-regular
subgraph with exactly αqm2 edges.

Lemma 10. For every ε > 0, α > 0, and C > 1 there exists m0 such that if
H = (U,W ; F ) is a bipartite graph satisfying

(i) |U | = m1, |W | = m2 > m0,
(ii) Cqm1m2 ≥ eH(U,W ) ≥ αqm1m2 for some function q = q(m0) � 1/m0,

and
(iii) H is (ε, q)-regular,

then there exists a subgraph H ′ = (U,W ; F ′) ⊆ H such that
(ii′) eH′(U,W ) = αqm1m2 and
(iii′) H ′ is (3ε, q)-regular.

Proof. We select a set D of

|D| = eH(U,W )− αqm1m2
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different edges in EH(U,W ) uniformly at random and fix H ′ = (U,W ; F \D). We
naturally define the density in D with respect to q for sets U ′ ⊆ U and W ′ ⊆ W
by

dD,q(U ′,W ′) =
|EH(U ′,W ′) ∩D|

q|U ′||W ′|
. (4)

In order to check the (3ε, H ′, q)-regularity of (U,W ), it is enough to verify the
inequality corresponding to (3) for sets U ′ ⊆ U , W ′ ⊆ W such that |U ′| = 3εm1 and
|W ′| = 3εm2. Let (U ′,W ′) be such a pair. We distinguish three cases depending
on |D| and eH(U ′,W ′).

Case 1. |D| ≤ ε3qm1m2

The graph H is (ε, H, q)-regular and thus

dH,q(U ′,W ′) ≥ dH,q(U,W )− ε.

Since dH′,q(U ′,W ′) ≥ dH,q(U ′,W ′)− dD,q(U ′,W ′), we have

dH′,q(U ′,W ′) ≥ dH,q(U ′,W ′)− |D|
9ε2qm1m2

≥ dH,q(U,W )− 10
9

ε,

which implies that H ′ is (3ε, q)-regular.

Case 2. eH(U ′,W ′) ≤ ε3qm1m2

Observe that eH(U ′,W ′) ≤ ε3qm1m2 implies

dH,q(U ′,W ′) ≤ ε

9
. (5)

H is (ε, H, q)-regular and thus

dH,q(U,W ) ≤ ε + dH,q(U ′,W ′) ≤ 10
9

ε. (6)

On the other hand, dH′,q(X, Y ) ≤ dH,q(X, Y ) for arbitrary X ⊆ U and Y ⊆ W ,
which combined with (5) and (6) yields

|dH′,q(U,W )− dH′,q(U ′,W ′)| ≤ 10
9

ε +
ε

9
≤ 3ε.

Up to now, we have not used the fact that D is chosen at random. To deal
with the case that we are left with (that is, the case in which |D| > ε3qm1m2 and
eH(U ′,W ′) > ε3qm1m2), we will make use of this randomness. Before we start, we
state the following two-sided estimate for the hypergeometric distribution.

Lemma 11. Let sets B ⊆ U be fixed. Let |U | = u and |B| = b. Suppose we select
a d-set D uniformly at random from U . Then, for 3/2 ≥ λ > 0, we have

P
(∣∣∣∣|D ∩B| − bd

u

∣∣∣∣ ≥ λ
bd

u

)
≤ 2 exp

(
−λ2

3
bd

u

)
.

Proof. For the proof we refer to [7] (Theorem 2.10). �

We continue with the proof of Lemma 10.

Case 3. |D| > ε3qm1m2 and eH(U ′,W ′) > ε3qm1m2

Recall that U ′ ⊆ U and V ′ ⊆ V are such that |U ′| = 3εm1 and |V ′| = 3εm2.
First, we verify that∣∣∣∣dD,q(U,W )

dH,q(U ′,W ′)
dH,q(U,W )

− dD,q(U ′,W ′)
∣∣∣∣ ≤ ε (7)



8 Y. KOHAYAKAWA, V. RÖDL, AND M. SCHACHT

implies that
|dH′,q(U,W )− dH′,q(U ′,W ′)| ≤ 3ε. (8)

Indeed, straightforward calculation using the (ε, q)-regularity of H and (7) give

|dH′,q(U,W )− dH′,q(U ′,W ′)|
= |(dH,q(U,W )− dD,q(U,W ))− (dH,q(U ′,W ′)− dD,q(U ′,W ′))|
≤ ε + |dD,q(U,W )− dD,q(U ′,W ′)|

≤ ε +
∣∣∣∣dD,q(U,W )− dD,q(U,W )

dH,q(U ′,W ′)
dH,q(U,W )

∣∣∣∣
+
∣∣∣∣dD,q(U,W )

dH,q(U ′,W ′)
dH,q(U,W )

− dD,q(U ′,W ′)
∣∣∣∣

≤ ε +
dD,q(U,W )
dH,q(U,W )

|dH,q(U,W )− dH,q(U ′,W ′)|+ ε

≤ ε +
dD,q(U,W )
dH,q(U,W )

ε + ε

≤ 3ε.

Next, we will prove that (7) is unlikely to fail, because of the random choice of D.
We set

λ = min
{

9ε3

C
,

3
2

}
. (9)

Then the two-sided estimate in Lemma 11 gives that∣∣∣∣|D ∩ EH(U ′,W ′)| − eH(U ′,W ′)|D|
eH(U,W )

∣∣∣∣ < λ
eH(U ′,W ′)|D|

eH(U,W )

fails with probability

≤ 2 exp
(
−λ2

3
eH(U ′,W ′)|D|

eH(U,W )

)
. (10)

Since∣∣∣∣dD,q(U ′,W ′)− dD,q(U,W )
dH,q(U ′,W ′)
dH,q(U,W )

∣∣∣∣
=

1
9ε2qm1m2

∣∣∣∣|D ∩ EH(U ′,W ′)| − eH(U ′,W ′)|D|
eH(U,W )

∣∣∣∣ ,
and because of (ii) and (9), we have

λ
eH(U ′,W ′)
9qε2m1m2

|D|
eH(U,W )

≤ λ
eH(U ′,W ′)
9qε2m1m2

≤ λ
eH(U,W )
9qε2m1m2

≤ ε,

we infer that (7) and consequently (8) fails with small probability given in (10).
We now sum over all possible choices for U ′ and W ′ and use |D| > ε3qm1m2,

eH(U ′,W ′) > ε3qm1m2 and (ii). We have that

P (H ′ is not (3ε, q)-regular) ≤ 2m1+m2 · 2 exp
(
−λ2ε6

3C
qm1m2

)
< 1

for m1, m2 sufficiently large, since q = q(m0) � 1/m0. This implies that, for m0

large enough, there is a set D such that H ′ is (3ε, q)-regular, as required. �
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3.3. Proof of the main result. The proof of Theorem 2 is based on Lemma 6,
which we prove later in Section 4. The main idea is to “find” a regular subgraph J
satisfying (I)–(IV) of the Counting Lemma, in the arbitrary subgraph F with

|E(F )| ≥
(

1− 1
l − 1

+ δ

)
q

(
n

2

)
.

Proof of Theorem 2. Let l ≥ 2 and 1/(l − 1) > δ > 0 be fixed and suppose q =
q(n) � ((log n)4/n)1/(l−1). First we define some constants that will be used in the
proof.

We start by setting

α =
δ

8
, (11)

σ = 10−6. (12)

(As a matter of fact, our proof is not sensitive to the value of the constant σ; in
fact, as long as 0 < σ < 1, every choice works.) We want to use the Counting
Lemma, Lemma 6, in order to determine the value of ε. Set αCL = α and σCL = σ,
then Lemma 6 yields εCL. We set

ε = min
{

εCL

3
,

δ

80

}
(13)

and
C =

4 + δ

4
. (14)

We then apply the sparse regularity lemma (Theorem 4) with εSRL = ε, CSRL =
C and tSRL

0 = max{
√

8l2/δ, 40/δ}. Theorem 4 then gives ξSRL and we define

ξ = ξSRL.

