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CHAPTER 1

Homology theory

1. Chain complexes

Definition 1.1. A chain complex is a sequence of abelian groups, (Cn)n∈Z, together with homomor-
phisms dn : Cn → Cn−1 for n ∈ Z, such that dn−1 ◦ dn = 0.

Let R be an associative ring with unit 1R. A chain complex of R-modules can analoguously be defined
as a sequence of R-modules (Cn)n∈Z with R-linear maps dn : Cn → Cn−1 with dn−1 ◦ dn = 0.

Definition 1.2.
• The dn are differentials or boundary operators.
• The x ∈ Cn are called n-chains.
• Is x ∈ Cn and dnx = 0, then x is an n-cycle.

Zn(C) := {x ∈ Cn|dnx = 0}.

• If x ∈ Cn is of the form x = dn+1y for some y ∈ Cn+1, then x is an n-boundary.

Bn(C) := Im(dn+1) = {dn+1y, y ∈ Cn+1}.

Note that the cycles and boundaries form subgroups of the chains. As dn ◦ dn+1 = 0, we know that the
image of dn+1 is a subgroup of the kernel of dn and thus

Bn(C) ⊂ Zn(C).

We’ll often drop the subscript n from the boundary maps and we’ll just write C∗ for the chain complex.

Definition 1.3. The abelian group Hn(C) := Zn(C)/Bn(C) is the nth homology group of the complex
C∗.

Notation: We denote by [c] the equivalence class of a c ∈ Zn(C).
If c, c′ ∈ Cn satisfy that c− c′ is a boundary, then c is homologous to c′. That’s an equivalence relation.

Examples:

1) Consider

Cn =

{
Z n = 0, 1

0 otherwise

and let d1 be the multiplication with N ∈ N, then

Hn(C) =

{
Z/NZ n = 0

0 otherwise.

2) Take Cn = Z for all n ∈ Z and

dn =

{
idZ n odd

0 n even.

What is the homology of this chain complex?

3) Consider Cn = Z for all n ∈ Z again, but let all boundary maps be trivial. What is the homology of this
chain complex?
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Definition 1.4. Let C∗ and D∗ be two chain complexes. A chain map f : C∗ → D∗ is a sequence of
homomorphisms fn : Cn → Dn such that dDn ◦ fn = fn−1 ◦ dCn for all n, i.e., the diagram

Cn
dCn //

fn

��

Cn−1

fn−1

��

Dn

dDn // Dn−1

commutes for all n.

Such an f sends cycles to cycles and boundaries to boundaries. We therefore obtain an induced map

Hn(f) : Hn(C) → Hn(D)

via Hn(f)∗[c] = [fnc].
There is a chain map from the chain complex mentioned in Example 1) to the chain complex D∗ that is

concentrated in degree zero and has D0 = Z/NZ. Note, that H0(f) is an isomorphism on zeroth homology
groups.

Are there chain maps between the complexes from Examples 2) and 3)?

Lemma 1.5. If f : C∗ → D∗ and g : D∗ → E∗ are two chain maps, then Hn(g) ◦Hn(f) = Hn(g ◦ f) for
all n.

When do two chain maps induce the same map on homology?

Definition 1.6. A chain homotopy H between two chain maps f, g : C∗ → D∗ is a sequence of homo-
morphisms (Hn)n∈Z with Hn : Cn → Dn+1 such that for all n

dDn+1 ◦Hn +Hn−1 ◦ dCn = fn − gn.

. . .
dCn+2

// Cn+1

Hn+1

ww

dCn+1
//

fn+1

��

gn+1

		

Cn
Hn

ww

dCn //

fn

��

gn

		

Cn−1

Hn−1

ww

dCn−1
//

fn−1

��

gn−1

		

. . .

. . .
dDn+2

// Dn+1

dDn+1
// Dn

dDn // Dn−1

dDn−1
// . . .

If such an H exists, then f and g are (chain) homotopic: f ≃ g.

We will later see geometrically defined examples of chain homotopies.

Proposition 1.7.
(a) Being chain homotopic is an equivalence relation.
(b) If f and g are homotopic, then Hn(f) = Hn(g) for all n.

Proof. (a) If H is a homotopy from f to g, then −H is a homotopy from g to f . Each f is homotopic
to itself with H = 0. If f is homotopic to g via H and g is homotopic to h via K, then f is homotopic to h
via H +K.

(b) We have for every cycle c ∈ Zn(C∗):

Hn(f)[c]−Hn(g)[c] = [fnc− gnc] = [dDn+1 ◦Hn(c)] + [Hn−1 ◦ dCn (c)] = 0.

□

Definition 1.8. Let f : C∗ → D∗ be a chain map. We call f a chain homotopy equivalence, if there is
a chain map g : D∗ → C∗ such that g ◦ f ≃ idC∗ and f ◦ g ≃ idD∗ . The chain complexes C∗ and D∗ are then
chain homotopically equivalent.

Note, that such chain complexes have isomorphic homology. However, chain complexes with isomorphic
homology do not have to be chain homotopically equivalent. (Can you find a counterexample?)
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Definition 1.9. If C∗ and C ′
∗ are chain complexes, then their direct sum, C∗⊕C ′

∗, is the chain complex
with

(C∗ ⊕ C ′
∗)n = Cn ⊕ C ′

n = Cn × C ′
n

with differential d = d⊕ given by

d⊕(c, c
′) = (dc, dc′).

Similarly, if (C
(j)
∗ , d(j))j∈J is a family of chain complexes, then we can define their direct sum as follows:

(
⊕
j∈J

C
(j)
∗ )n :=

⊕
j∈J

C(j)
n

as abelian groups and the differential d⊕ is defined via the property that its restriction to the jth summand
is d(j).

2. Singular homology

Let v0, . . . , vn be n+ 1 points in Rn+1. Consider the convex hull

K(v0, . . . , vn) := {
n∑
i=0

tivi|
n∑
i=0

ti = 1, ti ⩾ 0}.

Definition 2.1. If the vectors v1 − v0, . . . , vn − v0 are linearly independent, then K(v0, . . . , vn) is the
simplex generated by v0, . . . , vn. We denote such a simplex by simp(v0, . . . , vn).

Example. The standard topological n-simplex is ∆n := simp(e0, . . . , en). Here, ei is the vector in Rn+1 that
has a 1 in coordinate i + 1 and is zero in all other coordinates. The first examples are: ∆0 is the point e0,
∆1 is the line segment between e0 and e1, ∆

2 is a triangle in R3 and ∆3 is homeomorphic to a tetrahedron.
The coordinate description of the n-simplex is

∆n = {(t0, . . . , tn) ∈ Rn+1|
∑

ti = 1, ti ⩾ 0}.

We consider ∆n as ∆n ⊂ Rn+1 ⊂ Rn+2 ⊂ . . ..
The boundary of ∆1 consists of two copies of ∆0, the boundary of ∆2 consists of three copies of ∆1. In

general, the boundary of ∆n consists of n+ 1 copies of ∆n−1.
We need the following face maps for 0 ⩽ i ⩽ n

di = dn−1
i : ∆n−1 ↪→ ∆n; (t0, . . . , tn−1) 7→ (t0, . . . , ti−1, 0, ti, . . . , tn−1).

The image of dn−1
i in ∆n is the face that is opposite to ei. It is the simplex generated by e0, . . . , ei−1,

ei+1, . . . , en.
Draw the examples of the faces in ∆1 and ∆2!

Lemma 2.2. Concerning the composition of face maps, the following rule holds:

dn−1
i ◦ dn−2

j = dn−1
j ◦ dn−2

i−1 , 0 ⩽ j < i ⩽ n.

Example: face maps for ∆0 and composition into ∆2: d2 ◦ d0 = d0 ◦ d1.

Proof. Both expressions yield

dn−1
i ◦ dn−2

j (t0, . . . , tn−2) = (t0, . . . , tj−1, 0, . . . , ti−2, 0, . . . , tn−2) = dn−1
j dn−2

i−1 (t0, . . . , tn−2).

□

Let X be an arbitrary topological space, X ̸= ∅.

Definition 2.3. A singular n-simplex in X is a continuous map α : ∆n → X.

Note, that α just has to be continuous, not smooth or anything!

Definition 2.4. Let Sn(X) be the free abelian group generated by all singular n-simplices in X. We
call Sn(X) the nth singular chain module of X.
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Elements of Sn(X) are finite sums
∑
i∈I λiαi with λi = 0 for almost all i ∈ I and αi : ∆

n → X.
For all n ⩾ 0 there are non-trivial elements in Sn(X), because we assumed that X ̸= ∅: we can always

take an x0 ∈ X and the constant map κx0 : ∆
n → X as α. By convention, we define Sn(∅) = 0 for all n ⩾ 0.

If we want to define maps from Sn(X) to some abelian group then it suffices to define such a map on
generators.

Example. What is S0(X)? A continuous α : ∆0 → X is determined by its value α(e0) =: xα ∈ X, which is a
point in X. A singular 0-simplex

∑
i∈I λiαi can thus be identified with the formal sum of points

∑
i∈I λixαi

.
For instance if you count the zeroes and poles of a meromorphic function with multiplicities then this gives
an element in S0(X). In algebraic geometry a divisor is an element in S0(X).

Definition 2.5. We define ∂i : Sn(X) → Sn−1(X) on generators

∂i(α) = α ◦ dn−1
i

and call it the ith face of α.

On Sn(X) we therefore get ∂i(
∑
j λjαj) =

∑
j λj(αj ◦ d

n−1
i ).

Lemma 2.6. The face maps on Sn(X) satisfy

∂j ◦ ∂i = ∂i−1 ◦ ∂j , 0 ⩽ j < i ⩽ n.

Proof. The proof follows from the one of Lemma 2.2. □

Definition 2.7. We define the boundary operator on singular chains as ∂ : Sn(X) → Sn−1(X), ∂ =∑n
i=0(−1)i∂i.

Lemma 2.8. The map ∂ is a boundary operator, i.e., ∂ ◦ ∂ = 0.

Proof. We calculate

∂ ◦ ∂ = (

n−1∑
j=0

(−1)j∂j) ◦ (
n∑
i=0

(−1)i∂i) =
∑∑

(−1)i+j∂j ◦ ∂i

=
∑

0⩽j<i⩽n

(−1)i+j∂j ◦ ∂i +
∑

0⩽i⩽j⩽n−1

(−1)i+j∂j ◦ ∂i

=
∑

0⩽j<i⩽n

(−1)i+j∂i−1 ◦ ∂j +
∑

0⩽i⩽j⩽n−1

(−1)i+j∂j ◦ ∂i = 0.

□

We therefore obtain the singular chain complex, S∗(X),

. . . //Sn(X)
∂ //Sn−1(X)

∂ // . . .
∂ //S1(X)

∂ //S0(X) //0.

We abbreviate Zn(S∗(X)) by Zn(X), Bn(S∗(X)) by Bn(X) and Hn(S∗(X)) by Hn(X).

Definition 2.9. For a space X, Hn(X) is the nth singular homology group of X.

Note that Z0(X) = S0(X).
As an example of a 1-cycle consider a 1-chain c = α + β + γ where α, β, γ : ∆1 → X such that α(e1) =

β(e0), β(e1) = γ(e0) and γ(e1) = α(e0) and calculate that ∂c = 0.
We need to understand how continuous maps of topological spaces interact with singular chains and

singular homology.
Let f : X → Y be a continuous map.

Definition 2.10. The map fn = Sn(f) : Sn(X) → Sn(Y ) is defined on generators α : ∆n → X as

fn(α) = f ◦ α : ∆n α //X
f
//Y.

8



Lemma 2.11. For any continuous f : X → Y we have

Sn(X)
fn //

∂X

��

Sn(Y )

∂Y

��

Sn−1(X)
fn−1

// Sn−1(Y ),

i.e., (fn)n is a chain map and hence induces a map Hn(f) : Hn(X) → Hn(Y ).

Proof. By definition

∂Y (fn(α)) =

n∑
i=0

(−1)i(f ◦ α) ◦ di =
n∑
i=0

(−1)if ◦ (α ◦ di) = fn−1(∂
Xα).

