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Abstract— We consider output trajectory tracking for a class
of uncertain nonlinear systems whose internal dynamics may be
modelled by infinite-dimensional systems which are bounded-
input, bounded-output stable. We describe under which as-
sumptions these systems belong to an abstract class of systems
for which funnel control is known to be feasible. As an
illustrative example, we show that for a system whose internal
dynamics are modelled by a transport equation, which is not
exponentially stable, we obtain prescribed performance of the
tracking error.

Index Terms— Adaptive control, infinite-dimensional systems,
funnel control, BIBO stability.

I. INTRODUCTION

We study output trajectory tracking for uncertain nonlinear
systems by funnel control. As a crucial assumption, we
require that the internal dynamics of the system, typically
arising from a partial differential equation (PDE) in our
framework, are bounded-input, bounded-output (BIBO) sta-
ble.

Funnel control has been developed in [1] for systems with
relative degree one, see also the survey [2]. The funnel con-
troller is a low-complexity model-free output-error feedback
of high-gain type; it is an adaptive controller since the gain
is adapted to the actual needed value by a time-varying
(non-dynamic) adaptation scheme. Note that no asymptotic
tracking is pursued, but a prescribed tracking performance
is guaranteed over the whole time interval. The funnel
controller proved to be the appropriate tool for tracking
problems in various applications, such as temperature control
of chemical reactor models [3], control of industrial servo-
systems [4] and underactuated multibody systems [5], speed
control of wind turbine systems [6], [7], DC-link power
flow control [8], voltage and current control of electrical
circuits [9], oxygenation control during artificial ventilation
therapy [10] and adaptive cruise control [11].

A funnel controller for a large class of systems described
by functional differential equations with arbitrary relative
degree has been developed recently in [12]. While this
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abstract class appears to allow for fairly general infinite-
dimensional systems, cf. also Section II, it is in fact not
clear which types of PDE systems are encompassed. As a
first result, it was shown in [13] that the linearized model of a
moving water tank, where sloshing effects appear, belongs to
the aforementioned system class. On the other hand, not even
every linear, infinite-dimensional system has a well-defined
(integer-valued) relative degree: In that case, results as in [1],
[12] cannot be applied. Instead, the feasibility of funnel
control has to be investigated directly for the (nonlinear)
closed-loop system, see [14] for a boundary controlled heat
equation and [15] for a general class of boundary control
systems.

The present paper is devoted to systems which have a
relative degree, but in the presence of internal dynamics that
are modelled by a PDE system. We generalize the findings
from [13] and develop a general system class containing
PDE models for which funnel control is feasible; this result
is presented in Section III. As an example, we consider a
system internally driven by a transport equation, Section IV,
and illustrate the funnel controller by a simulation. Some
conclusions are given in Section V.

A. System class

In the remainder of the present paper we consider abstract
differential equations of the form

y(r)(t) = f
(
d(t), T (y, ẏ, . . . , y(r−1))(t)

)
+ Γ

(
d(t), T (y, ẏ, . . . , y(r−1))(t)

)
u(t)

y|[−h,0] = y0 ∈ W r−1,∞([−h, 0];Rm),

(1)

where h > 0 is the “memory” of the system, r ∈ N is the
relative degree, and

(N1) the disturbance satisfies d ∈ L∞(R≥0;Rp), p ∈ N;
(N2) f ∈ C(Rp × Rq;Rm), q ∈ N;
(N3) the high-frequency gain matrix function Γ ∈ C(Rp ×

Rq;Rm×m) satisfies Γ(d, η) + Γ(d, η)⊤ > 0 for all
(d, η) ∈ Rp × Rq;

(N4) T : C([−h,∞);Rrm) → L∞
loc(R≥0;Rq) is an operator

with the following properties: a),leftmargin=0.5cm
a) T maps bounded trajectories to bounded trajecto-

ries, i.e, for all c1 > 0, there exists c2 > 0 such
that for all ζ ∈ C([−h,∞);Rrm),

sup
t∈[−h,∞)

‖ζ(t)‖ ≤ c1 ⇒ sup
t≥0

‖T (ζ)(t)‖ ≤ c2,

b) T is causal, i.e, for all t ≥ 0 and all ζ, ξ ∈
C([−h,∞);Rrm),

ζ|[−h,t) = ξ|[−h,t) ⇒ T (ζ)|[0,t)
a.e.
= T (ξ)|[0,t).



