Exercises in Algebraic Topology (master)

Prof. Dr. Birgit Richter Summer term 2025

Exercise sheet no 11

due: 24th of June 2025, 13:45h in H3

1 (Orientation covering) (2+3+2+2 points)

Let M be an m-dimensional connected topological manifold.

a) Prove that there is an oriented manifold \hat{M} and a 2-fold covering $p: \hat{M} \to M$ called the *orientation* covering of M.

b) Are the following statements equivalent?

(1) M is orientable.

(2) The orientation covering is a trivial covering, *i.e.*, $\hat{M} \cong M \times \mathbb{Z}/2\mathbb{Z}$ as spaces over M.

c) Assume that M is finite dimensional, path connected with $\pi_1(M) = 1$. Is M orientable?

d) What is the orientation covering of $\mathbb{R}P^n$ for even n? What about the Klein bottle?

2 (Non-orientable surfaces) (2 points)

You know the spaces N_g from Exercise 6.4. We called N_g the non-orientable surface of genus g. Justify that name.

3 (Manifolds with boundary) (1 + 1 + 1 points)

Let $\mathbb{R}^m_- := \{(x_1, \ldots, x_m), x_i \in \mathbb{R}, x_1 \leq 0\}$ be an *m*-dimensional half-space. Its topological boundary is

 $\partial \mathbb{R}^m_- = \{ (x_1, \dots, x_m), x_i \in \mathbb{R}, x_1 = 0 \}.$

An *m*-dimensional topological manifold with boundary, M with ∂M , is a Hausdorff space with a countable basis of its topology together with homeomorphisms $h_i: U_i \to V_i$. Here $U_i \subset M$ and $V_i \subset \mathbb{R}^m_-$ are open and the U_i 's cover M.

An $x \in M$ is a boundary point of M if there is a homeomorphism $h: U \to V$ with U open in M, V open in $\mathbb{R}^m_-, x \in U$ and h(x) in $\partial \mathbb{R}^m_-$. The set of boundary points of M is denoted by ∂M .

What is ∂M in the following examples?

a) M = [0, 1],

b)
$$M = \mathbb{D}^2 \times \mathbb{S}^1$$
,

c) $(\mathbb{S}^1 \times \mathbb{S}^1) \setminus \mathring{\mathbb{D}}^2_{\epsilon}$, where $\mathring{\mathbb{D}}^2_{\epsilon}$ is a small open 2-disk, that is suitably embedded into the torus.