□

Of course, the identity map on X induces the identity map on Hn(X) for all n ⩾ 0 and if we have a
composition of continuous maps

X
f
//Y

g
//Z,

then Sn(g ◦ f) = Sn(g) ◦ Sn(f) and Hn(g ◦ f) = Hn(g) ◦Hn(f). In categorical language, this says precisely
that Sn(−) and Hn(−) are functors from the category of topological spaces and continuous maps into the
category of abelian groups. Taking all Sn(−) together turns S∗(−) into a functor from topological spaces
and continuous maps into the category of chain complexes with chain maps as morphisms.

One implication of Lemma 2.11 is that homeomorphic spaces have isomorphic homology groups:

X ∼= Y ⇒ Hn(X) ∼= Hn(Y ) for all n ⩾ 0.

Our first (not too exciting) calculation is the following:

Proposition 2.12. The homology groups of a one-point space pt are trivial but in degree zero,

Hn(pt) ∼=

{
0, if n > 0,

Z, if n = 0.

Proof. For every n ⩾ 0 there is precisely one continuous map α : ∆n → pt, namely the constant map.
We denote this map by κn. Then the boundary of κn is

∂κn =

n∑
i=0

(−1)iκn ◦ di =
n∑
i=0

(−1)iκn−1 =

{
κn−1, n even,

0, n odd.

For all n we have Sn(pt) ∼= Z generated by κn and therefore the singular chain complex looks as follows:

. . .
∂=0 //Z ∂=idZ //Z ∂=0 //Z.

□

3. H0 and H1

Before we calculate anything, we define a map.

Proposition 3.1. For any topological space X there is a homomorphism ε : H0(X) → Z with ε ̸= 0 for
X ̸= ∅.

Proof. If X ̸= ∅, then we define ε(α) = 1 for any α : ∆0 → X, thus ε(
∑
i∈I λiαi) =

∑
i∈I λi on S0(X).

As only finitely many λi are non-trivial, this is in fact a finite sum.
We have to show that this map is well-defined on homology, i.e., that it vanishes on boundaries. One

possibility is to see that ε can be interpreted as the map on singular chains that is induced by the projection
map of X to a one-point space.
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One can also show the claim directly: Let S0(X) ∋ c = ∂b be a boundary and write b =
∑
i∈I νiβi with

βi : ∆
1 → X. Then we get

∂b = ∂
∑
i∈I

νiβi =
∑
i∈I

νi(βi ◦ d0 − βi ◦ d1) =
∑
i∈I

νiβi ◦ d0 −
∑
i∈I

νiβi ◦ d1

and hence

ε(c) = ε(∂b) =
∑
i∈I

νi −
∑
i∈I

νi = 0.

□

We said that S0(∅) is zero, so H0(∅) = 0 and in this case we define ε to be the zero map.
If X ̸= ∅, then any α : ∆0 → X can be identified with its image point, so the map ε on S0(X) counts

points in X with multiplicities.

Proposition 3.2. If X is a path-connected, non-empty space, then ε : H0(X) ∼= Z.

Proof. As X is non-empty, there is a point x ∈ X and the constant map κx with value x is an element
in S0(X) with ε(κx) = 1. Therefore ε is surjective. For any other point y ∈ X there is a continuous path
ω : [0, 1] → X with ω(0) = x and ω(1) = y. We define αω : ∆

1 → X as

αω(t0, t1) = ω(1− t0).

Then

∂(αω) = ∂0(αω)− ∂1(αω) = αω(e1)− αω(e0) = αω(0, 1)− αω(1, 0) = κy − κx,

and the two generators κx, κy are homologous. This shows that ε is injective. □

From now on we will identify paths w and their associated 1-simplices αw.

Corollary 3.3. If X is of the form X =
⊔
i∈I Xi such that the Xi are non-empty and path-connected,

then

H0(X) ∼=
⊕
i∈I

Z.

In this case, the zeroth homology group of X is the free abelian group generated by the path-components.

Proof. The singular chain complex of X splits as the direct sum of chain complexes of the Xi:

Sn(X) ∼=
⊕
i∈I

Sn(Xi)

for all n. Boundary summands ∂i stay in a component, in particular,

∂ : S1(X) ∼=
⊕
i∈I

S1(Xi) →
⊕
i∈I

S0(Xi) ∼= S0(X)

is the direct sum of the boundary operators ∂ : S1(Xi) → S0(Xi) and the claim follows. □

Next, we want to relate H1 to the fundamental group. Let X be path-connected and x ∈ X.

Lemma 3.4. Let ω1, ω2, ω be paths in X.

(a) Constant paths are null-homologous.
(b) If ω1(1) = ω2(0), then ω1 ∗ ω2 − ω1 − ω2 is a boundary. Here ω1 ∗ ω2 is the concatenation of ω1

followed by ω2.
(c) If ω1(0) = ω2(0), ω1(1) = ω2(1) and if ω1 is homotopic to ω2 relative to {0, 1}, then ω1 and ω2 are

homologous as singular 1-chains.
(d) Any 1-chain of the form ω̄ ∗ ω is a boundary. Here, ω̄(t) := ω(1− t).
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Proof. For a), consider the constant singular 2-simplex α(t0, t1, t2) = x and cx, the constant path on
x. Then ∂α = cx − cx + cx = cx.

For b), we define a singular 2-simplex β : ∆2 → X as follows.

�
�
�
�
�
��

A
A
A

A
A
AK

-
ω1

ω2ω1 ∗ ω2 Q
QQ

Q
Q

Q
QQ

Q
QQ

e0 e1

e2

We define β on the boundary components of ∆2 as indicated and prolong it constantly along the sloped
inner lines. Then

∂β = β ◦ d0 − β ◦ d1 + β ◦ d2 = ω2 − ω1 ∗ ω2 + ω1.

For c): Let H : [0, 1]× [0, 1] → X a homotopy from ω1 to ω2. As we have that H(0, t) = ω1(0) = ω2(0),
we can factor H through the quotient [0, 1]× [0, 1]/{0} × [0, 1] ∼= ∆2 with induced map h : ∆2 → X. Then

∂h = h ◦ d0 − h ◦ d1 + h ◦ d2.

The first summand is null-homologous, because it’s constant (with value ω1(1) = ω2(1)), the second one is
ω2 and the last is ω1, thus ω1 − ω2 is null-homologous.

For d): Consider γ : ∆2 → X as indicated below.

�
�
�
�
�
��

A
A
A

A
A
AK

-
ω̄

ωω(1)

�
�
�
��

�
�
�

��

e0 e1

e2

□

Definition 3.5. Let h : π1(X,x) → H1(X) be the map, that sends the homotopy class of a closed path
ω, [ω]π1 , to its homology class [ω] = [ω]H1 . This map is called the Hurewicz-homomorphism.

Witold Hurewicz: 1904–1956 https://en.wikipedia.org/wiki/Witold_Hurewicz (Mayan pyramids
are dangerous, at least for mathematicians.)

Lemma 3.4 ensures that h is well-defined and

h([ω1][ω2]) = h([ω1 ∗ ω2]) = [ω1] + [ω2] = h([ω1]) + h([ω2]);

thus h is a homomorphism.
Note that for a closed path ω we have that [ω̄] = −[ω] in H1(X).

Definition 3.6. Let G be an arbitrary group, then its abelianization, Gab, is G/[G,G].

Recall that [G,G] is the commutator subgroup of G. That is the smallest subgroup of G containing all
commutators ghg−1h−1, g, h ∈ G. It is a normal subgroup of G: If c ∈ [G,G], then for any g ∈ G the element
gcg−1c−1 is a commutator and also by the closure property of subgroups the element gcg−1c−1c = gcg−1 is
in the commutator subgroup.
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Proposition 3.7. The Hurewicz homomorphism factors through the abelianization of π1(X,x) and
induces an isomorphism

π1(X,x)ab ∼= H1(X)

for all path-connected X.

π1(X,x)
h //

p

��

H1(X)

π1(X,x)ab = π1(X,x)/[π1(X,x), π1(X,x)]

∼=
hab

33

Proof. We will construct an inverse to hab. For any y ∈ X we choose a path uy from x to y. For y = x
we take ux to be the constant path on x. Let α be an arbitrary singular 1-simplex and yi = α(ei). Define
ϕ : S1(X) → π1(X,x)ab on generators as ϕ(α) = [uy0 ∗α ∗ ūy1 ] and extend ϕ linearly to all of S1(X), keeping
in mind that the composition in π1 is written multiplicatively.

We have to show that ϕ is trivial on boundaries, so let β : ∆2 → X. Then

ϕ(∂β) = ϕ(β ◦ d0 − β ◦ d1 + β ◦ d2) = ϕ(β ◦ d0)ϕ(β ◦ d1)−1ϕ(β ◦ d2).

Abbreviating β ◦ di with αi we get as a result

[uy1 ∗ α0 ∗ ūy2 ][uy0 ∗ α1 ∗ ūy2 ]−1[uy0 ∗ α2 ∗ ūy1 ] = [uy0 ∗ α2 ∗ ūy1 ∗ uy1 ∗ α0 ∗ ūy2 ∗ uy2 ∗ ᾱ1 ∗ ūy0 ].

Here, we’ve used that the image of ϕ is abelian. We can reduce ūy1 ∗ uy1 and ūy2 ∗ uy2 and are left with
[uy0 ∗ α2 ∗ α0 ∗ ᾱ1 ∗ ūy0 ] but α2 ∗ α0 ∗ ᾱ1 is the closed path tracing the boundary of β and therefore it is
null-homotopic in X. Thus ϕ(∂β) = 0 and ϕ passes to a map

ϕ : H1(X) → π1(X,x)ab.

The composition ϕ ◦ hab evaluated on the class of a closed path ω gives

ϕ ◦ hab[ω]π1
= ϕ[ω]H1

= [ux ∗ ω ∗ ūx]π1
.

But we chose ux to be constant, thus ϕ ◦ hab = id.
If c =

∑
λiαi is a cycle, then hab ◦ ϕ(c) is of the form [c + D∂c] where the D∂c-part comes from the

contributions of the uyi . The fact that ∂(c) = 0 implies that the summands in D∂c cancel off and thus
hab ◦ ϕ = idH1(X). □

Note, that abelianization doesn’t change anything for abelian groups, i.e., whenever we have an abelian
fundamental group, we know that H1(X) ∼= π1(X,x).

Corollary 3.8. Knowledge of π1 gives

H1(Sn) = 0, for n > 1,

H1(S1) ∼= Z,
H1(S1 × . . .× S1︸ ︷︷ ︸

n

) ∼= Zn,

H1(S1 ∨ S1) ∼= (Z ∗ Z)ab ∼= Z⊕ Z,

H1(RPn) ∼=

{
Z, n = 1,

Z/2Z, n > 1,

H1(Fg) ∼= Z2g, for g ⩾ 1,

H1(K) ∼= Z⊕ Z/2Z.

In the last case, K denotes the Klein bottle.
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4. Homotopy invariance

We want to show that two continuous maps that are homotopic induce identical maps on the level of
homology groups.

Heuristics: If α : ∆n → X is a singular n-simplex and if f, g are homotopic maps from X to Y , then
the homotopy from f ◦ α to g ◦ α starts on ∆n × [0, 1]. We want to translate this geometric homotopy into
a chain homotopy on the singular chain complex. To that end we have to cut the prism ∆n × [0, 1] into
(n+ 1)-simplices. In low dimensions this is easy:

∆0 × [0, 1] is homeomorphic to ∆1, ∆1 × [0, 1] ∼= [0, 1]2 and this can be cut into two copies of ∆2 and
∆2 × [0, 1] is a 3-dimensional prism and that can be glued together from three tetrahedrons, e.g., like

@@

@@

�����

�����
@@�����

�
�
�
��

�
�
�
�
�
�

@@

�����

�
�
�
��

�
�
�
�
�
�
��

@@�����
�
�
�
�
�
�
��

�
�
�

�
�
�

As you might guess now, we use n+ 1 copies of ∆n+1 to build ∆n × [0, 1].

Definition 4.1. For i = 0, . . . , n define pi : ∆
n+1 → ∆n × [0, 1] as

pi(t0, . . . , tn+1) = ((t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1), ti+1 + . . .+ tn+1) ∈ ∆n × [0, 1].