c) T is locally Lipschitz continuous in the following
sense: for all t ≥ 0 and all ξ ∈ C([−h, t];Rrm)
there exist τ, δ, c > 0 such that, for all ζ1, ζ2 ∈
C([−h,∞);Rrm) with ζi|[−h,t] = ξ and ‖ζi(s) −
ξ(t)‖ < δ for all s ∈ [t, t + τ ] and i = 1, 2, we
have∥∥(T (ζ1)− T (ζ2)) |[t,t+τ ]

∥∥
∞

≤ c
∥∥(ζ1 − ζ2)|[t,t+τ ]

∥∥
∞ .

In [1], [12], [16]–[18] it is shown that the class of sys-
tems (1) encompasses linear and nonlinear systems with strict
relative degree r and BIBO stable internal dynamics. The
operator T allows for infinite-dimensional (linear) systems,
systems with hysteretic effects or nonlinear delay elements,
and combinations thereof. Note that T is typically the solu-
tion operator corresponding to a (partial) differential equation
which describes the internal dynamics of the system. The
linear infinite-dimensional systems that are considered in [1],
[18] are in a special Byrnes-Isidori form that is discussed in
detail in [19]. While the internal dynamics in these systems
is allowed to correspond to a strongly continuous semigroup,
all other operators are assumed to be bounded and to satisfy
additional restrictive conditions. In contrast to this, in the
present paper we consider nonlinear equations which, in
particular, involve unbounded operators. This complements
and generalizes the findings in [13].

B. Control objective

The objective is to design an output error feedback

u(t) = F
(
t, e(t), ė(t), . . . , e(r−1)(t)

)
,

where yref ∈ W r,∞(R≥0;Rm) is a reference signal, which
applied to (1) results in a closed-loop system where the track-
ing error e(t) = y(t) − yref(t) evolves within a prescribed
performance funnel

Fφ := { (t, e) ∈ R≥0 × Rm | φ(t)‖e‖ < 1 } , (2)

which is determined by a function φ belonging to

Φr :=

φ ∈ Cr(R≥0;R)

∣∣∣∣∣∣
φ, φ̇, . . . , φ(r) are bounded,
φ(τ) > 0 for all τ > 0,
and lim infτ→∞ φ(τ) > 0

 .

Furthermore, all signals u, e, ė, . . . , e(r−1) should remain
bounded.

The funnel boundary is given by 1/φ, see Fig. 1. The case
φ(0) = 0 is explicitly allowed and puts no restriction on the
initial value since φ(0)‖e(0)‖ < 1; in this case the funnel
boundary 1/φ has a pole at t = 0.

An important property is that each performance funnel
Fφ with φ ∈ Φr is bounded away from zero, because
boundedness of φ implies existence of λ > 0 such that
1/φ(t) ≥ λ for all t > 0. The funnel boundary is not neces-
sarily monotonically decreasing, while in most situations it
is convenient to choose a monotone funnel. However, there
are situations where widening the funnel over some later

λ

(0, e(0))

1/φ(t)

t

Fig. 1: Error evolution in a funnel Fφ with boundary 1/φ(t).

time interval might be beneficial, for instance in the pres-
ence of periodic disturbances or strongly varying reference
signals. For typical choices of funnel boundaries see also [20,
Sec. 3.2].

II. FUNNEL CONTROL

It was shown in [12] that the funnel controller

u(t) = −kr−1(t) er−1(t),

e0(t) = e(t) = y(t)− yref(t),

e1(t) = ė0(t) + k0(t) e0(t),

e2(t) = ė1(t) + k1(t) e1(t),

...
er−1(t) = ėr−2(t) + kr−2(t) er−2(t),

ki(t) =
1

1− φi(t)2‖ei(t)‖2
, i = 0, . . . , r − 1,

(3)

where
φ0 ∈ Φr, φ1 ∈ Φr−1, . . . , φr−1 ∈ Φ1, (4)

achieves the control objective described in Section I-B for
any system which belongs to the class (1). We stress that
while the derivatives ė0, . . . , ėr−2 appear in (3), they only
serve as short-hand notations and may be resolved in terms
of the tracking error, the funnel functions and the derivatives
of these, cf. [12, Rem. 2.1].