Moreover, Theorem 4 yields

T SRL
0 ≥ t = tSRL ≥ tSRL

0 = max

{√
8l2

δ
,

40
δ

}
. (15)

For the rest of the proof all the constants defined above (α, σ, ε, C, ξ, and t) are
fixed.

Fact 7, Lemma 8, and Lemma 6 imply that a graph G in G(n, q) satisfies the
following properties (P1)–(P3) with probability 1− o(1):

(P1) |E(G)| ≥ (1 + o(1)) q
(
n
2

)
,

(P2) G is (ξ, C)-bounded, and
(P3) G satisfies the property considered in Lemma 6.
We will show that if a graph G satisfies (P1)–(P3), then any F ⊆ G with |E(F )| ≥

(1−1/(l−1)+δ)q
(
n
2

)
contains at least cq(l

2)nl (for some constant c = c(δ, l)) copies
of Kl, and Theorem 2 will follow.

To achieve this, we first regularise F by applying Theorem 4 with εSRL = ε,
CSRL = C and tSRL

0 = max{
√

8l2/δ, 40/δ}. Consequently F admits an (ε, q)-
regular (ε, t)-equitable partition (Vi)t

0. We set m = n/t = |Vi| for i 6= 0.
Let Fcluster be the cluster graph of F with respect to (Vi)t

0 defined as follows

V (Fcluster) = {1, . . . , t},

E (Fcluster) =
{
{i, j} : (Vi, Vj) is (ε, q)-regular ∧ eF (Vi, Vj) ≥ αqm2

}
.
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Our next aim is to apply the classical Turán Theorem to guarantee the existence
of a Kl ⊆ Fcluster. For this we define a subgraph F ′ of F . Set

E(F ′) =
⋃
{EF (Vi, Vj) : {i, j} ∈ E(Fcluster)}

We now want to find a lower bound for |E(F ′)|. There are four possible reasons for
an edge e ∈ E(F ) not to be in E(F ′):

(R1) e has at least one vertex in V0,
(R2) e is contained in some vertex class Vi for 1 ≤ i ≤ t,
(R3) e is in E(Vi, Vj) for an (ε, q)-irregular pair (Vi, Vj), or
(R4) e is in E(Vi, Vj) for sparse a pair (i.e., e(Vi, Vj) < αqm2).

We bound the number of discarded edges of type (R1)–(R3) by applying that G is
(ξ, C)-bounded (Property (P2)):

# of edges of type (R1) ≤ Cqεn2,

# of edges of type (R2) ≤ Cq
(n

t

)2

· t,

# of edges of type (R3) ≤ Cq
(n

t

)2

· ε
(

t

2

)
.

Furthermore, we bound the number of discarded edges of type (R4), by

# of edges of type (R4) ≤ αq
(n

t

)2

·
(

t

2

)
.

This, combined with n ≥ 2, (11), (13), (14), (15), and δ < 1 implies that

|E(F ) \ E(F ′)| ≤
(

C

(
ε +

1
t

+
ε

2

)
+

α

2

)
qn2

≤
(

C

(
2ε +

1
t

)
+

α

2

)
· 4q

(
n

2

)
≤

(
(4 + δ)

(
δ

40
+

δ

40

)
+

δ

4

)
q

(
n

2

)
≤ δ

2
q

(
n

2

)
,

and thus

|E(F ′)| ≥
(

1− 1
l − 1

+
δ

2

)
q

(
n

2

)
.

We use the last inequality and once again (P2) to achieve the desired lower bound
for |E(Fcluster)|. Indeed,

|E(Fcluster)| ≥
e(F ′)

Cq(n/t)2
=
(

1− 1
l − 1

+
δ

2

)(
1− 1

n

)(
1 +

δ

4

)−1
t2

2
,

and then, for n large enough (n > 16/δ2), by using t2 ≥ 8l2/δ, we deduce that

|E(Fcluster)| >

(
1− 1

l − 1
+

δ

2

)(
1− δ

4

)
t2

2

≥
(

1− 1
l − 1

+
δ

8

)
t2

2
(16)

≥
(

1− 1
l − 1

)
t2

2
+

l2

2
.

The last inequality implies, by Turán’s theorem [18], that there is a subgraph Kl

in Fcluster. Let {i1, . . . , il} be the vertex set of this Kl in Fcluster. Then we set
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J0 = F [Vi1 , . . . , Vil
] ⊆ F . Now, every pair (Vij

, Vij′ ) for 1 ≤ j < j′ ≤ l satisfies the
conditions of Lemma 10 with εLem10 = ε and αLem10 = α. Thus there is a subgraph
J ⊆ J0 ⊆ F that is (3ε, q)-regular and eJ(Vij , Vi′j

) = αqm2. Since ε ≤ εCL/3 and J

satisfies conditions (I)–(IV) of the Counting Lemma, Lemma 6, with the constants
chosen above (αCL = α, σCL = σ, and εCL ≥ 3ε), there are at least

(1− σ)p(l
2)ml =

(1− σ)α(l
2)

tl
q(l

2)nl ≥ (1− σ)α(l
2)(

T SRL
0

)l q(l
2)nl

different copies of Kl in J ⊆ F . Observe that α, σ and T0 depend on δ and
l but not on n. Consequently, there are c(δ, l)q(l

2)nl � 1 (where c(δ, l) = (1 −
σ)α(l

2)/
(
T SRL

0

)l) copies of Kl in F , as required by Theorem 2. �

4. The counting lemma

Our aim in this section is to prove Lemma 6. In order to do this, we will need
two lemmas. We introduce these in the first two subsections. Then, in Section 4.3,
we will illustrate the proof of the Counting lemma on the particular case l = 4.
Finally, we give the proof of Lemma 6 in Section 4.4.

4.1. The pick-up lemma. Before we state the ‘Pick-Up Lemma’, Lemma 14, let
us state a simple one-sided estimate for the hypergeometric distribution, which will
be useful in the proof of Lemma 14.

Lemma 12 (A hypergeometric tail lemma). Let b, d, and u be positive integers
and suppose we select a d-set D uniformly at random from a set U of cardinality u.
Suppose also that we are given a fixed b-set B ⊆ U . Then we have for λ > 0

P
(
|D ∩B| ≥ λ

bd

u

)
≤
( e

λ

)λbd/u

. (17)

Proof. For the proof we refer the reader to [11]. �

We now state and prove the Pick-Up Lemma. Let k ≥ 2 be a fixed integer and
let m be sufficiently large. Let V1, . . . , Vk be pairwise disjoint sets all of size m and
let B be a subset of V1 × · · · × Vk. For 1 > p = p(m) � 1/m set T = pm2 and
consider the probability space

Ω =
(

V1 × Vk

T

)
× · · · ×

(
Vk−1 × Vk

T

)
,

where
(
Vi×Vk

T

)
denotes the family of all subsets of Vi × Vk of size T , and all the

R = (R1, . . . , Rk−1) ∈ Ω are equiprobable, i.e., have probability(
m2

T

)−(k−1)

.

For every R = (R1, . . . , Rk−1) ∈ Ω the degree with respect to Ri (1 ≤ i < k) of a
vertex vk in Vk is

dRi
(vk) = |{vi ∈ Vi : (vi, vk) ∈ Ri}|. (18)

Definition 13 (Π(ζ, µ, K)). For ζ, µ, K with 1 > ζ, µ > 0 and K > 0, we say that
property Π(ζ, µ, K) holds for R = (R1, . . . , Rk−1) ∈ Ω if

Ṽk = Ṽk(K) = {vk ∈ Vk : dRi
(vk) ≤ Kpm, ∀1 ≤ i ≤ k − 1}
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and

B(R) = {b = (v1, . . . , vk) ∈ B : vk ∈ Ṽk ∧ (vj , vk) ∈ Rj , ∀ 1 ≤ j ≤ k − 1}
satisfy the inequalities

|Ṽk| ≥ (1− µ)m, (19)

|B(R)| ≤ ζpk−1mk. (20)

We think of B(R) as the members of B that have been picked-up by the random
element R ∈ Ω. We will be interested in the probability that the property Π(ζ, µ, K)
fails for a fixed B in the uniform probability space Ω.