On the standard basis vectors ek we obtain

pi(ek) =

{
(ek, 0), for 0 ⩽ k ⩽ i,

(ek−1, 1), for k > i.

We obtain maps Pi : Sn(X) → Sn+1(X × [0, 1]) via Pi(α) = (α× id) ◦ pi:

∆n+1 pi //∆n × [0, 1]
α×id

//X × [0, 1].

For k = 0, 1 let jk : X → X × [0, 1] be the inclusion x 7→ (x, k).

Lemma 4.2. The maps Pi satisfy the following relations

(a) ∂0 ◦ P0 = Sn(j1),
(b) ∂n+1 ◦ Pn = Sn(j0),
(c) ∂i ◦ Pi = ∂i ◦ Pi−1 for 1 ⩽ i ⩽ n.
(d)

∂j ◦ Pi =

{
Pi ◦ ∂j−1, for i ⩽ j − 2

Pi−1 ◦ ∂j , for i ⩾ j + 1.

Proof. Note that it suffices to check the corresponding claims for the pi’s and dj ’s.
For the first two points, we note that on ∆n we have

p0 ◦ d0(t0, . . . , tn) = p0(0, t0, . . . , tn) = ((t0, . . . , tn),
∑

ti) = ((t0, . . . , tn), 1) = j1(t0, . . . , tn)

and
pn ◦ dn+1(t0, . . . , tn) = pn(t0, . . . , tn, 0) = ((t0, . . . , tn), 0) = j0(t0, . . . , tn).

For c), one checks that pi ◦ di = pi−1 ◦ di on ∆n: both give ((t0, . . . , tn),
∑n
j=i tj) on (t0, . . . , tn).
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For d) in the case i ⩾ j + 1, consider the following diagram

∆n+1

pi

''

∆n

dj

99

pi−1
%%

∆n × [0, 1]

∆n−1 × [0, 1]

dj×id

77

Checking coordinates one sees that this diagram commutes. The remaining case follows from a similar
observation. □

Definition 4.3. We define P : Sn(X) → Sn+1(X × [0, 1]) as P =
∑n
i=0(−1)iPi.

Lemma 4.4. The map P is a chain homotopy between (Sn(j0))n and (Sn(j1))n, i.e., ∂ ◦ P + P ◦ ∂ =
Sn(j1)− Sn(j0).

Proof. We take an α : ∆n → X and calculate

∂Pα+ P∂α =

n∑
i=0

n+1∑
j=0

(−1)i+j∂jPiα+

n−1∑
i=0

n∑
j=0

(−1)i+jPi∂jα.

If we single out the terms involving the pairs of indices (0, 0) and (n, n+1) in the first sum, we are left with

Sn(j1)(α)− Sn(j0)(α) +
∑

(i,j)̸=(0,0),(n,n+1)

(−1)i+j∂jPiα+

n−1∑
i=0

n∑
j=0

(−1)i+jPi∂jα.

Using Lemma 4.2 we see that only the first two summands survive. □

So, finally we can prove the main result of this section:

Theorem 4.5. (Homotopy invariance)
If f, g : X → Y are homotopic maps, then they induce the same map on homology.

Proof. Let H : X × [0, 1] → Y be a homotopy from f to g, i.e., H ◦ j0 = f and H ◦ j1 = g. Set
Kn := Sn+1(H) ◦ P . We claim that (Kn)n is a chain homotopy between (Sn(f))n and (Sn(g))n. Note that
H induces a chain map (Sn(H))n. Therefore we get

∂ ◦ Sn+1(H) ◦ P + Sn(H) ◦ P ◦ ∂ = Sn(H) ◦ ∂ ◦ P + Sn(H) ◦ P ◦ ∂
= Sn(H) ◦ (∂ ◦ P + P ◦ ∂)
= Sn(H) ◦ (Sn(j1)− Sn(j0)) = Sn(H ◦ j1)− Sn(H ◦ j0)
= Sn(g)− Sn(f).

Hence these two maps are chain homotopic and Hn(g) = Hn(f) for all n. □

Corollary 4.6. If two spaces X,Y are homotopy equivalent, then H∗(X) ∼= H∗(Y ). In particular, if
X is contractible, then

H∗(X) ∼=

{
Z, for ∗ = 0,

0, otherwise.

Examples. As Rn is contractible for all n, the above corollary gives that its homology is trivial but in
degree zero where it consists of the integers.

As the Möbius strip is homotopy equivalent to S1, we know that their homology groups are isomorphic.
If you know about vector bundles: the zero section of a vector bundle induces a homotopy equivalence

between the base and the total space, hence these two have isomorphic homology groups.
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5. The long exact sequence in homology

A typical situation is that there is a subspace A of a topological space X and you might know something
about A or X and want to calculate the homology of the other space using that partial information.

But before we can move on to topological applications we need some techniques about chain complexes.
We need to know that a short exact sequence of chain complexes gives rise to a long exact sequence in
homology.

Definition 5.1. Let A,B,C be abelian groups and

A
f
//B

g
//C

a sequence of homomorphisms. Then this sequence is exact, if the image of f is the kernel of g.

Definition 5.2. If

. . .
fi+1

//Ai
fi //Ai−1

fi−1
// . . .

is a sequence of homomorphisms of abelian groups (indexed over the integers), then this sequence is called
(long) exact, if it is exact at every Ai, i.e., the image of fi+1 is the kernel of fi for all i.

An exact sequence of the form

0 //A
f
//B

g
//C //0

is called a short exact sequence.

Examples. The sequence

0 //Z 2· //Z π //Z/2Z //0

is a short exact sequence.

If ι : U → A is a monomorphism, then 0 //U
ι //A is exact. Similarly, an epimorphism ϱ : B → Q

gives rise to an exact sequence B
ϱ
//Q //0 and an isomorphism ϕ : A ∼= A′ sits in an exact sequence

0 //A
ϕ
//A′ //0.

A sequence

0 //A
f
//B

g
//C //0

is exact iff f is injective, the image of f is the kernel of g and g is an epimorphism. Another equivalent
description is to view a sequence as above as a chain complex with vanishing homology groups. Homology
measures the deviation from exactness.

Definition 5.3. If A∗, B∗, C∗ are chain complexes and f∗ : A∗ → B∗, g : B∗ → C∗ are chain maps, then
we call the sequence

A∗
f∗ //B∗

g∗ //C∗

exact, if the image of fn is the kernel of gn for all n ∈ Z.
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Thus such an exact sequence of chain complexes is a commuting double ladder

...

d

��

...

d

��

...

d

��

An+1

fn+1
//

d

��

Bn+1

gn+1
//

d

��

Cn+1

d

��

An
fn //

d

��

Bn
gn //

d

��

Cn

d

��

An−1

fn−1
//

d��

Bn−1

gn−1
//

d��

Cn+1

d��

...
...

...

in which every row is exact.

Example. Let p be a prime, then

0

��

0

��

0

��

Z id //

p

��

Z 0 //

p2

��

0

��

Z
p

//

π

��

Z π //

π

��

Z/pZ

id

��

Z/pZ
p
//

��

Z/p2Z π //

��

Z/pZ

��

0 0 0

has exact rows and columns, in particular it is an exact sequence of chain complexes. Here, π denotes varying
canonical projection maps.

Proposition 5.4. If 0 //A∗
f
//B∗

g
//C∗ //0 is a short exact sequence of chain complexes,

then there exists a homomorphism δ : Hn(C∗) → Hn−1(A∗) for all n ∈ Z which is natural, i.e., if

0 // A∗
f
//

α

��

B∗
g
//

β

��

C∗ //

γ

��

0

0 // A′
∗

f ′
// B′

∗
g′
// C ′

∗
// 0

is a commutative diagram of chain maps in which the rows are exact then Hn−1(α) ◦ δ = δ ◦Hn(γ),

Hn(C∗)
δ //

Hn(γ)

��

Hn−1(A∗)

Hn−1(α)

��

Hn(C
′
∗)

δ // Hn−1(A
′
∗)

The method of proof is an instance of a diagram chase. The homomorphism δ is called connecting
homomorphism. The implicit claim in the proposition above is that δ is not always the zero map.
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Proof. We show the existence of a δ first and then prove that the constructed map satisfies the natu-
rality condition.

a) Definition of δ:
Is c ∈ Cn with d(c) = 0, then we choose a b ∈ Bn with gnb = c. This is possible because gn is surjective.

We know that dgnb = dc = 0 = gn−1db thus db is in the kernel of gn−1, hence it is in the image of fn−1.
Thus there is an a ∈ An−1 with fn−1a = db. We have that fn−2da = dfn−1a = ddb = 0 and as fn−2 is
injective, this shows that a is a cycle.

We define δ[c] := [a].

Bn ∋ b
� gn // c ∈ Cn

An−1 ∋ a
� fn−1

// db ∈ Bn−1

In order to check that δ is well-defined, we assume that there are b and b′ with gnb = gnb
′ = c. Then

gn(b− b′) = 0 and thus there is an ã ∈ An with fnã = b− b′. Define a′ as a− dã. Then

fn−1a
′ = fn−1a− fn−1dã = db− db+ db′ = db′

because fn−1dã = db − db′. As fn−1 is injective, we get that a′ is uniquely determined with this property.
As a is homologous to a′ we get that [a] = [a′] = δ[c], thus the latter is independent of the choice of b.

In addition, we have to make sure that the value stays the same if we add a boundary term to c, i.e.,
take c′ = c+ dc̃ for some c̃ ∈ Cn+1. Choose preimages of c, c̃ under gn and gn+1, i.e., b and b̃ with gnb = c

and gn+1b̃ = c̃. Then the element b′ = b+ db̃ has boundary db′ = db and thus both choices will result in the
same a.

Therefore δ : Hn(C∗) → Hn−1(A∗) is well-defined.
b) We have to show that δ is natural with respect to maps of short exact sequences.
Let c ∈ Zn(C∗), then δ[c] = [a] for a b ∈ Bn with gnb = c and an a ∈ An−1 with fn−1a = db. Therefore,

Hn−1(α)(δ[c]) = [αn−1(a)].
On the other hand, we have

f ′n−1(αn−1a) = βn−1(fn−1a) = βn−1(db) = dβnb

and
g′n(βnb) = γngnb = γnc

and we can conclude that by the construction of δ

δ[γn(c)] = [αn−1(a)]

and this shows δ ◦Hn(γ) = Hn−1(α) ◦ δ. □

With this auxiliary result at hand we can now prove the main result in this section:

Proposition 5.5. For any short exact sequence

0 //A∗
f
//B∗

g
//C∗ //0

of chain complexes we obtain a long exact sequence of homology groups

. . .
δ //Hn(A∗)

Hn(f)
//Hn(B∗)

Hn(g)
//Hn(C∗)

δ //Hn−1(A∗)
Hn−1(f)

// . . .

Proof. a) Exactness at the spot Hn(B∗):
We have Hn(g) ◦Hn(f)[a] = [gn(fn(a))] = 0 because the composition of gn and fn is zero. This proves

that the image of Hn(f) is contained in the kernel of Hn(g).

For the converse, let [b] ∈ Hn(B∗) with [gnb] = 0. Then there is a c ∈ Cn+1 with dc = gnb. As gn+1 is
surjective, we find a b′ ∈ Bn+1 with gn+1b

′ = c. Hence

gn(b− db′) = gnb− dgn+1b
′ = dc− dc = 0.

Exactness gives an a ∈ An with fna = b − db′ and da = 0 and therefore fna is homologous to b and
Hn(f)[a] = [b] thus the kernel of Hn(g) is contained in the image of Hn(f).
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b) Exactness at the spot Hn(C∗):
Let b ∈ Hn(B∗), then δ[gnb] = 0 because b is a cycle, so 0 is the only preimage under fn−1 of db = 0.

Therefore the image of Hn(g) is contained in the kernel of δ.

Now assume that δ[c] = 0, thus in the construction of δ, the a is a boundary, a = da′. Then for a
preimage of c under gn, b, we have by the definition of a

d(b− fna
′) = db− dfna

′ = db− fn−1a = 0.

