Exercises in Algebraic Topology (master)

Prof. Dr. Birgit Richter

Summer term 2025

Exercise sheet no 6

due: 13th of May 2025, 13:45h in H3

1 (5-Lemma revisited) (1 + 1 points)

Consider the following commutative diagram of exact sequences

$$\begin{array}{c|c} A_1 \xrightarrow{\alpha_1} & A_2 \xrightarrow{\alpha_2} & A_3 \xrightarrow{\alpha_3} & A_4 \xrightarrow{\alpha_4} & A_5 \\ & & \downarrow f_1 & \downarrow f_2 & \downarrow f_3 & \downarrow f_4 & \downarrow f_5 \\ B_1 \xrightarrow{\beta_1} & B_2 \xrightarrow{\beta_2} & B_3 \xrightarrow{\beta_3} & B_4 \xrightarrow{\beta_4} & B_5 \end{array}$$

Under which assumptions on f_1, f_2, f_4, f_5 can we deduce that the map f_3 is a monomorphism or an epimorphism?

2 (Trivial versus actual gluing) (2 + 2 points)

- (1) Are the homology groups of $\mathbb{S}^1 \times \mathbb{S}^1$ and $\mathbb{S}^2 \vee \mathbb{S}^1 \vee \mathbb{S}^1$ isomorphic?
- (2) What about the homology groups of the Klein bottle versus the homology groups of $\mathbb{S}^2 \vee \mathbb{S}^1 \vee \mathbb{S}^1$?

3 (More linear algebra) (2 points)

Let $A \in O(n + 1)$. Then multiplication by A induces a continuous self-map on \mathbb{S}^n . (Why?) What is its degree?

4 (Degrees) (3 + 3 points)

- (1) Prove the Brouwer fixed-point theorem: Let X be a closed ball $B_R(x) \subset \mathbb{R}^n$ for $n \ge 1, r > 0, x \in \mathbb{R}^n$, and let f be a continuous map $f: B_R(x) \to B_R(x)$. Show that f has a fixed point.
- (2) Use this to show that every $(a_{ij}) = A \in M(n \times n; \mathbb{R})$ with non-negative a_{ij} must have an eigenvector with non-negative coordinates. Hint: Consider a suitable standard simplex instead of $B_R(x)$.