The existence of solutions of the initial value problem
resulting from the application of the funnel controller (3) to a
system (1) must be treated carefully. By a solution of (3), (1)
on [−h, ω) we mean a function y ∈ Cr−1([−h, ω);Rm),
ω ∈ (0,∞], with y|[−h,0] = y0 such that y(r−1)|[0,ω) is
weakly differentiable and satisfies the differential equation
in (1) with u defined in (3) for almost all t ∈ [0, ω); y
is called maximal, if it has no right extension that is also
a solution. Existence of solutions of functional differential
equations has been investigated in [1] for instance.

The following result is from [12]. Note that in [12] a
slightly stronger version of conditions (N3) and (N4) c)
is used. However, the proof does not change; in particular,
regarding (N4) c), the existence part of the proof in [12] relies
on a result from [17] where the version from the present
paper is used.



Theorem 1: Consider a system (1) with properties (N1)–
(N4) for some r ∈ N and h > 0. Let yref ∈
W r,∞(R≥0;Rm), φ0, . . . , φr−1 as in (4) and y0 ∈
W r−1,∞([−h, 0];Rm) be an initial condition such that
e0, . . . , er−1 defined in (3) satisfy

φi(0)‖ei(0)‖ < 1 for i = 0, . . . , r − 1.

Then the funnel controller (3) applied to (1) yields an initial-
value problem which has a solution, and every solution can
be extended to a maximal solution y : [−h, ω) → Rm, ω ∈
(0,∞], which has the following properties:

(i) The solution is global, i.e., ω = ∞.
(ii) The input u : R≥0 → Rm, the gain functions

k0, . . . , kr−1 : R≥0 → R and y, ẏ, . . . , y(r−1) : R≥0 →
Rm are bounded.

(iii) The functions e0, . . . , er−1 : R≥0 → Rm evolve in
their respective performance funnels and are uniformly
bounded away from the funnel boundaries in the sense

∀ i = 0, . . . , r − 1 ∃ εi > 0 ∀ t > 0 :

‖ei(t)‖ ≤ φi(t)
−1 − εi.

III. A CLASS OF OPERATORS FOR FUNNEL CONTROL

While the class of functional differential equations (1)
appears to be rather general and funnel control is feasible for
these systems by Theorem 1, it is not clear exactly which
kind of systems that contain PDEs are encompassed by the
class (1). In this section we develop a description for a class
of operators T which include certain BIBO stable linear
PDEs and satisfy condition (N4). The aforementioned PDEs
may either be coupled with a nonlinear observation operator
which is polynomially bounded, or with a linear observation
operator which is possibly unbounded, but with respect to
which the system is regular well-posed and the inverse
Laplace transform of the corresponding transfer function
defines a measure with bounded total variation. This structure
is illustrated in Fig. 2.

We give a precise definition of the operator class in the
following.

ẋ(t) = Ax(t) +Bζ(t), x(0) = x0

T̃ S C

F (z1, z2, z3)

ζ

T̃ (ζ) = z1

x
x

S(x) = z2 Cx = z3

T (ζ)

Fig. 2: Structure of an operator T ∈ T ℓ,q
h .

Definition 1: Let h ≥ 0 and ℓ, q ∈ N. Then T ℓ,q
h is

defined as the set of all operators

T : C([−h,∞);Rℓ) → L∞
loc(R≥0;Rq)

which, for any ζ ∈ C([−h,∞);Rℓ), are given by

T (ζ)(t) = F
(
T̃ (ζ)(t), S(x)(t), (Cx)(t)

)
, t ≥ 0,

where x, for some x0 ∈ D(A), is the mild solution1 of the
PDE

ẋ(t) = Ax(t) +Bζ(t), x(0) = x0, (5)

where
(P1) A : D(A) ⊆ X → X is the generator of a bounded

C0-semigroup in X , X a real Hilbert space, and B ∈
L(Rℓ;X−1) is an L2-admissible control operator such
that ẋ(t) = Ax(t) + Bζ(t) is BIBO stable, i.e.,
there exists γ ∈ C1(R≥0;R) such that for all ζ ∈
C([−h,∞);Rℓ) the mild solution of (5) satisfies

