

Example Sheet #2

Examples Classes.

#1. Monday 3 February 2020, 3:30-5pm, MR14.

- #2: Monday 17 February 2020, 5-6:30pm, MR14.
- #3: Monday 2 March 2020, 3:30-5pm, MR14.
- #4: Monday 16 March 2020, 3:30-5pm, MR14.

You hand in your work at the beginning of the Examples Class.

- 15. A function $c : \omega^{<\omega} \to \omega^{<\omega}$ is called *coherent* if for $p \subseteq q$, we have $c(p) \subseteq c(q)$, and for $x \in \omega^{\omega}$, we have $|c(x \upharpoonright n)| \to \infty$. If c is coherent, we define $f_c : \omega^{\omega} \to \omega^{\omega}$ by $f_c(x) := \bigcup_{n \in \omega} c(x \upharpoonright n)$. Prove that the following are equivalent:
 - (i) $f: \omega^{\omega} \to \omega^{\omega}$ is continuous and
 - (ii) there is a coherent c such that $f = f_c$.
- 16. Let $f: \omega^{\omega} \to \omega^{\omega}$ be any function and consider the following game G(f) on the move set $\omega \cup \{pass\}$: player I may play only elements of ω , but player II may play pass; suppose player I produces x and player II produces a sequence $y \in (\omega \cup \{pass\})^{\omega}$; remove all of the pass moves from y and obtain y^* ; if $y^* \notin \omega^{\omega}$, then player II loses; otherwise player II wins if and only if $y^* = f(x)$. Show that the following are equivalent:
 - (i) $f: \omega^{\omega} \to \omega^{\omega}$ is continuous and
 - (ii) player II has a winning strategy in the game G(f).

What happens if you do not require the extra possibility of pass moves?

- 17. Consider the real numbers \mathbb{R} with their usual topology and their subspace \mathbb{Q} . Show that $\Delta_2^0(\mathbb{Q}) \neq \{A \cap \mathbb{Q}; A \in \Delta_2^0(\mathbb{R})\}.$
- 18. Again, consider the real numbers \mathbb{R} with their usual topology and let $F \subseteq \mathbb{R}$ be closed. Consider any continuous map $f : \mathbb{R} \to X$ and show that

$$f[F] := \{ x \in X \, ; \, \exists r \in F(x = f(r)) \}$$

is F_{σ} .

19. Let Γ be a boldface pointclass. We say that $A \subseteq Y$ is Γ -hard for X if for all $B \in \Gamma(X)$, there is a continuous function $f : X \to Y$ such that $f^{-1}[A] = B$. If in addition, $A \in \Gamma(Y)$, we call $A \Gamma$ -complete for X.

Show that universal sets for Γ are Γ -complete.

20. In the lectures, our construction of an ω^{ω} -universal set for Σ^{0}_{α} from ω^{ω} -universal sets for all Π^{0}_{β} for $\beta < \alpha$ used a surjection $\pi : \omega \to \alpha$ that hits each element of α infinitely many times.

Suppose $\alpha = \xi + 1$ is a successor ordinal and show that a bijection $\pi : \omega \to \xi + 1$ is not enough for the proof to work.

21. Let A and B be disjoint subsets of ω^{ω} . We say that A and B are Borel separable if there is a Borel set C such that $A \subseteq C$ and $B \cap C = \emptyset$.

Consider sets $\{A_n; n \in \omega\}$ and $\{B_n; n \in \omega\}$. Suppose that for each $n, m \in \omega$, A_n and B_m are Borel-separable. Then $\bigcup_{n \in \omega} A_n$ and $\bigcup_{n \in \omega} B_n$ are Borel separable.

- 22. Show the Luzin Separation Theorem: any two disjoint analytic sets are Borel separable.
- 23. Show that a set $B \subseteq \omega^{\omega}$ is Borel if and only if it is $\Delta_1^1(\omega^{\omega})$, i.e., both analytic and co-analytic.
- 24. Let κ be the smallest cardinality such that there is some $A \subseteq \mathbb{R}$ with $|A| = \kappa$ which is not Lebesgue-null. Assume that A is such a set of cardinality κ and that R is a wellorder of A of order type κ . Show that R cannot be Lebesgue-measurable.

[*Hint.* Fubini's theorem in the following form may help: if $B \subseteq \mathbb{R} \times \mathbb{R}$ is Lebesguemeasurable, then it is a null set if and only if the set of all vertical (or horizontal) sections which are not null is null.]

- 25. Let $A \subseteq \omega^{\omega}$ and consider the following game $G^{**}(A)$: players I and II play nonempty finite sequences $p_i \in \omega^{<\omega}$; consider $x := p_0 p_1 p_2 \dots$; player I wins if $x \in A$, otherwise player II wins. Show that
 - (i) Player I has a winning strategy in $G^{**}(A)$ if and only if there is a position $p \in \omega^{<\omega}$ such that $[p] \setminus A$ is meagre.
 - (ii) Player II has a winning strategy in $G^{**}(A)$ if and only if A is meagre.
- 26. Show that $A \subseteq \omega^{\omega}$ has the Baire property if and only if for all open sets P, the game $G^{**}(A \setminus P)$ is determined.
- 27. Let Γ be a boldface pointclass closed under finite intersections and containing the open sets. Show that the determinacy of all Γ sets implies that all Γ sets have the Baire property.