Thus b − fna
′ is a cycle and gn(b − fna

′) = gnb − gnfna
′ = gnb − 0 = gnb = c, so we found a preimage for

[c] and the kernel of δ is contained in the image of Hn(g).

c) Exactness at Hn−1(A∗):
Let c be a cycle in Zn(C∗). Again, we choose a preimage b of c under gn and an a with fn−1(a) = db.

Then Hn−1(f)δ[c] = [fn−1(a)] = [db] = 0. Thus the image of δ is contained in the kernel of Hn−1(f).

If a ∈ Zn−1(A∗) with Hn−1(f)[a] = 0. Then fn−1a = db for some b ∈ Bn. Take c = gnb. Then by
definition δ[c] = [a]. □

6. The long exact sequence of a pair of spaces

Let X be a topological space and A ⊂ X a subspace of X. Consider the inclusion map i : A → X,
i(a) = a. We obtain an induced map Sn(i) : Sn(A) → Sn(X), but we know that the inclusion of spaces
doesn’t have to yield a monomorphism on homology groups. For instance, we can include A = S1 into
X = D2.

We consider pairs of spaces (X,A).

Definition 6.1. The relative chain complex of (X,A) is

S∗(X,A) := S∗(X)/S∗(A).

Alternatively, Sn(X,A) is isomorphic to the free abelian group generated by all n-simplices β : ∆n → X
whose image is not completely contained in A, i.e., β(∆n) ∩ (X \A) ̸= ∅.

Definition 6.2.
• Elements in Sn(X,A) are called relative chains in (X,A)
• Cycles in Sn(X,A) are chains c with ∂X(c) whose generators have image in A. These are relative
cycles.

• Boundaries in Sn(X,A) are chains c in X such that c = ∂Xb+ a where a is a chain in A.

A continuous map f : X → Y with f(A) ⊂ B is denoted by f : (X,A) → (Y,B). Such maps induce
chain maps S∗(f) : S∗(X,A) → S∗(Y,B).

The following facts are immediate from the definition:

(a) Sn(X,∅) ∼= Sn(X).
(b) Sn(X,X) = 0.
(c) Sn(X ⊔X ′, X ′) ∼= Sn(X).

Definition 6.3. The relative homology groups of (X,A) are

Hn(X,A) := Hn(S∗(X,A)).

Theorem 6.4. For any pair of topological spaces A ⊂ X we obtain a long exact sequence

. . .
δ //Hn(A)

Hn(i)
//Hn(X) //Hn(X,A)

δ //Hn−1(A)
Hn−1(i)

// . . .

For a map f : (X,A) → (Y,B) we get an induced map of long exact sequences

. . .
δ // Hn(A)

Hn(f |A)

��

Hn(i)
// Hn(X)

Hn(f)

��

// Hn(X,A)

Hn(f)

��

δ // Hn−1(A)

Hn−1(f |A)

��

Hn−1(i)
// . . .

. . .
δ
// Hn(B)

Hn(i)
// Hn(Y ) // Hn(Y,B)

δ
// Hn−1(B)

Hn−1(i)
// . . .
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Proof. By definition of S∗(X,A) the sequence

0 //S∗(A)
S∗(i)

//S∗(X)
π //S∗(X,A) //0

is an exact sequence of chain complexes and by Proposition 5.5 we obtain the first claim. For a map f as
above the following diagram

0 // Sn(A)

Sn(f |A)

��

Sn(i)
// Sn(X)

Sn(f)

��

π // Sn(X,A)

Sn(f)/Sn(f |A)

��

// 0

0 // Sn(B)
Sn(i)

// Sn(Y )
π // Sn(Y,B) // 0

commutes. □

Example. Let A = Sn−1 and X = Dn, then we know that Hj(i) is trivial for j > 0. From the long exact
sequence we get that δ : Hj(Dn,Sn−1) ∼= Hj−1(Sn−1) for j > 1 and n ⩾ 1.

Proposition 6.5. If i : A ↪→ X is a weak retract, i.e., if there is an r : X → A with r ◦ i ≃ idA, then

Hn(X) ∼= Hn(A)⊕Hn(X,A), 0 ⩽ n.

Proof. From the assumption we get that Hn(r)◦Hn(i) = Hn(idA) = idHn(A) for all n and hence Hn(i)

is injective for all n. This implies that 0 //Hn(A)
Hn(i)

//Hn(X) is exact. Injectivity of Hn−1(i) yields
that the image of δ : Hn(X,A) → Hn−1(A) is trivial. Therefore we get short exact sequences

0 //Hn(A)
Hn(i)

//Hn(X)
π∗ //Hn(X,A) //0

for all n. As Hn(r) is a left-inverse for Hn(i) we obtain a splitting

Hn(X) ∼= Hn(A)⊕Hn(X,A)

because we map [c] ∈ Hn(X) to ([rc], π∗[c]) with inverse

Hn(A)⊕Hn(X,A) ∋ ([a], [b]) 7→ Hn(i)[a] + [a′]−Hn(i ◦ r)[a′] ∈ Hn(X)

for any [a′] ∈ Hn(X) with π∗[a
′] = [b]. The second map is well-defined: if [a′′] is another element with

π∗[a
′′] = [b], then [a′ − a′′] is of the form Hn(i)[ã] because this element is in the kernel of π∗ and hence

[a′ − a′′]−Hn(ir)[a
′ − a′′] is trivial. □

Proposition 6.6. For any ∅ ̸= A ⊂ X such that A ⊂ X is a deformation retract we get

Hn(i) : Hn(A) ∼= Hn(X), Hn(X,A) ∼= 0, 0 ⩽ n.

Proof. Recall, that i : A ↪→ X is a deformation retract, if there is a homotopy R : X × [0, 1] → X such
that

(a) R(x, 0) = x for all x ∈ X,
(b) R(x, 1) ∈ A for all x ∈ X, and
(c) R(a, 1) = a for all a ∈ A.

In particular, R is a homotopy from idX to i ◦ r where r = R(−, 1) : X → A. Condition (c) can be
rewritten as r ◦ i = idA, i.e., r is a retraction, and thus A and X are homotopically equivalent and Hn(i) is
an isomorphism for all n ⩾ 0. □

Definition 6.7. If X has two subspaces A,B ⊂ X, then (X,A,B) is called a triple, if B ⊂ A ⊂ X.

Any triple gives rise to three pairs of spaces (X,A), (X,B) and (A,B) and accordingly we have three
long exact sequences in homology. But there is another one.
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Proposition 6.8. For any triple (X,A,B) there is a natural long exact sequence

. . . //Hn(A,B) //Hn(X,B) //Hn(X,A)
δ //Hn−1(A,B) // . . .

This sequence is part of the following braided commutative diagram displaying four long exact sequences

. . .

&&

. . .

Hn+1(X,A)
!!

&&

Hn(A,B)
""

&&

Hn−1(B)

$$

99

. . .

99

%%

Hn(A)

99

%%

Hn(X,B)

88

&&

. . .

Hn(B)
==

88

Hn(X)
<<

88

Hn(X,A)

::

%%. . .

88

. . .

In particular, the connecting homomorphism δ : Hn(X,A) → Hn−1(A,B) is the composite δ = π
(A,B)
∗ ◦

δ(X,A).

Proof. Consider the sequence

0 //Sn(A)/Sn(B) //Sn(X)/Sn(B) //Sn(X)/Sn(A) //0.

This sequence is exact, because Sn(B) ⊂ Sn(A) ⊂ Sn(X). □

7. Excision

The aim is to simplify relative homology groups. Let A ⊂ X be a subspace. Then it is easy to see that
H∗(X,A) is not isomorphic to H∗(X \A): Consider the figure eight as X and A as the point connecting the
two copies of S1, then H0(X,A) is trivial, but H0(X \A) ∼= Z⊕ Z.

&%
'$

&%
'$
•

So if we want to simplify H∗(X,A) by excising something, then we have to be more careful. The first
step towards that is to make singular simplices ’smaller’. The technique is called barycentric subdivision
and that is a tool that’s frequently used.

First, we construct cones. Let v ∈ ∆p and let α : ∆n → ∆p be a singular n-simplex in ∆p.

Definition 7.1. The cone of α with respect to v is Kv(α) : ∆
n+1 → ∆p,

(t0, . . . , tn+1) 7→

{
(1− tn+1)α(

t0
1−tn+1

, . . . , tn
1−tn+1

) + tn+1v, tn+1 < 1,

v, tn+1 = 1.

This map is well-defined and continuous. On the standard basis vectors Kv gives Kv(ei) = α(ei) for
0 ⩽ i ⩽ n but Kv(en+1) = v. Extending Kv linearly gives a map

Kv : Sn(∆
p) → Sn+1(∆

p).

Lemma 7.2. The map Kv satisfies

• ∂Kv(c) = ε(c).κv − c for c ∈ S0(∆
p), κv(e0) = v and ε the augmentation.

• For n > 0 we have that ∂ ◦Kv −Kv ◦ ∂ = (−1)n+1id.
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Proof. For a singular 0-simplex α : ∆0 → ∆p we know that ε(α) = 1 and we calculate

∂Kv(α)(e0) = (Kv(α) ◦ d0)(e0)− (Kv(α) ◦ d1)(e0) = Kv(α)(e1)−Kv(α)(e0) = v − α(e0).

For n > 0 we have to calculate ∂iKv(α) and it is straightforward to see that ∂n+1Kv(α) = α and
∂i(Kv(α)) = Kv(∂iα) for all i < n+ 1. □

Definition 7.3. For α : ∆n → ∆p let v(α) = v := 1
n+1

∑n
i=0 α(ei). The barycentric subdivision

B : Sn(∆p) → Sn(∆p) is defined inductively as B(α) = α for α ∈ S0(∆p) and B(α) = (−1)nKv(B(∂α)) for
n > 0.

For n ⩾ 1 this yields B(α) =
∑n
i=0(−1)n+iKv(B(∂iα)).

If we take n = p and α = id∆n , then for small n this looks as follows: You cannot subdivide a point any
further. For n = 1 we get

@
@

@I

@
@
@R

•

•

•

And for n = 2 we get (up to tilting)

@
@

@
@

@
@@

@
@

•

•

•

�
�

�
�

�
��

�
�•

•

• •���������

PPPPPPPPP •

Lemma 7.4. The barycentric subdivision is a chain map.

Proof. We have to show that ∂B = B∂. If α is a singular zero chain, then ∂Bα = ∂α = 0 and
B∂α = B(0) = 0.

Let n = 1. Then

∂Bα = −∂KvB(∂0α) + ∂KvB(∂1α).

But the boundary terms are zero chains and there B is the identity so we get

−∂Kv(∂0α) + ∂Kv(∂1α) = −κv + ∂0α+ κv − ∂1α = ∂α = B∂α.

(Note, that the v is v(α), not a v(∂iα).)
We prove the claim inductively, so let α ∈ Sn(∆

p). Then

∂Bα =(−1)n∂Kv(B∂α)

=(−1)n((−1)nB∂α+Kv∂B∂α)

=B∂α+ (−1)nKvB∂∂α = B∂α.

Here, the first equality is by definition, the second one follows by Lemma 7.2 and then we use the induction
hypothesis and the fact that ∂∂ = 0. □

Our aim is to show that B doesn’t change anything on the level of homology groups and to that end we
prove that it is chain homotopic to the identity.

We construct ψn : Sn(∆
p) → Sn+1(∆

p) again inductively as

ψ0(α) := 0, ψn(α) := (−1)n+1Kv(Bα− α− ψn−1∂α)

with v = 1
n+1

∑n
i=0 α(ei).

Lemma 7.5. The sequence (ψn)n is a chain homotopy from B to the identity.
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Proof. For n = 0 we have ∂ψ0 = 0 and this agrees with B − id in that degree.
For n = 1, we get

∂ψ1 + ψ0∂ = ∂ψ1 = ∂(KvB −Kv −Kvψ0∂) = ∂KvB − ∂Kv.

With Lemma 7.2 we can transform the latter to B + Kv∂B − ∂Kv and as B is a chain map, this is B +
KvB∂ − ∂Kv. In chain degree one B∂ agrees with ∂, thus this reduces to

B +Kv∂ − ∂Kv = B − (∂Kv −Kv∂) = B − id.