∀ t ≥ 0 : ‖x(t)‖X ≤ γ(‖ζ|[−h,t]‖∞);

(P2) F ∈ C1(Rq1 × Rq2 × Rq3 → Rq);
(P3) T̃ : C([−h,∞);Rℓ) → L∞

loc(R≥0;Rq1) satisfies condi-
tion (N4) in Section I-A with ℓ = rm;

(P4) S : X → Rq2 is a Fréchet differentiable operator with
continuous Fréchet derivative and satisfies

∀x ∈ X : ‖S(x)‖ ≤ p(‖x‖X)

for some polynomial p(s);
(P5) C ∈ L(D(A);Rq3) is an L2-admissible observation

operator such that the system

ẋ(t) = Ax(t) +Bζ(t),

ν(t) = Cx(t)

is well-posed, i.e., for some ω ∈ R the transfer function
H : Cω → Cq3×ℓ, which is uniquely determined (up to
a constant) by

1

t− s
(H(s)−H(t)) = C

(
(sI −A)−1(tI −A)−1

)
B

for all s, t ∈ Cω, s 6= t, exists and is proper, that is
sups∈Cω

‖H(s)‖ < ∞. Furthermore, we require that the
system is regular, i.e., limRe s→∞ H(s)v exists for all
v ∈ Cℓ, and we require that H satisfies that the inverse
Laplace transform of its components hij = L−1(Hij)
is a real-valued measure with bounded total variation
for all i = 1, . . . , q3 and j = 1, . . . , ℓ.

Remark 1:
(i) We note that the notion of admissible operators is well-

known in infinite-dimensional linear systems theory
with unbounded control and observation operators, see
e.g. [21], and is motivated by interpreting a PDE on
a larger space in order to define solutions. Further,
note that any operator T as given in Definition 1 with
the properties (P1)–(P5) is indeed well-defined from
C([−h,∞);Rℓ) to L∞

loc(R≥0;Rq).

1See e.g. [21] for a definition of the mild solution.



(ii) We emphasize that the assumption of BIBO stability
of (5) as in (P1) is quite weak. A sufficient condition for
this is input-to-state stability, which has been introduced
by Sontag [22]. This concept was studied extensively for
nonlinear systems, see [23], and for systems containing
PDEs it is investigated in [24], [25]. However, the state
of an input-to-state stable system converges to zero
whenever the input is zero, which is not required for
BIBO stable systems considered here.

In the following main result we show that any operator
which belongs to the class T ℓ,q

h satisfies the condition (N4)
in Section I-A.

Theorem 2: Any T ∈ T ℓ,q
h satisfies condition (N4) in

Section I-A.
Proof: Step 1: We show property (N4) a). To this end,

observe that by continuity of F it suffices to show this for
the maps ζ 7→ T̃ (ζ), ζ 7→ S(x) and ζ 7→ Cx. By (P3), T̃
satisfies (N4) a) and by (P2) together with (P1) we have

‖S(x)(t)‖ ≤ p
(
‖x(t)‖X

)
≤ p (γ(‖ζ‖∞))

for all bounded ζ ∈ C([−h,∞);Rℓ). It remains to show
that Cx is bounded. From (P5) the system (A,B,C) is
regular well-posed, from which it follows by the variation
of constants formula, see e.g. [26], that

Cx(·) = CTA(·)x0 + (h ∗ ζ)(·),

where (TA(t))t≥0 is the C0-semigroup generated by A and
h = (hij)i=1,...,q3;j=1,...,ℓ is the inverse Laplace transform
of the transfer function H . By assumption we have that h ∈
M(R≥0;Rq3×ℓ). Thus, for all t ≥ 0,

