

Example Sheet #3

Examples Classes.

#1. Monday 3 February 2020, 3:30-5pm, MR14.

- #2: Monday 17 February 2020, 5-6:30pm, MR14.
- #3: Monday 2 March 2020, 3:30-5pm, MR14.
- #4: Monday 16 March 2020, 3:30-5pm, MR14.

Revision: Friday 22 May 2020, time TBA.

You hand in your work at the beginning of the Examples Class.

- 28. We proved that if there is a projective wellordering of ω^{ω} , then there is a projective set that is not determined. Assume that the projective wellordering is Δ_n^1 . What is (an upper bound of) the complexity of the non-determined set?
- 29. Show that the following statement is inconsistent with ZFC: " $2^{\aleph_0} = \aleph_3$ and there is a Π_1^1 set of cardinality \aleph_2 ".

[*Hint.* You are allowed to use Borel Determinacy.]

- 30. Show that if T is a tree on X, then T is well-founded if and only if there is an order preserving map from (T, \supseteq) to an ordinal. What can you say about the size of that ordinal?
- 31. Suppose that S and T are trees on X. Show that there is an order preserving map from (S, \supseteq) to (T, \supseteq) if and only if either T is illfounded or $ht(S) \leq ht(T)$.
- 32. Let s and t be finite sequences of ordinals. We say $s <_{\text{KB}} t$ if either $t \subseteq s$ (sic!) or if i if the least number such that $s(i) \neq t(i)$, we have s(i) < t(i). This order is called the *Kleene-Brouwer order*. Show that it is a total order on the class of finite sequences of ordinals and that if T is a tree on κ , then T is well-founded if and only if $(T, <_{\text{KB}})$ is a wellorder.
- 33. Let $A \subseteq WO \times WO$. The following game $G_S(A)$ is called the *Solovay game* on A: players I and II produce a play z in the usual way, $x := z_I$ and $y := z_{II}$. Player I loses if $x \notin WO$. Otherwise, player II loses if $y \notin WO$. If both of them play in WO, then player I wins if $(x, y) \in A$.

Let $A := \{(x, y); ||x|| \ge ||y||\}$ and show that player I cannot have a winning strategy in $G_S(A)$.

- 34. Let σ be a winning strategy for player I in some Solovay game $G_S(A)$. Show that there is a function $f : \aleph_1 \to \aleph_1$ such that if $\alpha = ||y|| < \xi$, then there is some x such that $||x|| < f(\xi)$ and $(x, y) \in A$.
- 35. Recall that for a limit ordinal λ , $cf(\lambda) := min\{|C|; C \text{ is a cofinal subset of } \lambda\}$. Show that for each λ , $cf(\lambda)$ is a regular cardinal and that $cf(\aleph_{\lambda}) = cf(\lambda)$.
- 36. Let κ be a cardinal. If $X \subseteq \kappa$, we write $[X]^n$ for the set of *n*-element subsets of X and $[X]^{<\omega}$ for the set of finite subsets of X.

If $\chi : [\kappa]^2 \to \gamma$ is a colouring of $[\kappa]^2$ with γ many colours, we say that $H \subseteq \kappa$ is χ -homogeneous if $[H]^2$ is monochromatic under the map χ (i.e., all sets $\{x, y\} \in [H]^2$ get the same colour under χ). We call a cardinal κ weakly compact if every colouring χ with two colours has a homogeneous set of size κ (in Erdős-Rado notation: $\kappa \to (\kappa)_2^2$). Show that every weakly compact cardinal is strongly inaccessible.

[*Hint.* Note that for any cardinal λ the set 2^{λ} with the lexicographic ordering cannot have any strictly increasing or decreasing sequences of length $> \lambda$.]

- 37. If $\chi : [\kappa]^{<\omega} \to \gamma$ is a colouring of the finite subsets of κ , we say that $H \subseteq \kappa$ is χ -homogeneous if for each $n \in \omega$, $[H]^n$ is monochromatic under the map χ (i.e., all sets in $[H]^n$ get the same colour under χ). What happens if you replace n in this definition with " $<\omega$ "?
- 38. An ultrafilter U on κ is called *normal* if for any family $\{X_{\alpha}; \alpha < \kappa\} \subseteq U$, the *diagonal intersection*

$$\triangle_{\alpha < \kappa} X_{\alpha} := \{ \xi < \kappa \, ; \, \xi \in \bigcap_{\alpha < \xi} X_{\alpha} \}$$

lies in U. If $S \subseteq \kappa$, a function $f: S \to \kappa$ is called *regressive* if for all $\xi \neq 0$, $f(\xi) < \xi$. A set S is called U-stationary if for all $X \in U$, we have that $X \cap S \in U$.

Let U be a κ -complete ultrafilter on κ . Show that the following are equivalent:

- (i) U is normal,
- (ii) for every U-stationary set S and every regressive function $f: S \to \kappa$ there is an $\alpha < \kappa$ such that $f^{-1}(\{\alpha\})$ is U-stationary, and
- (iii) for every function $f : \kappa \to \kappa$, if $\{\xi < \kappa; f(\xi) < \xi\} \in U$, then there is some $\alpha < \kappa$ such that $\{\xi < \kappa; f(\xi) = \alpha\} \in U$.
- 39. Prove Rowbottom's Theorem: If κ is measurable, U is a normal ultrafilter on κ , $\gamma < \kappa$, and $\chi : [\kappa]^{<\omega} \to \gamma$ is a colouring, then there is a χ -homogeneous set in U.
- 40. A set $A \subseteq (\omega^{\omega})^n$ is called κ -Suslin if there is a tree T on $\kappa \times \omega^n$ such that A = p[T]. Prove that every set A is 2^{\aleph_0} -Suslin and that a set is \aleph_0 -Suslin if and only if it is Σ_1^1 .
- 41. Prove that the class of κ -Suslin sets (cf. Example 40) is closed under projections, continuous preimages and unions of size κ .