So, finally we can do the inductive step:

∂ψn =(−1)n+1∂Kv(B − id− ψn−1∂)

=(−1)n+1∂KvB − (−1)n+1∂Kv − (−1)n+1∂Kvψn−1∂

=(−1)n+1((−1)n+1B +Kv∂B)

− (−1)n+1((−1)n+1id +Kv∂)

− (−1)n+1((−1)n+1ψn−1∂ +Kv∂ψn−1∂)

=B − id− ψn−1∂ + remaining terms

The equation

Kv∂ψn−1∂ +Kvψn−2∂
2 = KvB∂ −Kv∂

from the inductive assumption ensures that these remaining terms give zero. □

Definition 7.6. A singular n-simplex α : ∆n → ∆p is called affine, if

α(

n∑
i=0

tiei) =

n∑
i=0

tiα(ei).

We abbreviate α(ei) with vi, so α(
∑n
i=0 tiei) =

∑n
i=0 tivi and we call the vi’s the vertices of α.

Definition 7.7. Let A be a subset of a metric space (X, d). The diameter of A is

sup{d(x, y)|x, y ∈ A}

and we denote it by diam(A).
Accordingly, the diameter of an affine n-simplex α in ∆p is the diameter of its image, and we abbreviate

that with diam(α).

Lemma 7.8. For any affine α every simplex in the chain Bα has diameter ⩽ n
n+1diam(α).

Either you believe this lemma, or you prove it, or you check Bredon, Proof of Lemma 13.7 (p. 226).
Each simplex in Bα is again affine; this allows us to iterate the application of B and get smaller and

smaller diameter. Thus, the k-fold iteration, Bk(α), has diameter at most
(

n
n+1

)k
diam(α).

In the following we use the easy but powerful trick to express α as

α = α ◦ id∆n = Sn(α)(id∆n).

This allows us to use the barycentric subdivision for general spaces.

Definition 7.9.
(a) We define BXn : Sn(X) → Sn(X) as

BXn (α) := Sn(α) ◦B(id∆n).

(b) Similarly, ψXn : Sn(X) → Sn+1(X) is

ψXn (α) := Sn+1(α) ◦ ψn(id∆n).

Lemma 7.10. The maps BX are natural in X and are homotopic to the identity on Sn(X).
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Proof. Let f : X → Y be a continuous map. We have

Sn(f)B
X
n (α) =Sn(f) ◦ Sn(α) ◦B(id∆n)

=Sn(f ◦ α) ◦B(id∆n)

=BYn (f ◦ α).

The calculation for ∂ψXn + ψXn−1∂ = BXn − idSn(X) uses that α induces a chain map and thus we get

∂ψXn (α) = ∂ ◦ Sn+1(α) ◦ ψn(id∆n) = Sn(α) ◦ ∂ ◦ ψn(id∆n).

Hence

∂ψXn + ψXn−1∂ = Sn(α) ◦ (∂ ◦ ψn(id∆n) + ψn−1 ◦ ∂(id∆n)) = Sn(α) ◦ (B − id)(id∆n) = BXn (α)− α.

□

Now we consider singular n-chains that are spanned by ’small’ singular n-simplices.

Definition 7.11. Let U = {Ui, i ∈ I} be an open covering of X. Then SU
n (X) is the free abelian group

generated by all α : ∆n → X such that the image of ∆n under α is contained in one of the Ui ∈ U.

Note that SU
n (X) is an abelian subgroup of Sn(X). As we will see now, these chains suffice to detect

everything in singular homology.

Lemma 7.12. Every chain in Sn(X) is homologous to a chain in SU
n (X).

Proof. Let α =
∑m
j=1 λjαj ∈ Sn(X) and let Lj for 1 ⩽ j ⩽ m be the Lebesgue numbers for the

coverings {α−1
j (Ui), i ∈ I} of ∆n. Choose a k, such that

(
n
n+1

)k
⩽ L1, . . . , Lm. Then Bkα1 up to Bkαm

are all in SU
n (X). Therefore

Bk(α) =

m∑
j=1

λjB
k(αj) =: α′ ∈ SU

n (X).

As B is homotopic to the identity we have

α ∼ Bα ∼ . . . ∼ Bkα = α′.

□

With this we get the main result of this section:

Theorem 7.13. Let W ⊂ A ⊂ X such that W̄ ⊂ Å. Then the inclusion i : (X \W,A \W ) ↪→ (X,A)
induces an isomorphism

Hn(i) : Hn(X \W,A \W ) ∼= Hn(X,A)

for all n ⩾ 0.

Proof. We first prove that Hn(i) is surjective, so let c ∈ Sn(X,A) be a relative cycle, i.e., let ∂c ∈
Sn−1(A). There is a k such that c′ := Bkc is a chain in SU

n (X) for the open covering U = {Å,X \ W̄} =:
{U, V }. We decompose c′ as c′ = cU+cV with cU and cV being elements in the corresponding chain complex.
(This decomposition is not unique.)

We know that the boundary of c′ is ∂c′ = ∂Bkc = Bk∂c and by assumption this is a chain in Sn−1(A).
But ∂c′ = ∂cU + ∂cV with ∂cU ∈ Sn−1(U) ⊂ Sn−1(A). Thus, ∂cV ∈ Sn−1(A), in fact, ∂cV ∈ Sn−1(A \W )
and therefore cV is a relative cycle in Sn(X \W,A\W ). This shows that Hn(i)[c

V ] = [c] ∈ Hn(X,A) because
[c] = [cU + cV ] = [cV ] in Hn(X,A).

The injectivity ofHn(i) is shown as follows. Assume that there is a c ∈ Sn(X\W ) with ∂c ∈ Sn−1(A\W )
and assume Hn(i)[c] = 0, i.e., c is of the form c = ∂b+ a′ with b ∈ Sn+1(X) and a′ ∈ Sn(A) and write b as
bU + bV with bU ∈ Sn+1(U) ⊂ Sn+1(A) and b

V ∈ Sn+1(V ) ⊂ Sn+1(X \W ). Then

c = ∂bU + ∂bV + a′.

But ∂bU and a′ are elements in Sn(A \W ) and hence c = ∂bV ∈ Sn(X \W,A \W ). □
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8. Mayer-Vietoris sequence

We consider the following situation: Assume that there are subspaces X1, X2 ⊂ X such that X1 and
X2 are open in X and such that X = X1 ∪X2. We consider the open covering U = {X1, X2}. We need the
following maps:

X1

κ1

  

X1 ∩X2

i1

::

i2
$$

X.

X2

κ2

>>

Note that by definition, the sequence

(8.1) 0 //S∗(X1 ∩X2)
(i1,i2)

//S∗(X1)⊕ S∗(X2) //SU
∗ (X) //0

is exact. Here, the second map is

(α1, α2) 7→ κ1(α1)− κ2(α2).

Theorem 8.1. (The Mayer-Vietoris sequence)
There is a long exact sequence

. . .
δ //Hn(X1 ∩X2) //Hn(X1)⊕Hn(X2) //Hn(X)

δ //Hn−1(X1 ∩X2) // . . .

Walther Mayer: 1887–1948 https://en.wikipedia.org/wiki/Walther_Mayer

Leopold Vietoris: 1891–2002 (!) https://en.wikipedia.org/wiki/Leopold_Vietoris

Proof. The proof follows from Lemma 7.12, because HU
n (X) ∼= Hn(X). □

As an application, we calculate the homology groups of spheres. Let X = Sm and let X± := Sm \
{∓em+1}. The subspaces X+ and X− are contractible and therefore H∗(X

±) = 0 for all positive ∗.
The Mayer-Vietoris sequence is as follows

. . .
δ //Hn(X

+ ∩X−) //Hn(X
+)⊕Hn(X

−) //Hn(Sm)
δ //Hn−1(X

+ ∩X−) // . . .

For n > 1 we can deduce

Hn(Sm) ∼= Hn−1(X
+ ∩X−) ∼= Hn−1(Sm−1).

The first map is the connecting homomorphism and the second map is Hn−1(i) : Hn−1(Sm−1) → Hn−1(X
+∩

X−) where i is the inclusion of Sm−1 into X+ ∩ X− and this inclusion is a homotopy equivalence. Thus
define D := Hn−1(i)

−1 ◦ δ. This D is an isomorphism for all n ⩾ 2.
We have to controll what is going on in small degrees and dimensions.
We know from the Hurewicz isomorphism that H1(Sm) is trivial for m > 1. If we want to see that via

the Mayer-Vietoris sequence, we have to understand the map

Z ∼= H0(X
+ ∩X−) → H0(X

+)⊕H0(X
−) ∼= Z⊕ Z.

Let 1 be a base point of X+ ∩X−. Then the map on H0 is

[1] 7→ ([1], [1]).

This map is injective and therefore the connecting homomorphism δ : H1(Sm) → H0(X
+ ∩ X−) is trivial

and we obtain that

H1(Sm) ∼= 0, m > 1.

Next, we consider the case of n = 1 = m. In this case the intersection X+ ∩ X− splits into two
components. We choose a P+ ∈ X+ and a P− ∈ X− such that P+, P− ∈ X+ ∩ X− lie in different path
components. Then,

H0(i1)([P+]) = [e2] = H0(i1)([P−]) and H0(i2)([P+]) = [−e2] = H0(i2)([P−])
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and hence

(H0(i1)([P+],−[P−]) = 0 = H0(i2)([P+],−[P−]).

Therefore the kernel of (H0(i1), H0(i2)) is spanned by ([P+],−[P−]) and is isomorphic to Z. Considering the
exact sequence

0 //H1S1
δ //H0(X

+ ∩X−)
(H0(i1),H0(i2))

//H0(X
+)⊕H0(X

−) //H0S1

therefore yields H1(S1) ∼= Z. (We already knew this from the Hurewicz isomorphism.)
For 0 < n < m we get

HnSm
∼= //Hn−1Sm−1

∼= // . . .
∼= //H1(Sm−n+1) ∼= π1(Sm−n+1).

and the latter is trivial.
Similarly, for 0 < m < n we have

HnSm
∼= //Hn−1Sm−1

∼= // . . .
∼= //Hn−m+1(S1) ∼= 0.

The last claim follows directly by another simple Mayer-Vietoris argument.
The remaining case 0 < m = n gives something non-trivial

HnSn
∼= //Hn−1Sn−1

∼= // . . .
∼= //H1(S1) ∼= Z.

We can summarize the result as follows.

Proposition 8.2.

Hn(Sm) ∼=


Z⊕ Z, n = m = 0,

Z, n = 0,m > 0,

Z, n = m > 0,

0, otherwise.

Definition 8.3. Let µ0 := [P+] − [P−] ∈ H0(X
+ ∩ X−) ∼= H0(S0) and let µ1 ∈ H1(S1) ∼= π1(S1) be

given by the degree one map (aka the class of the identity on S1, aka the class of the loop t 7→ e2πit).
Define the higher µns via Dµn = µn−1. Then µn is called the fundamental class in Hn(Sn).

In order to obtain a relative version of the Mayer-Vietoris sequence, we need a tool from homological
algebra.

Lemma 8.4. (The five-lemma)
Let

A1
α1 //

f1

��

A2
α2 //

f2

��

A3
α3 //

f3

��

A4
α4 //

f4

��

A5

f5

��

B1
β1 // B2

β2 // B3
β3 // B4

β4 // B5

be a commutative diagram of exact sequences. If f1, f2, f4, f5 are isomorphisms, then so is f3.

Proof. Again, we are chasing diagrams.
In order to prove that f3 is injective, assume that there is an a ∈ A3 with f3a = 0. Then β3f3a =

f4α3a = 0, as well. But f4 is injective, thus α3a = 0. Exactness of the top row gives, that there is an a′ ∈ A2

with α2a
′ = a. This implies

f3α2a
′ = f3a = 0 = β2f2a

′.

