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Course Description:

Hermann Schubert developed an effective method for solving counting
problems in geometry in his book Kalkül der abzählenden Geometrie that ap-
peared in 1879. A basic example is the question how many lines in R3 meet
four given lines in general position?. Do you know the answer? The cal-
culus is now known as Schubert calculus, see (1),(2),(3). Schubert calculus
is immensely powerful, e.g. you can use it to find that the number of
twisted cubic curves in 3-space that are tangential to 12 quadric surfaces
is 5,819,539,783,680. Even though it clearly worked, for a long time it has
been unknown what the theoretical basis for the calculus truly is, i.e. no-
body knew why it worked. It became the famous Hilbert problem 15 to
find a theoretical basis for Schubert calculus.

This was looong time ago. Today we know that intersection theory, the
spaces of stable maps and Gromov-Witten theory form the right theoret-
ical framework that underlies Schubert calculus - though there are also
competing alternative approaches like Donaldson-Thomas theory. The
purpose of this lecture is to introduce the basics of Gromov-Witten the-
ory with a particular view to mirror symmetry and thus the relationship
with tropical curve counting.

Prerequisites:

When taking this class, you should have some basic understanding of al-
gebraic geometry or complex geometry or complex analysis. That is, you
should either know what an algebraic variety is or know what a complex
manifold is. These two notions converge nicely into the notion of com-
pact Riemann surface alias projective algebraic curve which is the one-
dimensional version of each. We will talk a lot about compact Riemann
surfaces alias projective curves. This class is new in Hamburg and will be
tailored in real time to suit whoever is attending this lecture.
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Invariants, Dissertation Hieb Dang: https://kluedo.ub.uni-kl.
de/frontdoor/deliver/index/docId/3750/file/Hiep_Dang_
thesis.pdf

Date and Place: Tue 16:15–17:45, Wed 16:15–17:45
Zoom: https://uni-hamburg.zoom.us/j/5406259591?pwd=

VjlCZnJ2cjBodEdHNlFSbFVJYUF4dz09
Meeting-ID: 540 625 9591

Kenncode: 732543

Problem Classes: Thu 10:15–11:45
BigBlueButton: https:

//mathbbb.physnet.uni-hamburg.de/b/tim-iqn-cmc-cpq

Starting on: 3 November 2020
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