Lemma 14 (Pick-Up Lemma). For every β, ζ and µ with 1 > β, ζ, µ > 0 there
exist 1 > η = η(β, ζ, µ) > 0, K = K(β, µ) > 0 and m0 such that if m ≥ m0 and

|B| ≤ ηmk, (21)

then
P(Π(ζ, µ, K) fails for R ∈ Ω) ≤ β(k−1)T . (22)

For the proof we need a few definitions. Suppose β and µ are given. We define

θ =
1
2
βk−1, (23)

K = max
{

3(k − 1) log 1/θ

µ
, e2

}
. (24)

Since p � 1/m the definition of K ≥ 3(k − 1) log(1/θ)/µ implies that

(k − 1)
(

m

µm/(k − 1)

)
exp

(
−µTK log K

2(k − 1)

)
≤ θT (25)

holds for m sufficiently large.
Using the definition of dRi

in (18) we construct for each i = 1, . . . , k−1 a subset
of Vk by putting

V
(i)
k = {vk ∈ V

(i−1)
k : dRi

(vk) ≤ Kpm},

where V
(0)
k = Vk. Observe that Vk = V

(0)
k ⊇ V

(1)
k ⊇ · · · ⊇ V

(k−1)
k = Ṽk. In the view

of Lemma 14 we define the following “bad” events in Ω.

Definition 15 (Ai, B). For each i = 0, . . . , k − 1 and K, µ > 0, ζ > 0 let Ai =
Ai(µ, K), B = B(ζ, K) ⊆ Ω be the events

Ai : |V (i)
k | <

(
1− iµ/(k − 1)

)
m,

B : |B(R)| > ζpk−1mk.

Observe that the definition of V
(0)
k = Vk implies

P(A0) = 0. (26)

We restate Lemma 14 by using the notation introduced in Definition 15.
Lemma 14′ (Pick-up Lemma, event version). For every β, ζ and µ with 1 >
β, ζ, µ > 0 there exist 1 > η = η(β, ζ, µ) > 0, K = K(β, µ) > 0 and m0 such that if
m ≥ m0 and

|B| ≤ ηmk, (27)
then

P(Ak−1(µ,K) ∨B(ζ, K)) ≤ β(k−1)T . (28)
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We need some more preparation before we prove Lemma 14′. Suppose β, ζ, µ are
given by Lemma 14′ and θ, K are fixed by (23) and (24). For each i = 1, . . . , k− 1
we consider the set Bi ⊆ B consisting of those k-tuples b ∈ B which were partially
“picked up” by edges of R1, . . . , Ri. For technical reasons we consider only those k-
tuples containing vertices vk ∈ V

(i−1)
k , i.e., with dRj

(vk) ≤ Kpm for j = 1, . . . , i−1.
More formally, we let

Bi = {b = (v1, . . . , vk) ∈ B : vk ∈ V
(i−1)
k ∧ (vj , vk) ∈ Rj , ∀ 1 ≤ j ≤ i}.

We also set B0 = B.
The definitions of Ṽk = V

(k−1)
k ⊆ V

(k−2)
k and Bk−1 imply

B(R) ⊆ Bk−1. (29)

(Equality may fail in (29) because we may have V
(k−2)
k \ V

(k−1)
k 6= ∅.) For each

i = k, . . . , 1 define ζi−1 by

ζk−1 = ζ,

ζi−1 =
k − 1− (i− 1)µ

4(k − 1)Ki−1
ζ2
i θ4Ki−1/ζi . (30)

Furthermore, consider for each i = 0, . . . , k − 1 the event Bi = Bi(ζi,K) ⊆ Ω
defined by

Bi : |Bi| > ζip
imk. (31)

In order to prove Lemma 14′ we need two more claims, which we will prove later.

Claim 16. For all 1 ≤ i ≤ k − 1, we have

P(Ai) = P
(
|V (i)

k | <
(

1− iµ

k − 1

)
m

)
≤ θT .

Claim 17. For all 1 ≤ i ≤ k − 1, we have

P(Bi | ¬Ai−1 ∧ ¬Bi−1) ≤ θT .

Assuming Claims 16 and 17, we may easily prove Lemma 14′.

Proof of Lemma 14 ′. Set η = ζ0 where ζ0 is given by (30). The definition of B0 = B
and (27) implies |B0| ≤ ζ0m

k and consequently by the definition of the event B0

in (31)
P(B0) = 0. (32)

Because of (29) and ζk−1 = ζ in (30) we have

P(B) ≤ P(Bk−1). (33)

Using the formal identity

P(Bi) = P(Bi ∧ (¬Ai−1 ∧ ¬Bi−1)) + P(Bi ∧ (Ai−1 ∨Bi−1)),

we observe that

P(Bi) ≤ P(Bi | ¬Ai−1 ∧ ¬Bi−1) + P(Ai−1) + P(Bi−1) (34)

for each i = 1, . . . , k − 1. It follows by applying (33) and (34) that

P(Ak−1 ∨B) ≤ P(Ak−1) + P(Bk−1)

≤ P(Ak−1) +
k−1∑
i=1

(
P(Bi | ¬Ai−1 ∧ ¬Bi−1) + P(Ai−1)

)
+ P(B0).
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Claims 16 and 17, and (26), (32) and (23) finally imply

P(Ak−1 ∨B) ≤ 2(k − 1)θT ≤ 2(k − 1)
(

βk−1

2

)T

≤ β(k−1)T

for m sufficiently large, as required. �

We now prove Claim 16 and then Claim 17.

Proof of Claim 16. Fix a set V ∗ ⊆ Vk of size µm/(k− 1). For a fixed j (1 ≤ j ≤ i)
assume that dRj (vk) > Kpm for every vk in V ∗. This clearly implies the event

Ej(V ∗) : |Rj ∩ (Vj × V ∗)| > Kpm
µm

k − 1
= K

µT

k − 1
. (35)

The T pairs of Rj are chosen uniformly in Vj × Vk, so the hypergeometric tail
lemma, Lemma 12, applies, and using the fact that e ≤ K1/2 by (24) we get

P (Ej(V ∗)) ≤
( e

K

)KµT/(k−1)

≤ exp
(
−µTK log K

2(k − 1)

)
. (36)

Set Ej =
∨

Ej(V ∗), where the union is taken over all V ∗ ⊆ Vk of size µm/(k − 1).
Then

P(Ej) ≤
(

m

µm/(k − 1)

)
exp

(
−µTK log K

2(k − 1)

)
(37)

holds for each j = 1, . . . , i, and this implies

P

(
i∨

j=1

Ej

)
≤ i

(
m

µm/(k − 1)

)
exp

(
−µTK log K

2(k − 1)

)
.

Finally, the fact that Ai ⊆
∨i

j=1 Ej and the choice of K with (25) gives that

P(Ai) ≤ i

(
m

µm/(k − 1)

)
exp

(
−µTK log K

2(k − 1)

)
≤ θT ,

as required. �

Proof of Claim 17. Recall β, ζ and µ are given by Lemma 14′ and θ, K and ζi are
fixed by (23), (24) and (30). In order to prove Claim 17 we fix i (1 ≤ i ≤ k−1) and
we assume ¬Ai−1 and ¬Bi−1 occur. This means by Definition 15 and (31) that

|V (i−1)
k | ≥

(
1− (i− 1)µ

k − 1

)
m =

(
k − 1− (i− 1)µ

k − 1

)
m, (38)

|Bi−1| ≤ ζi−1p
i−1mk. (39)

We have to show that
|Bi| ≤ ζip

imk (40)
holds for R in the uniform probability space Ω with probability ≥ 1− θT .