Exactness of the bottom row gives us a b ∈ B1 with β1b = f2a
′, but f1 is an isomorphism so we can lift b to

a1 ∈ A1 with f1a1 = b.
Thus f2α1a1 = β1b = f2a

′ and as f2 is injective, this implies that α1a1 = a′. So finally we get that
a = α2a

′ = α2α1a1, but the latter is zero, thus a = 0.
For the surjectivity of f3 assume b ∈ B3 is given. Move b over to B4 via β3 and set a := f−1

4 β3b.
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Consider f5α4a. This is equal to β4β3b and hence trivial. Therefore α4a = 0 and thus there is an a′ ∈ A3

with α3a
′ = a. Then b− f3a

′ is in the kernel of β3 because

β3(b− f3a
′) = β3b− f4α3a

′ = β3b− f4a = 0.

Hence we get a b2 ∈ B2 with β2b2 = b− f3a
′. Define a2 as f−1

2 (b2), so a
′ + α2a2 is in A3 and

f3(a
′ + α2a2) = f3a

′ + β2f2a2 = f3a
′ + β2b2 = f3a

′ + b− f3a
′ = b.

□

We now consider a relative situation, so let X be a topological space with A,B ⊂ X open in A∪B and
set U := {A,B}. This is an open covering of A ∪ B. The following diagram of exact sequences combines
absolute chains with relative ones:

0

��

0

��

0

��

0

��

Sn(A ∪B)

��

0 // Sn(A ∩B)

��

// Sn(A)⊕ Sn(B)

��

// SU
n (A ∪B)

φ
44

��

// 0

��

Sn(X)

��

0 // Sn(X)

��

∆ // Sn(X)⊕ Sn(X)

��

diff // Sn(X)

��

// 0

��

Sn(X,A ∪B)

��

0 // Sn(X,A ∩B)

��

// Sn(X,A)⊕ Sn(X,B) //

��

Sn(X)/SU
n (A ∪B)

��

//

ψ
44

0 0

0 0 0

Here, ψ is induced by the inclusion φ : SU
n (A ∪ B) → Sn(A ∪ B), ∆ denotes the diagonal map and diff the

difference map. It is clear that the first two rows are exact. That the third row is exact follows by the
nine-lemma or a direct diagram chase.

Consider the two right-most non-trivial columns in this diagram. Each gives a long exact sequence in
homology and we focus on five terms.

Hn(S
U
∗ (A ∪B)) //

Hn(φ)

��

Hn(X) // Hn(S∗(X)/SU
∗ (A ∪B))

Hn(ψ)

��

δ // Hn−1(S
U
∗ (A ∪B)) //

Hn−1(φ)

��

Hn−1(X)

Hn(A ∪B) // Hn(X) // Hn(X,A ∪B)
δ // Hn−1(A ∪B) // Hn−1(X)

Then by the five-lemma, as Hn(φ) and Hn−1(φ) are isomorphisms, so is Hn(ψ). This observation together
with the bottom non-trivial exact row proves the following.

Theorem 8.5. (Relative Mayer-Vietoris sequence)
If A,B ⊂ X are open in A ∪B, then the following sequence is exact:

. . .
δ //Hn(X,A ∩B) //Hn(X,A)⊕Hn(X,B) //Hn(X,A ∪B)

δ // . . .

9. Reduced homology and suspension

For any path-connected space we have that the zeroth homology group is isomorphic to the integers, so
somehow this copy of Z is superfluous information and we want to get rid of it in a civilized manner. Let P
denote the one-point topological space. Then for any space X there is a continuous map ε : X → P .
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Definition 9.1. We define H̃n(X) := ker(Hn(ε) : Hn(X) → Hn(P )) and call it the reduced nth homology
group of the space X.

• Note that H̃n(X) ∼= Hn(X) for all positive n.

• If X is path-connected, then H̃0(X) = 0.
• For any choice of a base point x ∈ X we get

H̃n(X)⊕Hn({x}) ∼= Hn(X)

because Hn(P ) ∼= Hn({x}) and the composition

{x} ↪→ X → {x}

is the identity. Therefore, H̃n(X) ∼= Hn(X, {x}) because the retraction r : X → {x} splits the exact
sequence

. . . Hn({x}) → Hn(X) → Hn(X, {x}) → . . .

• We can prolong the singular chain complex S∗(X) and consider S̃∗(X):

. . . //S1(X) //S0(X)
ε //Z //0.

where ε(α) = 1 for every singular 0-simplex α. This is precisely the augmentation we considered
before. Then for all n ⩾ 0,

H̃∗(X) ∼= H∗(S̃∗(X)).

As every continuous map f : X → Y induces a chain map S∗(f) : S∗(X) → S∗(Y ) and as εY ◦S0(f) = εX

we obtain the following result.

Lemma 9.2. The assignment X 7→ H∗(S̃∗(X)) is a functor, i.e., for a continuous f : X → Y we get

an induced map H∗(S̃∗(f)) : H∗(S̃∗(X)) → H∗(S̃∗(Y )) such that the identity on X induces the identity and
composition of maps is respected.

Similarly, H̃∗(−) is a functor.

Definition 9.3. For ∅ ̸= A ⊂ X we define

H̃n(X,A) := Hn(X,A).

As we identified reduced homology groups with relative homology groups we obtain a reduced version
of the Mayer-Vietoris sequence. A similar remark applies to the long exact sequence for a pair of spaces.

Proposition 9.4. For each pair of spaces, there is a long exact sequence

. . . // H̃n(A) // H̃n(X) // H̃n(X,A) // H̃n−1(A) // . . .

and a reduced Mayer-Vietoris sequence.

Examples.
1) Recall that we can express RP 2 as the quotient space of S2 modulo antipodal points or as a quotient

of D2:

RP 2 ∼= S2/± id ∼= D2/z ∼ −z for z ∈ S1.
We use the latter definition and set X = RP 2, X1 = X \ {[0, 0]} (which is an open Möbius strip and hence

homotopically equivalent to S1) and X2 = D̊2. Then

X1 ∩X2 = D̊2 \ {[0, 0]} ≃ S1.

Thus we know that H1(X1) ∼= Z, H1(X2) ∼= 0 and H2X1 = H2X2 = 0. We choose generators for H1(X1)
and H1(X1 ∩X2) as follows.
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Let a be the path that runs along the outer circle in mathematical positive direction half around starting
from the point (1, 0). Let γ be the loop that runs along the inner circle in mathematical positive direction.
Then the inclusion i : X1 ∩X2 → X1 induces

H1(i)[γ] = 2[a].

This suffices to compute H∗(RP 2) up to degree two because the long exact sequence is

H̃2(X1)⊕ H̃2(X2) = 0 → H̃2(X) → H̃1(X1 ∩X2) ∼= Z → H̃1(X1) ∼= Z → H̃1(X) → H̃0(X1 ∩X2) = 0.

On the two copies of the integers, the map is given as above and thus we obtain:

H2(RP 2) ∼= ker(2· : Z → Z) = 0,

H1(RP 2) ∼= coker(2· : Z → Z) ∼= Z/2Z,
H0(RP 2) ∼= Z.

The higher homology groups are trivial, because there Hn(RP 2) is located in a long exact sequence between
trivial groups.

2) We can now calculate the homology groups of bouquets of spaces in terms of the homology groups of
the single spaces, at least in good cases. Let (Xi)i∈I be a family of topological spaces with chosen basepoints
xi ∈ Xi. Consider

X =
∨
i∈I

Xi.

If the inclusion of xi into Xi is pathological, then we cannot apply the Mayer-Vietoris sequence. However,
we get the following:

Proposition 9.5. If there are open neighbourhoods Ui of xi ∈ Xi together with a deformation of Ui to
{xi}, then we have for any finite E ⊂ I

H̃n(
∨
i∈E

Xi) ∼=
⊕
i∈E

H̃n(Xi).

In the situation above we say that the Xi are well-pointed with respect to xi.

Proof. First we consider the case of two bouquet summands. We have X1 ∨ U2 ∪ U1 ∨X2 as an open
covering of X1 ∨X2. The Mayer-Vietoris sequence then gives that Hn(X) ∼= Hn(X1 ∨ U2) ⊕Hn(U1 ∨X2)
for n > 0. For H0 we get the exact sequence

0 → H̃0(X1 ∨ U2)⊕ H̃0(U1 ∨X2) → H̃0(X) → 0.

By induction we obtain the case of finitely many bouquet summands. □

We also get

H̃n(
∨
i∈I

Xi) ∼=
⊕
i∈I

H̃n(Xi)

but for this one needs a colimit argument. We postpone that for a while.
We can extend such results to the full relative case. Let A ⊂ X be a closed subspace and assume that

A is a deformation retract of an open neighbourhood A ⊂ U . Let π : X → X/A be the canonical projection
and b = {A} the image of A. Then X/A is well-pointed with respect to b.

Proposition 9.6. In the situation above

Hn(X,A) ∼= H̃n(X/A), 0 ⩽ n.
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Proof. The canonical projection, π, induces a homeomorphism (X \A,U \A) ∼= (X/A\{b}, π(U)\{b}).
Consider the following diagram:

Hn(X,A)
∼= //

Hn(π)

��

Hn(X,U) Hn(X \A,U \A)
∼=oo

Hn(π)∼=
��

Hn(X/A, b)
∼= // Hn(X/A, π(U)) Hn(X/A \ {b}, π(U) \ {b})

∼=oo

The upper and lower left arrows are isomorphisms because A is a deformation retract of U , the isomorphism
in the upper right is a consequence of excision, because A = Ā ⊂ U and the lower right one follows from
excision as well. □

Theorem 9.7. (Suspension isomorphism) If A ⊂ X is as above, then

Hn(ΣX,ΣA) ∼= H̃n−1(X,A), for all n > 0.

Proof. Consider the inclusion of pairs (X,A) ⊂ (CX,CA) ⊂ (ΣX,ΣA) and the triple (CX,X ∪
CA,CA). We obtain the corresponding long exact sequence on homology groups

. . . //Hn(CX,CA) //Hn(CX,CA ∪X)
δ //H̃n−1(X ∪ CA,CA) // . . .

By Proposition 9.6 we get that H̃n(CX,CA∪X) ∼= H̃n(CX/CA∪X) and H̃n−1(X ∪CA,CA) ∼= H̃n−1(X ∪
CA/CA) and the latter is isomorphic to H̃n−1(X/A) ∼= H̃n−1(X,A). Similarly, as CX/CA ∪X ≃ ΣX/ΣA,
we get

H̃n(CX,CA ∪X) ∼= H̃n(CX/CA ∪X) ∼= H̃n(ΣX/ΣA) ∼= Hn(ΣX,ΣA).

X ∪ CA/CA ≃ X/A:
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□

Note, that the corresponding statement is terribly wrong for homotopy groups. We have ΣS2 ∼= S3, but
π3(S2) ∼= Z, whereas π4(S3) ∼= Z/2Z, so homotopy groups (unlike homology groups) don’t satisfy such an
easy form of a suspension isomorphism. There is a Freundenthal suspension theorem for homotopy groups,
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but that’s more complicated (https://en.wikipedia.org/wiki/Freudenthal_suspension_theorem). For
the above case it yields:

Z/2Z ∼= π1+3(S3) ∼= π1+4(S4) ∼= . . . =: πs1

where πs1 denotes the first stable homotopy group.
Freudenthal: 1905–1990 https://en.wikipedia.org/wiki/Hans_Freudenthal

10. Mapping degree

Recall that we defined fundamental classes µn ∈ H̃n(Sn) for all n ⩾ 0. Let f : Sn → Sn be any continuous
map.

Definition 10.1. The map f induces a homomorphism

H̃n(f) : H̃n(Sn) → H̃n(Sn)

and therefore we get

H̃n(f)µn = deg(f)µn

with deg(f) ∈ Z. We call this integer the degree of f .

