

Infinite Games Lent Term 2020 Part III of the Mathematical Tripos University of Cambridge Prof. Dr. B. Löwe

SHOENFIELD'S THEOREM

Theorem (Shoenfield). Every Π_1^1 set is \aleph_1 -Suslin.

Proof. Let A be Π_1^1 , then $\omega^{\omega} \setminus A$ is Σ_1^1 , so let T be a tree such that

 $\begin{aligned} x \in A \iff x \notin \mathbf{p}[T] \\ \iff T_x \text{ is wellfounded} \\ \iff \text{ there is an order preserving map } f: (T_x, \supsetneq) \to (\aleph_1, <), \end{aligned}$

where $T_x := \{s; (s,x \upharpoonright |s|) \in T\}.$

Fix a bijection $i \mapsto s_i$ from $\omega \to \omega^{<\omega}$ such that if $s_i \subsetneq s_j$, then i < j. We let $T_t := \{s_i; |s_i| \le |t|, i \le |t|, i$

Let S be any tree on ω . We say that a function $g: \omega \to \omega_1$ is an order preserving code for S if for all i and j, if $s_i, s_j \in S$ and $s_i \supseteq s_j$, then g(i) < g(j). Similarly, if $u \in \omega_1^{<\omega}$, then we say that u is a partial order preserving code for S if for all i, j < |u|, if $s_i, s_j \in S$ and $s_i \supseteq s_j$, then g(i) < g(j). Similarly, if $u \in \omega_1^{<\omega}$, then we say that u is a partial order preserving code for S if for all i, j < |u|, if $s_i, s_j \in S$ and $s_i \supseteq s_j$, then u(i) < u(j). Then the following tree is called the Shoenfield tree:

 $\widehat{T} := \{(u, s); u \text{ is a partial order preserving code for } T_s\}.$

We claim that $A = p[\hat{T}]$:

" \subseteq ": If $x \in A$, then let $f: T_x \to \omega_1$ be an order preserving map and define

$$g(i) := \begin{cases} f(s_i) & \text{if } s_i \in T_x \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

Then g is an order preserving code for T_x , and thus every $g \upharpoonright n$ is a partial order preserving code for $T_{x \upharpoonright n}$. Thus $(g, x) \in [\widehat{T}]$.

" \supseteq ": If $x \in p[\widehat{T}]$, find $g \in \omega_1^{\omega}$ such that $(g, x) \in [\widehat{T}]$; this means that for each $n, g \upharpoonright n$ is a partial order preserving code for $T_{x \upharpoonright n}$. If g is not an order preserving code for T_x , then there are $s_i, s_j \in T_x$ where $s_i \supseteq s_j$, but $g(i) \ge g(j)$. Find n large enough such that $s_i, s_j \in T_{x \upharpoonright n}$: this is a contradiction to the fact that $g \upharpoonright n$ is a partial order preserving code for $T_{x \upharpoonright n}$. Thus g is an order preserving code for T_x , and therefore T_x is wellfounded whence $x \in A$.