‖Cx(t)‖ ≤ ‖CTA(t)x0‖+ ‖(h ∗ ζ)(t)‖
≤ ‖C‖L(D(A),Rq3 )‖ATA(t)x0‖
+ ‖h‖M(R≥0)‖ζ‖∞

= ‖C‖L(D(A),Rq3 )‖TA(t)Ax0‖
+ ‖h‖M(R≥0)‖ζ‖∞

≤ ‖C‖L(D(A),Rq3 )‖TA(t)‖L(X)‖Ax0‖X
+ ‖h‖M(R≥0)‖ζ‖∞

≤ M‖C‖L(D(A),Rq3 )‖Ax0‖X + ‖h‖M(R≥0)‖ζ‖∞,

where we have used that x0 ∈ D(A) and (TA(t))t≥0 is
bounded, that is, ‖TA(t)‖L(X) ≤ M for some M ≥ 1 and
all t ≥ 0. Thus,

‖Cx(·)‖∞ ≤ M‖C‖L(D(A),Rq3 )‖Ax0‖X+‖h‖M(R≥0)‖ζ‖∞.

Step 2: We show property (N4) b). This is a straightfor-
ward consequence of the definition of T̃ .

Step 3: We show property (N4) c). Fix t ≥ 0 and
ξ ∈ C([−h, t];Rℓ). Let τ̃ , δ̃, c̃ be the constants given by
property (N4) c) of T̃ . Set τ := τ̃ and δ := δ̃. Further let
ζi ∈ C([−h,∞);Rℓ) with ζi|[−h,t] = ξ and ‖ζi(s)− ξ(t)‖ <
δ for all s ∈ [t, t + τ ] and i = 1, 2. Let xi denote the
mild solution of (5) corresponding to ζi for i = 1, 2. Then,
by linearity, x1 − x2 is the mild solution corresponding
to ζ1 − ζ2. Since S is Fréchet differentiable with continuous
Fréchet derivative DS : X → L(X;Rq2) by (P4), the mean

value theorem implies that it is locally Lipschitz continuous.
Therefore, we find that for all s ∈ [t, t+ τ ]

‖S(x1(s))− S(x2(s))‖ ≤ L1‖
(
x1 − x2

)
(s)‖

≤ L1γ(‖
(
ζ1 − ζ2

)
|[−h,s]‖∞)

≤ L1L2‖
(
ζ1 − ζ2

)
|[t,t+τ ]‖∞,

where, with x̃ denoting the mild solution of (5) correspond-
ing to ξ̃ for ξ̃|[−h,t] = ξ and ξ̃|[t,∞) ≡ ξ(t), we have
‖xi(s) − x̃(t)‖X ≤ γ(‖ζi|[t,s] − ξ(t)‖∞) < γ(δ), which
justifies to set

L1 := sup
∥x−x̃(t)∥X≤γ(δ)

‖DS(x)‖L(X;Rq2 ),

L2 := sup
s∈[0,2δ]

|γ′(s)|.

Furthermore, by linearity and (P5) we have

‖Cx1(s)− Cx2(s)‖ = ‖(h ∗ (ζ1 − ζ2))(s)‖
≤ L3‖

(
ζ1 − ζ2

)
|[t,t+τ ]‖∞

for all s ∈ [t, t+ τ ] and L3 := ‖h‖M(R≥0). Now define ĉ :=
c̃+ L1L2 + L3 and

L4 := sup

 ‖F ′(z)‖

∣∣∣∣∣∣
∥∥∥∥∥∥z −

T̃ (ξ̃)(t)
S(x̃)(t)
Cx̃(t)

∥∥∥∥∥∥ ≤ ĉδ


and set

c := ĉL4.

Then we have

‖T̃ (ζ1)(s)− T̃ (ζ2)(s)‖ ≤ c‖
(
ζ1 − ζ2

)
|[t,t+τ ]‖∞

for all s ∈ [t, t+τ ] and this finishes the proof of the theorem.

It is shown in [13] that the operator associated with the
internal dynamics of a linearized model of a moving water
tank system belongs to the class T ℓ,q

h . In the subsequent sec-
tion we consider another example which contains a transport
equation.