In the case n = 1 we can relate this notion of a mapping degree to the one defined via the fundamental
group of the 1-sphere: if we represent the generator of π1(S1, 1) as the class given by the loop

ω : [0, 1] → S1, t 7→ e2πit,

then the abelianized Hurewicz, hab : π1(S1, 1) → H1(S1), sends the class of ω precisely to µ1 and therefore
the naturality of hab

π1(S1, 1)
π1(f)

//

hab

��

π1(S1, 1)

hab

��

H1(S1)
H1(f)

// H1(S1)
shows that

deg(f)µ1 = H1(f)µ1 = hab(π1(f)[w]) = hab(k[w]) = kµ1.

where k is the degree of f defined via the fundamental group. Thus both notions coincide for n = 1.
As we know that the connecting homomorphism induces an isomorphism between Hn(Dn,Sn−1) and

H̃n−1(Sn−1), we can consider degrees of maps f : (Dn,Sn−1) → (Dn,Sn−1) by defining µ̄n := δ−1µn. Then
Hn(f)(µ̄n) := deg(f)µ̄n gives a well-defined integer deg(f) ∈ Z.

The degree of self-maps of Sn satisfies the following properties:

Proposition 10.2.
(a) If f is homotopic to g, then deg(f) = deg(g).
(b) The degree of the identity on Sn is one.
(c) The degree is multiplicative, i.e., deg(g ◦ f) = deg(g)deg(f).
(d) If f is not surjective, then deg(f) = 0.

Proof. The first three properties follow directly from the definition of the degree. If f is not surjective,
then it is homotopic to a constant map and this has degree zero. □

It is true that the group of (pointed) homotopy classes of self-maps of Sn is isomorphic to Z and thus
the first property can be upgraded to an ’if and only if’, but we won’t prove that here.

Recall that ΣSn ∼= Sn+1. If f : Sn → Sn is continuous, then Σ(f) : ΣSn → ΣSn is given as ΣSn ∋ [x, t] 7→
[f(x), t].

Lemma 10.3. Suspensions leave the degree invariant, i.e., for f : Sn → Sn we have

deg(Σ(f)) = deg(f).

In particular, for every k ∈ Z there is an f : Sn → Sn with deg(f) = k.
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Proof. The suspension isomorphism of Theorem 9.7 is induced by a connecting homomorphism. Using
the isomorphism Hn+1(Sn+1) ∼= Hn+1(ΣSn), the connecting homomorphism sends µn+1 ∈ Hn+1(Sn+1) to

±µn ∈ H̃n(Sn). But then the commutativity of

Hn+1(Sn+1)
∼= // Hn+1(ΣSn)

δ
��

Hn+1(Σf)
// Hn+1(ΣSn)

δ
��

Hn+1(Sn+1)
∼=oo

H̃n(Sn)
Hn(f)

// H̃n(Sn)

ensures that ±deg(f)µn = ±deg(Σf)µn with the same sign. □

For the degree of a self-map of S1 one has an additivity relation. We can generalize this to higher
dimensions. Consider the pinch map T : Sn → Sn/Sn−1 ≃ Sn ∨Sn and the fold map F : Sn ∨Sn → Sn. Here,
F is induced by the identity of Sn.

&%
'$

••
T−→

&%
'$&%
'$

• F−→

&%
'$

Note that we can replace every continuous f : Sn → Sn by a basepoint-preserving map by composing
with a rotation. That doesn’t change the degree.

Proposition 10.4. For f, g : Sn → Sn we have

deg(F ◦ (f ∨ g) ◦ T ) = deg(f) + deg(g).

Proof. The map Hn(T ) sends µn to (µn, µn) ∈ H̃nSn⊕H̃nSn ∼= H̃n(Sn∨Sn). Under this isomorphism,

the map Hn(f ∨ g) corresponds to (µn, µn) 7→ (H̃n(f)µn, H̃n(g)µn) and this yields (deg(f)µn,deg(g)µn)
which under the fold map is sent to the sum. □

We use the mapping degree to show some geometric properties of self-maps of spheres.

Proposition 10.5. Let f (n) : Sn → Sn be the map

(x0, x1, . . . , xn) 7→ (−x0, x1, . . . , xn).

Then f (n) has degree −1.

Proof. We prove the claim by induction. µ0 was the difference class [+1]− [−1], and

f (0)([+1]− [−1]) = [−1]− [+1] = −µ0.

We defined µn in such a way that Dµn = µn−1. Therefore, as D is natural,

Hn(f
(n))µn = Hn(f

(n))D−1µn−1 = D−1Hn−1(f
(n−1))µn−1 = D−1(−µn−1) = −µn.

□

Corollary 10.6. The antipodal map A : Sn → Sn, A(x) = −x, has degree (−1)n+1.

Proof. Let f
(n)
i : Sn → Sn be the map (x0, . . . , xn) 7→ (x0, . . . , xi−1,−xi, xi+1, . . . , xn). As in Proposi-

tion 10.5 one shows that the degree of f
(n)
i is −1. As A = f

(n)
n ◦ . . . ◦ f (n)0 , the claim follows. □

In particular, the antipodal map cannot be homotopic to the identity as long as n is even!

31



Proposition 10.7. Let f, g : Sn → Sn with f(x) ̸= g(x) for all x ∈ Sn, then f is homotopic to A ◦ g. In
particular,

deg(f) = (−1)n+1deg(g).

Proof. By assumption the segment t 7→ (1−t)f(x)−tg(x) doesn’t pass through the origin for 0 ⩽ t ⩽ 1.
Thus the homotopy

H(x, t) =
(1− t)f(x)− tg(x)

||(1− t)f(x)− tg(x)||
connects f to −g = A ◦ g. □

Corollary 10.8. For any f : Sn → Sn with deg(f) = 0 there is an x+ ∈ Sn with f(x+) = x+ and an
x− with f(x−) = −x−.

Proof. If f(x) ̸= x for all x, then deg(f) = deg(A) ̸= 0. If f(x) ̸= −x for all x, then deg(f) =
(−1)n+1deg(A) ̸= 0. □

Corollary 10.9. Assume that n is even and let f : Sn → Sn be any continuous map. Then there is an
x ∈ Sn with f(x) = x or f(x) = −x.

Finally, we can say the following about hairstyles of hedgehogs of arbitrary even dimension:

Proposition 10.10. Any tangential vector field on S2k is trivial in at least one point.

Proof. Recall that we can describe the tangent space at a point x ∈ S2k as

Tx(S2k) = {y ∈ R2k+1|⟨x, y⟩ = 0}.
Assume that V : S2k → T (S2k) with V (x) ∈ Tx(S2k) for all x is a tangential vector field which does not
vanish, i.e., V (x) ̸= 0 for all x ∈ S2k.

Define f(x) := V (x)
||V (x)|| . If f(x) = x, then V (x) = ||V (x)||x. But this means that V (x) points into the

direction of x and thus it cannot be tangential. Similarly, f(x) = −x yields the same contradiction. Thus
such a V cannot exist. □

For S2k−1, k ⩾ 1 you can always find nowhere vanishing tangential vector fields, for instance by viewing
S2k−1 ⊂ Ck and using the multiplication by i on C: Ck ∋ (z1, . . . , zk) 7→ (iz1, . . . , izk). In real coordinates
that corresponds to

(x1, y1, . . . , xk, yk) 7→ (−y1, x1, . . . ,−yk, xk).

11. CW complexes

Definition 11.1. Let X be a topological space. Then X is called an n-cell, if X is homeomorphic to
Rn. The number n is then the dimension of the cell.

Examples. Every point is a zero cell and D̊n ∼= Rn ∼= Sn \N are n-cells.
Note that an n-cell cannot be an m-cell for n ̸= m, because Rn ≇ Rm for n ̸= m.

Definition 11.2. A cell decomposition of a space X is a decomposition of X into subspaces, each of
which is a cell of some dimension, i.e.,

X =
⊔
i∈I

Xi, Xi
∼= Rni .

Here, this decomposition is meant as a set, not as a topological space.

Examples.

• A hollow 3-dimensional cube has a cell decomposition into 8 points, 12 open edges, and 6 open
faces.

• The standard 3-simplex can be decomposed into 4 zero-cells, 6 1-cells, 4 2-cells, and a 3-cell.
• The n-dimensional sphere (for n > 0) has a cell decomposition into the north pole and its comple-
ment.
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Definition 11.3. A topological Hausdorff space X together with a cell decomposition is called a CW
complex, if it satisfies the following conditions:

(a) For every n-cell σ ⊂ X there is a continuous map Φσ : Dn → X such that the restriction of Φσ to

D̊n is a homeomorphism

Φσ |̊Dn : D̊n ∼= σ

and Φσ maps Sn−1 to the union of cells of dimension at most n− 1.
(b) For every n-cell σ, the closure σ̄ ⊂ X has a non-trivial intersection with only finitely many cells of

X.
(c) A subset A ⊂ X is closed if and only if A ∩ σ̄ is closed for all cells σ in X.

• The map Φσ as in (a) is called the characteristic map of the cell σ. Its restriction Φσ|Sn−1 is called
attaching map.

• Property (b) is the closure finite condition: the closure of every cell is contained in finitely many
cells. That’s the ’C’ in CW.

• Property (c) tells us that X has the weak topology. That’s the ’W’.
• If X is a CW complex with only finitely many cells, then we call X finite.

Definition 11.4. Assume that X is a CW complex.

• We set Xn :=
⋃
σ⊂X,dim(σ)⩽n σ and call it the n-skeleton of X.

• If we have X = Xn, but Xn−1 ⊊ X, then we say that X is n-dimensional, i.e., dim(X) = n.
• A subset Y ⊂ X of a CW complex X is called a subcomplex (sub-CW complex), if it has a cell

decomposition by cells in X and if for any cell σ ⊂ Y we also have σ̄ ⊂ Y .
• For any subcomplex Y ⊂ X, (X,Y ) is a CW-pair.

Note, that any subcomplex of a CW complex is again a CW complex: the characteristic maps Φσ for
Y are the same as for X. We obtain that Y is closed in X because of the second requirement and this
guarantees that Y has the weak topology. If σ̄ ⊂ X and σ ⊂ Y , then σ̄ ⊂ Y . As Y is closed, this says that
Y satisfies condition (b) of a CW complex.

Examples The unit interval [0, 1] has a CW structure with two zero cells and one 1-cell. But for instance
the decomposition σ0

0 = {0}, σ0
k = { 1

k}, k > 0 and σ1
k = ( 1

k+1 ,
1
k ) does not give a CW structure on [0, 1].

Consider the following A ⊂ [0, 1]

A :=

{
1

2

(
1

k
+

1

k + 1

)
|k ∈ N

}
.

Then A ∩ σ̄1
k is precisely the point 1

2 (
1
k + 1

k+1 ) and this is closed, but A isn’t.
We want to understand the topology of CW complexes. Note that cells don’t have to be open in X: if

X is a CW complex and σ is an n-cell, then σ is open in the n-skeleton of X, Xn and Xn is closed in X.
Of course, as a set we have X =

⋃
n⩾0X

n. From the condition that A is closed in X if and only if the
intersection of A with σ̄ is closed for any cell σ we see that A is closed in X if and only if A ∩Xn is closed
for all n ⩾ 0. This is an instance of a direct limit topology on X and this is denoted by

X = lim
−→

Xn.

Such a direct limit has the following universal property: for any system of maps (fn : X
n → Z)n⩾0 such that

fn+1|Xn = fn there is a uniquely determined continuous map f : X → Z such that f |Xn = fn.
Note that CW structures on a fixed topological space are not unique. For instance you can consider S2

with the CW structure coming from the cell decomposition S2 = S2 \N ⊔N . Then the zero skeleton of S2
only consists of the north pole N and this agrees with the 1-skeleton, but the 2-skeleton is equal to S2.

But of course there are many other CW structures. Take your favorite dice, i.e., a tetrahedron, a cube,
an octahedron, a dodecahedron, an icosahedron or something less regular like a rhombic dodecahedron.
Imagine these dice are hollow and project them to S2. Then you get different CW structures on S2 that way.
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Definition 11.5. Let X and Y be CW complexes. A continuous map f : X → Y is called cellular, if
f(Xn) ⊂ Y n for all n ⩾ 0.

The category of CW complexes together with cellular maps is rather flexible. Most of the classical
constructions don’t lead out of it, but one has to be careful with respect to products:

Proposition 11.6. If X and Y are CW complexes then X × Y is a CW complex if one of the factors
is locally compact.