First we define the auxiliary constant

Li =
(

1
θ

)4Ki−1/ζi

. (41)

The definition of θ in (23) and the facts that 0 < ζi < 1 for each i = 1, . . . , k − 1
and K > 1 imply that

Li ≥
(

2
βk−1

)4

> e2 (42)
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holds.
We define the degree of a pair in Vi × V

(i−1)
k with respect to Bi−1 by

dBi−1(wi, wk) =
∣∣∣{b = (v1, . . . , vk) ∈ Bi−1 : vi = wi and vk = wk}

∣∣∣.
We can bound the value of the average degree by (38) and (39):

avg
{

dBi−1(vi, vk) : (vi, vk) ∈ Vi × V
(i−1)
k

}
=

|Bi−1|
m|V (i−1)

k |
(43)

≤ k − 1
k − 1− (i− 1)µ

ζi−1p
i−1mk−2.

We also can bound ∆Bi−1(Vi, V
(i−1)
k ) = max{dBi−1(vi, vk) : (vi, vk) ∈ Vi × V

(i−1)
k }

by the following observation. Let (vi, vk) be an arbitrary element in Vi × V
(i−1)
k .

Then, by the definition of V
(i−1)
k , we have

dBi−1(vi, vk) ≤ dR1(vk) · . . . · dRi−1(vk) ·mk−2−(i−1) ≤ (Kpm)i−1mk−i−1. (44)

Inequality (44) implies

∆Bi−1

(
Vi, V

(i−1)
k

)
≤ Ki−1pi−1mk−2. (45)

Let F be the set of pairs of “high degree”. More precisely, set

F =
{

(vi, vk) ∈ Vi × V
(i−1)
k : dBi−1 >

ζi

2
pi−1mk−2

}
.

A simple averaging argument applying (43) yields

|F | ≤ 2(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi
|Vi||V (i−1)

k | ≤ 2(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi
m2. (46)

On the other hand, if we set F̄ = Vi × V
(i−1)
k then the definition of F and (45)

imply

|Bi| =
∑

(vi,vk)∈Ri∩F̄

dBi−1(vi, vk) +
∑

(vi,vk)∈Ri∩F

dBi−1(vi, vk)

≤ ζi

2
pi−1mk−2|Ri ∩ F̄ )| + Ki−1pi−1mk−2|Ri ∩ F |

≤ ζi

2
pi−1mk−2T + Ki−1pi−1mk−2|Ri ∩ F |

=
(

ζi

2
+

Ki−1

T
|Ri ∩ F |

)
pimk. (47)

Next we prove that

P
(
|Ri ∩ F | > ζiT

2Ki−1

)
≤ θT , (48)

which, together with (47), yields our claim, namely, that

P
(
|Bi| > ζip

imk
)
≤ θT . (49)
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We now prove inequality (48). Without loss of generality we assume equality holds
in (46). Then the hypergeometric tail lemma, Lemma 12, implies that

P
(
|Ri ∩ F | > Li

|F |T
m2

)
= P

(
|Ri ∩ F | > Li

2(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi
T

)

≤
(

e
Li

)Li
2(k−1)ζi−1

(k−1−(i−1)µ)ζi
T

(50)

≤ exp
(
−Li(log Li)(k − 1)ζi−1T

(k − 1− (i− 1)µ)ζi

)
,

where in the last inequality we used that Li ≥ e2 (see (42)). The definitions of ζi−1

and Li in (30) and (41) yield

Li(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi
=

Liζi

4Ki−1
θ4Ki−1/ζi =

ζi

4Ki−1
.

We use the last inequality to derive

Li(log Li)(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi
= log

1
θ
,

Li
2(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi
=

ζi

2Ki−1
,

which, combined with inequality (50), gives (48). �

4.2. The k-tuple lemma for subgraphs of random graphs. Let G ∈ G(n, q)
be the binomial random graph with edge probability q = q(n), and suppose H =
(U,W ; F ) is a bipartite, not necessarily induced subgraph of G with |U | = m1 and
|W | = m2. Furthermore, denote the density of H by p = e(H)/m1m2.

We now consider subsets of W of fixed cardinality k ≥ 1, and classify them
according to the size of their joint neighbourhood in H. For this purpose we define

B(k)(U,W ; γ) =
{
b = {v1, . . . , vk} ∈ W :

∣∣dH
U (b)− pkm1

∣∣ ≥ γpkm1

}
,

where dH
U (b) denotes the size of the joint neighbourhood of b in H, that is,

dH
U (b) =

∣∣∣∣∣
k⋂

i=1

ΓH(vi)

∣∣∣∣∣ .
The following lemma states that in a typical G ∈ G(n, q) the set B(k)(U,W ; γ) is
“small” for any sufficiently large (ε, q)-regular subgraph H = (U,W ; F ) of a dense
enough random graph G. Recall that if G is a graph and U , W ⊂ V (G) are two
disjoint sets of vertices, then G[U,W ] denotes the bipartite graph naturally induced
by (U,W ).

Lemma 18 (The k-tuple lemma). For any constants α > 0, γ > 0, η > 0, and k ≥
1 and function m0 = m0(n) such that qkm0 � (log n)4, there exists a constant ε >
0 for which the random graph G ∈ G(n, q) satisfies the following property with
probability 1− o(1): If for a bipartite subgraph H = (U,W ; F ) of G the conditions

(i) e(H) ≥ αe(G[U,W ]),
(ii) H is (ε, q)-regular,
(iii) |U | = m1 ≥ m0 and |W | = m2 ≥ m0
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apply, then

|B(k)(U,W ; γ)| ≤ η

(
m2

k

)
(51)

also applies.

Proof. The proof of Lemma 18 is given in [11]. �

4.3. Outline of the proof of the counting lemma for l = 4. The proof of the
Lemma 6 contains some technical definitions. In order to make the reading more
comprehensible, we first informally illustrate the basic ideas of the proof for the
case l = 4, before we give the proof for a general l ≥ 2 in Section 4.4.

Consider the following situation: Let V1, V2, V3 and V4 be pairwise disjoint
sets of vertices of size m. Let J be a 4-partite graph with vertex set V (J) =
V1 ∪V2 ∪V3 ∪V4. We think of J as a not necessarily induced subgraph of a random
graph in G(n, q) with T = pm2 edges between each Vi and Vj (1 ≤ i < j ≤ 4),
where p = αq. We will describe a situation in which we will be able to assert that
J contains the “right” number of K4’s. Here and everywhere below by the “right”
number we mean “as expected in a random graph of density p”; notice that, for the
number of K4’s, this means ∼ p6m4. Observe that, however, J is a not necessarily
induced subgraph of a graph in G(n, q), and this makes our task hard. As it turns
out, it will be more convenient to imagine that J is generated in l − 1 = 3 stages.
First we choose the edges from V4 to V1 ∪ V2 ∪ V3. Then we choose the edges from
V3 to V1 ∪ V2, and in the third stage we disclose the edges between V2 and V1.

The key idea of the proof is to consider “bad” tuples, which we create in every
stage. After we chose the edges from V4 to the other vertex classes, we define “bad”
3-tuples in V1×V2×V3: a 3-tuple is “bad” if its joint neighbourhood in V4 is much
smaller than expected. Then, with the right choice of constants, Proposition 22
for k = 3 and J = J [V4, V1∪V2∪V3] will ensure that there are not too many “bad”
3-tuples. (Proposition 22 is a corollary of the the k-tuple lemma, Lemma 18.)