IV. EXAMPLE: THE TRANSPORT EQUATION

We illustrate our results by considering the following
system whose internal dynamics are described by a transport
equation, that is

ẏ(t) = T (y)(t) + γu(t)

T (y)(t) = z(t, 0)

∂z

∂t
(t, ξ) = c

∂z

∂ξ
(t, ξ) + h(ξ)y(t),

z(0, ξ) = 0,

(6)

for (t, ξ) ∈ (0,∞)×[0,∞), where c > 0 and h ∈ M(R≥0) is
a Borel measure of bounded total variation. It is well-known
that the third and fourth equations in (6) constitute a regular
well-posed linear system (A,B,C) on X = L2(R≥0;R), the
so-called shift-realization of the Laplace transform L(h), see
e.g. [27]–[29]. More precisely, the PDE is then considered on



the abstract Sobolev space2 X−1 to appropriately interpret
the term h(ξ)y(t) and the solutions are mild solutions in
general.

Also note that the generated (left-) shift-semigroup is
not exponentially stable. In particular, the Laplace trans-
form L(h) of the measure h is defined on the closed right
half-plane and bounded analytic on this domain. Moreover,
the impulse response of the PDE equals h. More precisely,
for sufficiently smooth y we have the representation

T (y)(t) = z(0, t) = (h ∗ y)(t) =
∫ t

0

y(t− s) dh(s).

As h is of bounded total variation, it follows that T
is a bounded operator from C(R≥0;R) ∩ L∞(R≥0;R) to
L∞(R≥0;R) and hence T ∈ T 1,1

0 . Therefore, the first
equation in (6) formally reads

ẏ(t) = (h ∗ y)(t) + γu,

which is an integral-differential Volterra equation. Also note
that for the following simple cases

• h = δ0, we obtain a finite-dimensional linear system:

ẏ(t) = y(t) + γu(t);

• h = δt0 , t0 > 0, we obtain a delay differential equation:

ẏ(t) =

{
y(t− t0) + γu(t), t ≥ t0,

γu(t), 0 ≤ t < t0.

Another typical case is that h(ξ) = f(ξ)dξ with f ∈
L1(R≥0;R), i.e., h is represented by its L1-density with
respect to the Lebesgue measure. If additionally f ∈
L2(R≥0;R), then the input operator B = h of the PDE
is bounded.

For the simulation we have chosen h(ξ) = f(ξ)dξ
with f(ξ) = e−ξ/

√
ξ, which is integrable but not square

integrable on R≥0. Furthermore, we use the parameters
c = γ = 1 and the reference signal

yref(t) = cos t, t ≥ 0.

The initial value is chosen as y(0) = 0 and for the
controller (3) we chose the funnel function

φ(t) =
(
2e−2t + 0.1

)−1
, t ≥ 0.

Clearly, the initial error lies within the funnel boundaries
as required in Theorem 1. Furthermore, by Theorem 2 the
operator T satisfies (N4) and hence funnel control is feasible.

The PDE is solved using explicit finite differences with
a grid in t with M = 1000 points for the interval [0, T ],
where T = 15, and a grid in ξ with N = bM(b− a)/(αT )c
points for α = 0.4 and a = 0, b = 10. The method has been
implemented in Python and the simulation results are shown
in Fig. 3.

It can be seen that even in the presence of infinite-
dimensional internal dynamics which are not exponentially
stable a prescribed performance of the tracking error can be

2This space is sometimes referred to as rigged Hilbert space.
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Fig. 3: Simulation of the funnel controller (3) for the
system (6).

achieved with the funnel controller (3). At the same time
the input generated by the controller is bounded with a very
good performance.

V. CONCLUSION

In the present paper we considered the question which
classes of systems with infinite-dimensional internal dynam-
ics are encompassed by the abstract system class (1) for
which funnel control is feasible by Theorem 1. We have
defined a class of operators T ℓ,q

h , which model the internal
dynamics of the system, that encompass BIBO stable linear



PDEs. These PDEs may either be coupled with a nonlinear,
but polynomially bounded observation operator, or with a
linear observation operator which may be unbounded. For
the latter we additionally assumed that the resulting system
is regular well-posed such that the inverse Laplace transform
of its transfer function defines a measure with bounded total
variation. In Theorem 2 we have proved that any operator
belonging to T ℓ,q

h satisfies the conditions of the system
class (1).

Several extensions of the operator class T ℓ,q
h and Theo-

rem 1 may be investigated in future research. In particular,
extensions to nonlinear PDE systems with unbounded ob-
servation operators are of interest as well as systems with
infinite-dimensional input and output spaces which do not
have an integer-valued relative degree.
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