Proof. As products of cells are cells, X × Y inherits a cell decomposition from its factors. We need
to ensure that X × Y carries the weak topology. For this we prove a slightly more general auxiliary fact: if
X, Y and Z are topological spaces satisfying the Hausdorff condition and if π : X → Y gives Y the quotient
topology, and if Z is locally compact, then

π × id : X × Z → Y × Z

gives Y × Z the quotient topology. For this we show that Y × Z has the universal property of a quotient
space, so if g : Y × Z →W is a map of sets and assume that the composition g ◦ (π × id) is continuous. As
Z is locally compact and as all spaces are Hausdorff, there is a homeomorphism

C(X × Z,W ) ∼= C(X,C(Z,W ))

of topological spaces. (Here for two spaces U, V , C(U, V ) is the set of all continuous maps from U to
V and the topology of C(U, V ) is generated (under finite intersections and arbitrary unions) by the sets
V (K,O) := {f ∈ C(U, V )|f(K) ⊂ O} for compact K ⊂ U and open O ⊂ V .)

Under this adjunction g ◦ (π × id) corresponds to the composite

g̃ : X
π //Y

ḡ
//C(Z,W ).

As g̃ is continuous and as Y carries the quotient topology we get that ḡ is continuous and hence g is
continuous, too.

With the help of this result we consider the characteristic maps of X and Y ,

Φσ : D̊n → X,σ a cell in X

Ψτ : D̊m → Y, τ a cell in Y.

Then we can use these maps to write X × Y as a target of a map

Φ×Ψ: (
⊔
σ

D̊n)× (
⊔
τ

D̊m) → X × Y.

Assume that Y is locally compact. We have to show that X × Y carries the quotient topology with respect
to this map. We know that each D̊n is locally compact, thus so is the disjoint union of open discs. The map
id⊔ D̊n × Ψ gives (

⊔
D̊n) × Y the quotient topology and by assumption Y is locally compact and therefore

Φ× idY induces the quotient topology on X × Y . □

Lemma 11.7. If D is a subset of a CW complex X and D intersects each cell in at most one point, then
D is discrete.

Proof. Let S be an arbitrary subset of D. We show that S is closed. We know that S ∩ σ̄ is finite,
because σ̄ is covered by finitely many cells. Therefore S ∩ σ̄ is closed in σ̄, because X is Hausdorff (and
therefore T1). But then the weak topology guarantees that S is closed. □

Corollary 11.8. Let X be a CW complex.

(a) Every compact subset K ⊂ X is contained in a finite union of cells.
(b) The space X is compact if and only if it is a finite CW complex.
(c) The space X is locally compact if and only if it is locally finite, i.e., every point has a neighborhood

that is contained in finitely many cells.
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Proof. It is easy to see that (a) implies (b) and that (b) implies (c). Thus we only prove (a): consider
the intersections K∩σ and choose a point pσ in every non-empty intersection. Then D := {pσ|σ a cell in X}
is discrete. It is also compact and therefore finite. □

Corollary 11.9. If f : K → X is a continuous map from a compact space K to a CW complex X,
then the image of K under f is contained in a finite skeleton.

For the proof just note that f(K) is compact in X.

Proposition 11.10. Let A be a subcomplex of a CW complex X. Then X × {0} ∪A× [0, 1] is a strong
deformation retract of X × [0, 1].

Proof. For r : Dn× [0, 1] → Dn×{0}∪Sn−1× [0, 1] we can choose the standard retraction of a cylinder
onto its bottom and sides.

As Xn × [0, 1] is built out of Xn × {0} ∪ (Xn−1 ∪ An) × [0, 1] by gluing in copies of Dn × [0, 1] along
Dn × {0} ∪ Sn−1 × [0, 1] we get that Xn × [0, 1] is a deformation retract of Xn × {0} ∪ (Xn−1 ∪An)× [0, 1].
We can parametrize the retracting homotopy in such a way that it takes place in the time interval [ 1

2n+1 ,
1
2n ].

Using the direct limit topology on X, we obtain a deformation of X × I to X × {0} ∪A× [0, 1]. □

The property in Proposition 11.10 implies the so-called homotopy extension property, (HEP): If g : X →
Y is a map and H : A× [0, 1] → Y is a homotopy such that H|A×{0} = g, then there is an extension of H to
X × [0, 1], compatible with g and H. This identifies A→ X as a so-called cofibration.

In the following we just collect some facts about the topology of CW complexes, that I won’t prove:

Lemma 11.11.
• For any subcomplex A ⊂ X there is an open neighborhood U of A in X together with a strong

deformation retraction to A. In particular, for each skeleton Xn there is an open neighborhood U
in X (and as well in Xn+1) of Xn such that Xn is a strong deformation retract of U .

• Every CW complex is paracompact, locally path-connected and locally contractible.
• Every CW complex is semi-locally 1-connected, hence possesses a universal covering space.

Lemma 11.12. For any CW complex X we get for the skeleta:

(a)

Xn \Xn−1 =
⊔

σ an n-cell

σ ∼=
⊔

σ an n-cell

D̊n.

(b)

Xn/Xn−1 ∼=
∨

σ an n-cell

Sn.

Proof. The first claim follows directly from the definition of a CW complex. For the second claim note
that the characteristic maps send the boundary ∂Dn to the n− 1-skeleton and hence for every n-cell we get
a copy of Sn in the quotient. □

Example Consider the hollow cube W 2. Then W 2/W 1 ∼=
∨6
i=1 S2.

12. Cellular homology

In the following, X will always be a CW complex.

Lemma 12.1. For all q ̸= n ⩾ 1, Hq(X
n, Xn−1) = 0.

Proof. Using the identification of relative homology and reduced homology of the quotient gives

Hq(X
n, Xn−1) ∼= H̃q(X

n/Xn−1) ∼=
⊕

σ an n-cell

H̃q(Sn).

□

Lemma 12.2. Consider the inclusion in : X
n → X.
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(a) The induced map Hn(in) : Hn(X
n) → Hn(X) is surjective.

(b) On the (n+ 1)-skeleton we get an isomorphism

Hn(in+1) : Hn(X
n+1) ∼= Hn(X).

Proof. (a) We can factor in as

Xn in //

α1

��

X

Xn+1

in+1

33

α2

// Xn+2
in+2

55

α3

// Xn+3

in+3

;;

α4

// . . .

The map Hn(α1) : Hn(X
n) → Hn(X

n+1) is surjective, because Hn(X
n+1, Xn) = 0. For i > 1 we have the

following piece of the long exact sequence of the pair (Xn+i, Xn+i−1)

0 ∼= Hn+1(X
n+i, Xn+i−1) //Hn(X

n+i−1)
Hn(αi)

//Hn(X
n+i) //Hn(X

n+i, Xn+i−1) ∼= 0.

Therefore Hn(αi) is an isomorphism in this range. If X is finite-dimensional, this already proves the claim.
Every singular simplex in X has an image that is contained in one of the Xms because the standard

simplices are compact. If a ∈ Sn(X) is a chain, a =
∑m
i=1 λiβi then we can find an M such that the images

of all the βi’s are contained in XM , say for M = n+q. Therefore every [a] ∈ Hn(X) can be written as iM [b],
but αq ◦ . . . ◦ α1 is surjective, hence [b] is of the form αq ◦ . . . ◦ α1[c] but then

[a] = iM ◦ αq ◦ . . . ◦ α1[c] = in[c]

thus in is surjective.
(b) If [a] = Hn(in+1)[u] = 0, then again we can write [a] as iM ◦ αq ◦ . . . ◦ α2[u] where the αi’s are now

isos and iM indicates that it suffices to use the M -skeleton of X in order to define [a], hence [a] was trivial
to start with. □

Corollary 12.3. For CW complexes X, Y we have

(a) If the n-skeleta Xn and Y n are homeomorphic, then Hq(X) ∼= Hq(Y ), for all q < n.
(b) If X has no q-cells, then Hq(X) ∼= 0.
(c) In particular, if q exceeds the dimension of X, then Hq(X) ∼= 0.

Proof. The first claim is a direct consequence of the lemma above.
By assumption in (b) Xq−1 = Xq, therefore we have Hq(X

q−1) ∼= Hq(X
q) and the latter surjects onto

Hq(X). We show that Hn(X
r) ∼= 0 for n > r. To that end we use the chain of isomorphisms

Hn(X
r) ∼= Hn(X

r−1) ∼= . . . ∼= Hn(X
0)

which holds because the adjacent relative groups Hn(X
i, Xi−1) are trivial for i < n. □

Again, X is a CW complex.

Definition 12.4. The cellular chain complex C∗(X) consists of Cn(X) := Hn(X
n, Xn−1) with boundary

operator

d : Hn(X
n, Xn−1)

δ //Hn−1(X
n−1)

ϱ
//Hn−1(X

n−1, Xn−2)

where ϱ is the map induced by the projection map Sn−1(X
n−1) → Sn−1(X

n−1, Xn−2).

Note that Cn(X) is a free abelian group with

Cn(X) ∼=
⊕

σ an n-cell

H̃n(Sn) ∼=
⊕

σ an n-cell

Z.

For n < 0, Cn(X) is trivial. If X has only finitely many n-cells, then Cn(X) is finitely generated. If X is
a finite CW complex, then C∗(X) is finitely generated as a chain complex, i.e., Cn(X) is only non-trivial
in finitely many degrees n, and in these degrees, Cn(X) is finitely generated. In this case, the boundary
operator can be calculated using matrices over the integers.
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Lemma 12.5. The map d is a boundary operator.

Proof. The composition d2 is ϱ ◦ δ ◦ ϱ ◦ δ, but δ ◦ ϱ is a composition in an exact sequence. □

Theorem 12.6. (Comparison of cellular and singular homology) For every CW complex X, there is
an isomorphism Υ: H∗(C∗(X), d) ∼= H∗(X).

Proof. Consider the diagram

Cn+1(X)

d

��

Hn+1(X
n+1, Xn)

λ

��

δ

))

Hn+1(X,X
n)

δ′ // Hn(X
n)

Hn(in)
//

ϱ
uu

Hn(X)

Cn(X)

d

��

Hn(X
n, Xn−1)

λ

��

δ

))

Hn(X,X
n−1)

δ′ // Hn−1(X
n−1)

Hn−1(in−1)
//

ϱ
uu

Hn−1(X)

Cn−1(X)

d

��

Hn−1(X
n−1, Xn−2)

λ

��

δ

))

Hn−1(X,X
n−1)

δ′ // Hn−2(X
n−2)

Hn−2(in−2)
//

ϱ

uu

Hn−2(X)

. . . . . .

• All occurring ϱ-maps are injective because Hk(X
k−1) ∼= 0 for all k.

• For every a ∈ Hn(X
n) ϱ(a) is a cycle for d:

dϱ(a) = ϱδϱ(a) = 0.

• Let c ∈ Cn(X) be a d-cycle, thus 0 = dc = ϱδc and as ϱ is injective we obtain δc = 0. Exactness
yields that c = ϱ(a) for an a ∈ Hn(X

n). Hence,

Hn(X
n) ∼= ker(d : Cn(X) → Cn−1(X)).

• We define Υ: ker(d) → Hn(X) as Υ(c) = Hn(in)(a) for c = ϱ(a) and Hn(in) : Hn(X
n) → Hn(X).

• The map Υ is surjective because Hn(in) is surjective by Lemma 12.2.
• In the diagram, the triangles commute, i.e., δ = δ′ ◦ λ.
• Consider the sequence

Hn+1(X
n+1) // //Hn+1(X) //Hn+1(X,X

n+1) //Hn(X
n+1)

∼= //Hn(X)

which tells us that Hn+1(X,X
n+1) = 0 and this in turn implies that λ is surjective by Proposition

6.8.
• Using this we obtain

im(δ) = im(δ′) = ker(Hn(in)).

As d = ϱ ◦ δ, the map ϱ induces an isomorphism between the image of d and the image of δ.
• Taking all facts into account we get that ϱ induces an isomorphism

ker(d : Cn(X) → Cn−1(X))

im(d : Cn+1(X) → Cn(X))
∼=

Hn(X
n)

ker(Hn(in))
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But the sequence

0 //kerHn(in) //Hn(X
n) // im(Hn(in)) //0

is exact and therefore

Hn(X
n)/ker(Hn(in)) ∼= imHn(in) ∼= Hn(X).

□
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