We next generate the edges between V3 and V1 ∪ V2. We want to define “bad”
pairs in V1 × V2. Here it becomes slightly more complicated to distinguish “bad”
from “good”. This is because there are two things that might go wrong for a pair in
V1×V2. First of all, again the joint neighbourhood (now in V3) of a pair in V1×V2

might be too small. On the other hand, it could have the right number of joint
neighbours in V3, but many of these neighbours “complete” the pair to a “bad” 3-
tuple. Here the Pick-Up Lemma comes into play for k = 3 (see Proposition 21): this
lemma will ensure that, given the set of “bad” 3-tuples (which was already defined
in the first stage) is small, we will not “pick-up” too many of these (see Figure 1(a)),
while choosing the edges between V3 and V1 ∪ V2. (We say that a triple (v1, v2, v3)
has been picked-up if (v1, v3) and (v2, v3) are in the edge set generated between V3

and V1 ∪ V2.)
Here the situation complicates somewhat. The Pick-Up Lemma forces us to

discard a small portion (less or equal µPU fraction) of vertices in V3. Thus, in order
to avoid the first type of “badness” (too small joint neighbourhood) as a 2-tuple in
V1×V2 it is not enough to have the right number of joint neighbours in V3; we need
the right number of joint neighbours in Ṽ3, which is V3 without the µPUm vertices
(at most) we lose by applying the Pick-Up Lemma (see Figure 1(b)). This will be
ensured by the the k-tuple lemma (to be more precise, Proposition 22), now for
k = 2 and J = J [Ṽ3, V1 ∪ V2].
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“bad” 3-tuples

(b)(a)

discarded
vertices

3-tuple
neighbours v3 such that
(v1, v2, v3) is not a “bad” 3-tuple

approxiametly expected number of joint(i)

(ii)

Pair (v1, v2) is good if it has:“picked-up”

V3

V1

V2
v2

v3

v1

eV

Figure 1.

Later, in the general case, we will refer to the set of “bad” i-tuples in V1×· · ·×Vi

as Bi (see Definition 19 below). We define Bi as the union of the sets B(a)
i and B(b)

i ,
defined as follows. We put in B(a)

i the i-tuples that are “bad” because they have
a joint neighbourhood in Ṽi+1 that is too small; the set B(b)

i is defined as the set
of i-tuples in V1 × · · · × Vi that “bad” because they extend to too many “bad”
(i + 1)-tuples (i.e., (i + 1)-tuples in Bi+1).

As described above, we define Bi (i = l− 1, . . . , 1) by reverse induction, starting
with Bl−1, and going down to B1. With the right choice of constants, there will not
be too many “bad” vertices in V1.

Having ensured that most of the m vertices in V1 are not “bad” (i.e., do not
belong to B1) we are now able to count the number of K4’s. We will use the following
deterministic argument, which will later be formalised in Lemma 24. Consider a
vertex v1 in V1 that is not “bad”. This vertex has approximately the expected
number of neighbours in Ṽ2 (i.e., ∼ pm), and not too many of these neighbours
constitute, together with v1, a “bad” 2-tuple. In other words, this means that v1

extends to ∼ pm copies of K2 in (V1×V2)\B2. This implies that each such K2 has
the right number of joint neighbours in Ṽ3 (i.e., ∼ p2m), and consequently extends
to the right number of K3’s in (V1×V2×V3)\B3. Repeating the last argument, each
of these K3’s extends into ∼ p3m different copies of K4. Since we have ensured that
most of the m vertices in V1 are not “bad”, we have ∼ m · pm · p2m · p3m = p(4

2)m4

copies of K4.

4.4. Proof of the counting lemma. In this section we will prove Lemma 6. In
Section 4.4.1, we introduce the key definitions and describe the logic of all important
constants which will appear later in the proof. Afterwards we prove two technical
propositions in Section 4.4.2. These propositions correspond to the lemmas in
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Sections 4.1 and 4.2, and they make the short proof of the Counting Lemma in
Section 4.4.3 possible.

4.4.1. Concepts and constants. Let t ≥ l ≥ 2 be fixed integers and let n be suffi-
ciently large. Let α and ε be positive constants. Let G ∈ G(n, q) be the binomial
random graph with edge probability q = q(n), and suppose J is an l-partite sub-
graph of G with vertex classes V1, . . . , Vl. For all 1 ≤ i < j ≤ l we denote by Jij

the bipartite graph induced by Vi and Vj . Consider the following assertions for J .

(I) |Vi| = m = n/t for all 1 ≤ i ≤ l,
(II) ql−1n � (log n)4,

(III) Jij (1 ≤ i < j ≤ l) has T = pm2 edges, where 1 > αq = p � 1/n, and
(IV) Jij (1 ≤ i < j ≤ l) is (ε, q)-regular.

Let σ > 0 be given. We define the constants

γ = µ = ν =
1
3

(
1− (1− σ)1/(l−1)

)
, (52)

and, for 1 ≤ i ≤ l − 2, we put

βi+1 =
(

1
2

(α

e

)(l
2)−(i

2)
)1/i

. (53)

In order to prove Lemma 6 we need some definitions. These definitions always
depend on a fixed subgraph J of our random graph G ∈ G(n, q) satisfying (I)–(IV).
However, we will drop references to J because we want to simplify the notation
(e.g., we write Vi instead of V J

i ). Also, for each i = 1, . . . , l we denote V1× · · · ×Vi

by Wi.
In the proof we consider for a fixed J sets of “bad” i-tuples Bi ⊆ Wi (1 ≤ i ≤

l − 1). We define these sets recursively from Bl−1 to B1. As mentioned above in
the discussion of the l = 4 case, there are two reasons that make a given i-tuple
in Wi “bad”. First of all, its joint neighbourhood in Vi+1 might be too small (see
the definition of B(a)

i in Definition 19) and, secondly, it could extend into too many
“bad” (i + 1)-tuples in Bi+1 (see the definition of B(b)

i in Definition 19). Note that
the “bad” (i+1)-tuples have already been defined, as we are using reverse induction
in these definitions.

Next we apply the Pick-Up Lemma for k = i + 1 (1 ≤ i ≤ l − 2) with µPU
i+1 =

µ and βPU
i+1 = βi+1 (and yet unspecified ζPU

i+1). As a result we obtain KPU
i+1 =

KPU
i+1(βPU

i+1, µ
PU
i+1) and the set

Ṽi+1 = Ṽ PU
i+1(KPU

i+1) ⊆ Vi+1

of undiscarded vertices with

|Ṽi+1| ≥ (1− µ)m.

We need a few more definitions before we define Bi, B(a)
i and B(b)

i (recursively for
i = l − 1, . . . , 1). Let Γ̃i+1(b) be the joint neighbourhood of b = (v1, . . . , vi) ∈ Wi

in Ṽi+1 with respect to J , more precisely

Γ̃i+1(b) = {w ∈ Ṽi+1 : (vj , w) ∈ E(Jj,i+1), ∀ 1 ≤ j ≤ i}.
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For a fixed set B ⊆ Wi+1 and b = (v1, . . . , vi) ∈ Wi we denote the degree dB(b) of
b in B with respect to J by

dB(b) =
∣∣∣{w ∈ Γ̃i+1(b) : (v1, . . . , vi, w) ∈ B, ∀ 1 ≤ j ≤ i

}∣∣∣ .
Next we define (still for a fixed J) the sets of “bad” i-tuples Bi = Bi(γ, µ, ν) ⊆ Wi

mentioned earlier. Although we do not apply the Pick-Up Lemma for k = l, for
the sake of convenience we consider the neighbourhood of elements in Wl−1 in Ṽl,
instead of in Vl.

Definition 19 (Bl−1, B(a)
i , B(b)

i , Bi). Let γ, µ, ν be given by (52). We define
recursively the following sets of “bad” tuples for i = l − 1, . . . , 1:

Bl−1 = Bl−1(γ, µ) =
{

b ∈ Wl−1 :
∣∣∣Γ̃l(b)

∣∣∣ < (1− γ − µ)pl−1m
}

,

B(a)
i = B(a)

i (γ, µ) =
{

b ∈ Wi :
∣∣∣Γ̃i+1(b)

∣∣∣ < (1− γ − µ)pim
}

,

B(b)
i = B(b)

i (ν) =
{
b ∈ Wi : dBi+1(b) ≥ νpim

}
,

Bi = Bi(γ, µ, ν) = B(a)
i (γ, µ) ∪ B(b)

i (ν).

We also consider “bad” events in G(n, q) defined on the basis of the size of the
sets Bl−1(γ, µ), B(a)

i (γ, µ), B(b)
i (ν), and Bi(γ, µ, ν) defined above. In the following

definition we mean by J an arbitrary subgraph of G ∈ G(n, q) satisfying conditions
(I)–(IV).

Definition 20. Let γ, µ, ν be given by (52) and let ηi > 0 (i = l−1, . . . , 1) be fixed.
We define the events

Xl−1(γ, µ, ηl−1) : ∃ J ⊆ G s.t. |Bl−1| > (ηl−1/2)ml−1,

X
(a)
i (γ, µ, ηi) : ∃ J ⊆ G s.t.

∣∣∣B(a)
i

∣∣∣ > (ηi/2)mi,

X
(b)
i (γ, µ, ν, ηi, ηi+1) : ∃ J ⊆ G s.t. |Bi+1| ≤ ηi+1m

i+1 ∧ |B(b)
i | > (ηi/2)mi,

Xi(γ, µ, ν, ηi) = X
(a)
i (γ, µ, ηi) ∨ X

(b)
i (ν, ηi).

For simplicity, we let

X
(a)
l−1 = Xl−1 = Xl−1(γ, µ, ηl−1),

X
(a)
i = X

(a)
i (γ, µ, ηi) for i = 1, . . . , l − 1,

X
(b)
i = X

(b)
i (γ, µ, ν, ηi, ηi+1) for i = 1, . . . , l − 2,

and

Xi = Xi(γ, µ, ν, ηi) for i = 1, . . . , l − 1.

Owing to the special role of X1 later in the proof, we let

Xbad = Xbad(γ, µ, ν, η1) = X1(γ, µ, ν, η1).

We will now describe the remaining constants used in the proof. Notice that
α and σ were given and we have already fixed γ, µ and ν in (52) and βi for
2 ≤ i ≤ l− 1 in (53). The (yet unspecified) parameters ηi and ε will be determined
by Propositions 21 and 22. First we set η1 = ν. Then Proposition 21 (PUi+1)
inductively describes ηi+1 = ηi+1(βi+1, γ, µ, ν, ηi) for i = 1, . . . , l − 2 such that
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P(X(b)
i ) = o(1). Finally, for i = 1, . . . , l−1, Proposition 22 (TLi) implies the choice

for εi = εi(α, γ, µ, ηi) such that P(X(a)
i ) = o(1). We set

ε = min{εi : i = 1, . . . , l − 1}.

A diagram illustrating the definition scheme for the constants above is given in
Figure 2.

α, σ, γ, µ, ν, β2, . . . , βl−1y
η1 = ν

PU2−−−−→ η2 −−−−→ · · · −−−−→ ηi
PUi+1−−−−→ ηi+1 −−−−→ · · · PUl−1−−−−→ ηl−1yTL1

y yTLi

y yTLl−1

ε1 ε2 . . . εi εi+1 . . . εl−1︸ ︷︷ ︸
ε = min εi

Figure 2. Flowchart of the constants

Thus, ε is defined for any given σ and α, as claimed in Lemma 6. From now on,
these constants are fixed for the rest of the proof of Lemma 6.

4.4.2. Tools. We need some auxiliary results before we prove Lemma 6. For this
purpose we state variants of the Pick-Up Lemma, Lemma 14, and of the k-tuple
lemma, Lemma 18, in the form that we apply these later. These variants will be
referred to as (PUi+1) and (TLi).

The next proposition follows from Lemma 14 for k = i + 1 (1 ≤ i ≤ l − 2).

Proposition 21 (PUi+1). Fix 1 ≤ i ≤ l − 2. Let α, σ > 0 be arbitrary, let
γ, µ, ν and βi+1 be given by (52) and (53), and let ηi be defined as stated in
Section 4.4.1 (see Figure 2). Then there exists ηi+1 = ηi+1(βi+1, γ, µ, ν, ηi) >
0 such that for every t ≥ l a random graph G in G(n, q) satisfies the following
property with probability 1 − o(1): If J is a subgraph of G satisfying (I)–(IV) and
Bi+1(γ, µ, ν) ⊆ Wi+1 is such that

|Bi+1(γ, µ, ν)| ≤ ηi+1m
i+1, (54)

then the number of i-tuples b in Wi with

dBi+1(b) ≥ νpim

is less than
ηi

2
mi,

which means ∣∣∣B(b)
i (ν)

∣∣∣ ≤ ηi

2
mi. (55)

Furthermore,
|Ṽi+1| ≥ (1− µ)m

holds.
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We restate Proposition 21, by using the events X
(b)
i from Definition 20. Ob-

serve that inequalities (54) and (55) correspond to X
(b)
i , so that P(X(b)

i ) = o(1) is
equivalent to the first part of Proposition 21′.
Proposition 21′ (PUi+1). Fix 1 ≤ i ≤ l−2. Let α, σ > 0 be arbitrary, let γ, µ, ν
and βi+1 be given by (52) and (53), and let ηi be defined as stated in Section 4.4.1
(see Figure 2). Then there exists ηi+1 = ηi+1(βi+1, γ, µ, ν, ηi) > 0 such that for
every t ≥ l

P
(
X

(b)
i (γ, µ, ν, ηi, ηi+1)

)
= o(1)

and

P
(
|Ṽi+1| < (1− µ)m

)
= o(1).

Proof. We apply Lemma 14 for k = i + 1 and with the following choice of βPU,
ζPU, µPU:

βPU = βi+1, (56)

ζPU =
ηiν

2
, (57)

µPU = µ. (58)

Lemma 14 then gives ηPU, from which we define the constant ηi+1 we are looking
for by putting

ηi+1 = ηPU.

We assume inequality (54) holds. In other words, the number of the “bad” (i + 1)-
tuples in Wi+1 is

|Bi+1| ≤ ηi+1m
i+1 = ηPUmi+1. (59)

On the other hand, if we assume that (55) does not hold (i.e., the event X
(b)
i

occurs), then the number of (i + 1)-tuples in Bi+1 that have been “picked-up” has
to exceed

ηi

2
mi · νpim = ζPUpimi+1. (60)

The Pick-Up Lemma bounds the number of these configurations in(
V1 × Vi+1

T

)
× · · · ×

(
Vi × Vi+1

T

)
by (

βPU
)iT · (m2

T

)i

= (βi+1)iT

(
m2

T

)i

. (61)

We now estimate the number of all possible graphs J satisfying (I)–(IV) for
which (59) holds but the number of members in Bi+1 that have been “picked-up”
exceeds (60). There are less than

(
n
m

)l different ways to fix the l vertex classes of J .
Furthermore, observe that Bi+1 is determined by all the edges in Jjj′ (i < j′ ≤ l,
1 ≤ j < j′ ≤ l, which gives

(
l
2

)
−
(
i+1
2

)
different pairs jj′). Thus we have at

most
(
m2

T

)(l
2)−(i+1

2 )
possibilties to determine Bi+1. This, combined with (61), (III),
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and (53) yields that

P
(
X

(b)
i

)
≤
(

n

m

)l(
m2

T

)(l
2)−(i+1

2 )
· (βi+1)iT

(
m2

T

)i

· q((l
2)−(i

2))T

≤ 2nl

(
em2q

T

)((l
2)−(i

2))T

(βi+1)iT ≤ 2nl

(( e
α

)(l
2)−(i

2)
(βi+1)i

)T

≤ 2nl−T .

Since l is fixed and T � m = n/t, we have

P
(
X

(b)
i

)
= o(1).

Note that the set Ṽi+1 was determined by the application of the Pick-Up Lemma.
Therefore, the second assertion in Proposition 21′ also follows from the proof above.

�

The following is an easy consequence of Lemma 18 for k = i (1 ≤ i ≤ l − 1).

Proposition 22 (TLi). Fix 1 ≤ i ≤ l − 1. Let α, σ > 0 be arbitrary, let γ, µ be
given by (52), and let ηi be defined as stated in Section 4.4.1 (see Figure 2). Then
there exists εi = εi(α, γ, µ, ηi) > 0 such that for every t ≥ l a random graph G in
G(n, q) satisfies the following property with probability 1− o(1): If ε ≤ εi and J is
a subgraph of G satisfying (I)–(IV), then the number of i-tuples b in Wi with∣∣∣Γ̃i+1(b)

∣∣∣ < (1− γ − µ)pim

is less than
ηi

2
mi,

which means that ∣∣∣B(a)
i (γ, µ)

∣∣∣ ≤ ηi

2
mi. (62)

We can reformulate Proposition 22 in a shorter way by using the event X
(a)
i (see

Definition 20).
Proposition 22′ (TLi). Fix 1 ≤ i ≤ l − 1. Let α, σ > 0 be arbitrary, let γ, µ be
given by (52) and let ηi be defined as stated in Section 4.4.1 (see Figure 2). Then
there exists εi = εi(α, γ, µ, ηi) > 0 such that for every t ≥ l and ε ≤ εi

P
(
X

(a)
i (γ, µ, ηi)

)
= o(1).

Proof. We apply the k-tuple lemma, Lemma 18, with k = i, αTL = α, γTL = γ and

ηTL = ηi/(2ii). (63)

The k-tuple lemma gives an εTU and we set εi =
(
εTL
)2. Let ε ≤ εi and J be a

subgraph of G ∈ G(n, q) satisfying (I)–(IV). Set U = Ṽi+1 and W =
⋃i

j=1 Vj . By
(IV), the graph Jjj′ (1 ≤ j < j′ ≤ i) is (ε, q)-regular. A simple straightforward
argument shows J [U,W ] is at least (

√
ε, q)-regular and therefore (εTL, q)-regular.

Now, the k-tuple lemma implies that, with probability 1− o(1), we have∣∣∣{b ∈ Wi :
∣∣∣Γ̃i+1(b)

∣∣∣ ≤ (1− γ)pi(1− µ)m
}∣∣∣ ≤ ηTL

(
im

i

)
.
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The choice of ηTL in (63) gives∣∣∣{b ∈ Wi :
∣∣∣Γ̃i+1(b)

∣∣∣ ≤ (1− γ − µ + γµ)pim
}∣∣∣ ≤ ηi

2
mi,

and hence (62) holds with probability 1− o(1), by the simple observation that∣∣∣Γ̃i+1(b)
∣∣∣ ≤ (1− γ − µ)pim implies

∣∣∣Γ̃i+1(b)
∣∣∣ ≤ (1− γ − µ + γµ)pim.

�

4.4.3. Main proof. Our proof of the Counting Lemma, Lemma 6, follows immedi-
ately from Lemmas 23 and 24 below. Lemma 23 is a probabilistic statement and
asserts that the probability of the event Xbad ⊆ G(n, q) is o(1). On the other hand,
Lemma 24 is deterministic and claims that if a graph G is not in Xbad and J is a
not necessarily induced subgraph of G satisfying (I)–(IV), then J contains the right
number of copies of Kl. We apply the technical propositions from the last section
in the proof of the probabilistic Lemma 23 below.

Lemma 23. For arbitrary α and σ > 0, let γ, µ, ν be given by (52), and let ε and
ηi (i = 2, . . . , l− 1) be defined as stated in Section 4.4.1. Let G be a random graph
in G(n, q). Then

P(G ∈ Xbad(γ, µ, ν)) = o(1).

Proof. Formal logic implies

Xbad ⊆ X
(a)
1 ∨ (X(b)

1 ∧ ¬X2) ∨ X
(a)
2 ∨ (X(b)

2 ∧ ¬X3)

∨
... ∨

...
∨ X

(a)
l−2 ∨ (X(b)

l−2 ∧ ¬Xl−1) ∨ Xl−1,

and thus, by Propositions 21 and 22 (notice Xl−1 = X
(a)
l−1 by Definition 20), we

have

P (Xbad) ≤
l−2∑
i=1

(
P(X(a)

i ) + P(X(b)
i )
)

+ P(Xl−1) = o(1).

�

Lemma 24. For arbitrary α and σ > 0, let γ, µ, ν be given by (52), and let ε and
ηi (i = 2, . . . , l− 1) be defined as stated in Section 4.4.1. Then every subgraph J of
a graph G 6∈ Xbad(γ, µ, ν) satisfying conditions (I)–(IV) contains at least

(1− σ)p(l
2)ml

copies of Kl.

Proof. We shall prove by induction on i that the following statement holds for all
1 ≤ i ≤ l:

(Si) Let J be a subgraph of G 6∈ Xbad such that (I)–(IV) apply. Then there are
at least (1 − γ − µ − ν)ip(i

2)mi different i-tuples in Wi \ Bi that induce a
Ki in J [V1, . . . , Vi].

Suppose i = 1. Note that ¬Xbad implies that |V1 ∩ B1| ≤ η1m = νm. Therefore
V1 \ B1 contains at least (1− ν)m ≥ (1− γ − µ− ν)p0m1 copies of K1.

We now proceed to the induction step. Assume i ≥ 2 and (Si−1) holds. There-
fore, Wi−1\Bi−1 contains at least (1−γ−µ−ν)i−1p(i−1

2 )mi−1 different (i−1)-tuples
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b = (v1, . . . , vi−1), each constituting the vertex set of a Ki−1 in J [V1, . . . , Vi−1]. For
every b ∈ Wi−1 \ Bi−1, we have

(i) |Γ̃i(b)| ≥ (1− γ − µ)pi−1m, and
(ii) dBi

(b) < νpi−1m.
Therefore, every such b extends to at least (1−γ−µ−ν)pi−1m different b′ ∈ Wi\Bi

that correspond to a Ki ⊆ J [V1, . . . , Vi]. This implies (Si), and hence our induction
is complete.

Assertion (Sl) and the choice of γ, µ, and ν in (52) give at least

(1− γ − µ− ν)l−1p(l
2)ml = (1− σ)p(l

2)ml

copies of Kl in J . �

Clearly, Lemmas 23 and 24 together imply the Counting Lemma, Lemma 6.

5. The d-degenerate case

In this section we describe how the proof of Theorem 2 extends to the proof
of Theorem 2′. The detailed proof of Theorem 2′ will appear in [14]. First we
outline the proof of Theorem 2′, assuming a counterpart for the Counting Lemma,
Lemma 6, which we state below.

Let d be an integer and H a d-degenerate graph on h vertices. Let t ≥ h ≥ 2
be fixed integers and let n be sufficiently large. Let α and ε be constants greater
than 0. Suppose J is an h-partite subgraph of G with vertex classes V1, . . . , Vh

satisfying the following conditions:
(I′) |Vi| = m = n/t for all i,

(II′) qdn � (log n)4,
(III′) for all 1 ≤ i < j ≤ h,

|E(Jij)| =

{
T = pm2 if {wi, wj} ∈ E(H)
∅ if {wi, wj} 6∈ E(H),

where 1 > αq = p � 1/n, and
(IV′) Jij (1 ≤ i < j ≤ h) is (ε, q)-regular.
We now state the appropriate counting lemma for the d-degenerate case.

Lemma 6′ (Counting lemma, d-degenerate case). For every α, σ > 0, integer
d and d-degenerate graph H on h vertices, there exists ε > 0 such that for every
t ≥ h a random graph G in G(n, q) satisfies the following property with probability
1− o(1): Every subgraph J ⊆ G satisfying conditions (I ′)–(IV ′) contains at least

(1− σ)p(h
2)mh

copies of H.

Sketch of the proof of Theorem 2 ′. Let d be a fixed positive integer and suppose H
is a d-degenerated graph of order h. Let the vertices of H be ordered w1, . . . , wh

such that each wi has at most d neighbours in {w1, . . . , wi−1}.
At first, we follow the proof of Theorem 2 and observe that, by (16), the Erdős–

Stone–Simonovits theorem (see (1)) implies that Fcluster contains at least one copy of
H if we choose tSRL

0 big enough. This yields, in the same way as in the original proof,
that F contains an h-partite εLem6′ -regular graph J with |E(Jij)| = αLem6′pm2 if
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{wi, wj} ∈ E(H) and E(Jij) = ∅ if {wi, wj} 6∈ E(H). For 1 ≤ i ≤ h, we identify
the vertex class Vi in J with the vertex wi ∈ V (H).

We then apply Lemma 6′ with appropriate αLem6′ and 0 < σ < 1 to deduce
Theorem 2′. �

Finally, we outline of the proof of Lemma 6′.

Sketch of the proof of Lemma 6 ′. We prove Lemma 6′ in the same way as Lemma 6.
Observe that conditions (I) and (IV) are unchanged in Lemma 6′. Conditions (III)
and (III′) state that J is a “blown-up” copy of the subgraph we are considering,
namely, Kl and H, respectively. The main difference is between (II) and (II′).

The crucial part of the proof of the original counting lemma is the definition of
“bad” tuples in Definition 19. Recall that the proof of Lemma 6 used the Pick-Up
Lemma (Lemma 14). There we had to discard a small portion of the vertices of
Vi (of high degree to some Vj , j < i) to obtain Ṽi ⊆ Vi. For 1 ≤ i ≤ |V (Kl)|, we
considered two types of “bad” (i − 1)-tuples in Wi−1 = V1 × · · · × Vi−1. The first
type, the ones put in B(a)

i−1, was determined by the size of their joint neighbourhood
in Ṽi. On the other hand, an (i − 1)-tuple in Wi−1 was bad ‘of the second type’,
and was put in B(b)

i−1, if it was contained in too many “bad” i-tuples in Bi.
We use the property that H is d-degenerate to change the definition of B(a)

i , while
the definition of B(b)

i remains unchanged. In the proof of Lemma 6 we wanted in-
ductively to extend each Ki−1 in Wi−1 that is not “bad” to the right number of
copies of Ki in Wi. For this purpose we had to consider the joint neighbourhood of
all vertices in the (i−1)-tuple. The graph H is d-degenerate, and we fixed an order-
ing w1, . . . , wh of V (H) so that each wi has at most d neighbours in {w1, . . . , wi−1}.
This implies that it is sufficient to consider the joint neighbourhood of at most d

elements of the (i−1)-tuple to determine its “badness”, or its membership in B(a)
i−1.

For i = 1, . . . , h, we define the index sets Ii consisting of the the indices of the neigh-
bours of wi in {w1, . . . , wi−1}. Also, for a fixed (i− 1)-tuple (v1, . . . , vi−1) ∈ Wi−1,
we consider the joint neighbourhood of

⋂
Γ(vj) ∩ Ṽi =:

⋂
Γ̃(vj), where the inter-

section is taken over j ∈ Ii. More precisely, we define B(a)
i as follows:

Ii = {j ∈ [i− 1] : (wj , wi) ∈ E(H)},

B(a)
i−1(γ, µ) =

(v1, . . . , vi−1) ∈ Wi−1 :
∣∣∣∣ ⋂

j∈Ii

Γ̃i(vj)
∣∣∣∣ < (1− γ − µ)p|Ii|m

 .

Obviously,
|Ii| ≤ d for 1 ≤ i ≤ h (64)

holds. Then we define the corresponding events as in Definition 20.
The proof of Lemma 6 consists of two propositions (Propositions 21 and 22) and

two lemmas (Lemmas 23 and 24). We now discuss the proofs of the corresponding
results with the new definition for the family B(a)

i , under (I′)–(IV′) instead of (I)–
(IV), and with Kl replaced by an arbitrary d-degenerate graph H. We define the
following constants, slightly different compared to the ones in the original proof
(see (52) and (53)):

γ = µ = ν =
1
3

(
1− (1− σ)1/(h−1)

)
, (65)
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and, for 1 ≤ i + 1 ≤ h− 2,

βi+1 =
(

1
2

(α

e

)Ph
j=i |Ij |

)1/i

. (66)

The other constants are defined in the same way as described in Section 4.4.1 (see
Figure 2, with l replaced by h).

We now discuss the proofs of the results that correspond to Propositions 21
and 22 and Lemmas 23 and 24.

Proposition 21. The proof is an application of the Pick-Up Lemma, Lemma 14,
for k = i + 1. The Pick-Up Lemma does not require condition (II). It is already
valid for q(n) � 1/n, which is still guaranteed by (II′). Then, essentially the same
calculation with the new βi+1 defined in (66) gives the proposition.

Proposition 22. The proof is a straightforward application of the k-tuple lemma,
Lemma 18. In the original proof we apply the k-tuple lemma for k = i (1 ≤ i ≤ l−1)
and we needed condition (II) (namely, ql−1n � (log n)4) for i = l − 1. Here, the
new definition of B(a)

i−1 from above comes into play. Inequality (64) ensures that we
consider at most the joint neighbourhood of d vertices. This means that we apply
the k-tuple lemma for k ≤ d and thus condition (II′) (namely, qdn � (log n)4) is
sufficient.

Lemma 23. For the proof we only apply Propositions 21 and 22. In order to adjust
the proof, we simply replace l by h.

Lemma 24. This lemma is a deterministic statement. It is not affected by the
change from (II) to (II′), but the induction there is formulated in such a way that
it relies on the structure (symmetries) of Kl. We fix this and reformulate (Si) to

(S ′i) Let J be a subgraph of G 6∈ Xbad such that (I′)–(IV′) apply. Then there
are at least (1−γ−µ−ν)ip(i

2)mi different i-tuples in Wi \Bi which induce
a H[{w1, . . . , wi}] in J [V1, . . . , Vi].

Thus, the induction works exactly the same way and (S ′h) implies the result, by our
choice of the constants in (65) (there we again replace l with h). �
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Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, Rua do Matão

1010, 05508–090 São Paulo, Brazil
E-mail address: yoshi@ime.usp.br

Department of Mathematics and Computer Science, Emory University, Atlanta, GA
30322, USA

E-mail address: rodl@mathcs.emory.edu

Department of Mathematics and Computer Science, Emory University, Atlanta, GA

30322, USA

E-mail address: mschach@mathcs.emory.edu


	1. Introduction
	2. Preliminary results
	2.1. Preliminary definitions
	2.2. The regularity lemma for sparse graphs
	2.3. The counting lemma for complete subgraphs of random graphs

	3. The main result
	3.1. Properties of almost all graphs
	3.2. A deterministic subgraph lemma
	3.3. Proof of the main result

	4. The counting lemma
	4.1. The pick-up lemma
	4.2. The k-tuple lemma for subgraphs of random graphs
	4.3. Outline of the proof of the counting lemma for l=4
	4.4. Proof of the counting lemma

	5. The d-degenerate case
	References

