

Example Sheet #4

Course webpage: https://www.math.uni-hamburg.de/home/loewe/Lent2019/TST_L19.html

Example Classes.

- #1. Monday 4 February, 3:30-5pm, MR5.
- #2. Monday 18 February, 3:30–5pm, MR5.
- #3. Monday 4 March, 3:30-5pm, MR5.
- #4. Thursday 14 March, 3:30-5pm, MR20.

You hand in your work at the beginning of the Example Class.

In the following, we assume that M is a countable transitive model of ZFC.

- (34) Assume that $\mathbb{P} \in M$ and that G is \mathbb{P} -generic over M. Show that $M[G] \models \mathsf{Replacement}$.
- (35) Assume that $\mathbb{P} \in M$ and that G is \mathbb{P} -generic over M. Show that $M[G] \models \mathsf{AC}$.
- (36) If $(\mathbb{P}, \leq_{\mathbb{P}}, \mathbf{1}_{\mathbb{P}})$ and $(\mathbb{Q}, \leq_{\mathbb{Q}}, \mathbf{1}_{\mathbb{Q}})$ are partial orders, then a function $i : \mathbb{P} \to \mathbb{Q}$ is called a *complete embedding* if
 - (a) *i* is order preserving, i.e., if $p \leq_{\mathbb{P}} p'$, then $i(p) \leq_{\mathbb{Q}} i(p')$;
 - (b) *i* preserves incompatibility in both directions, i.e., $p \perp_{\mathbb{P}} p'$ if and only if $i(p) \perp_{\mathbb{Q}} i(p')$; and
 - (c) for all $q \in \mathbb{Q}$ there is a $p \in \mathbb{P}$ such that for all $p' \leq_{\mathbb{P}}$, we have that i(p') and q are compatible in \mathbb{Q} .

Suppose that $i : \mathbb{P} \to \mathbb{Q}$ is a complete embedding with $i, \mathbb{P}, \mathbb{Q} \in M$ and let H be \mathbb{Q} -generic over M. Show that $G := \{p \in \mathbb{P}; i(p) \in H\}$ is \mathbb{P} -generic over M and that $M[G] \subseteq M[H]$.

- (37) If $(\mathbb{P}, \leq_{\mathbb{P}}, \mathbf{1}_{\mathbb{P}})$ and $(\mathbb{Q}, \leq_{\mathbb{Q}}, \mathbf{1}_{\mathbb{Q}})$ are partial orders, then a function $i : \mathbb{P} \to \mathbb{Q}$ is called a *dense embedding* if
 - (a) *i* is order preserving, i.e., if $p \leq_{\mathbb{P}} p'$, then $i(p) \leq_{\mathbb{Q}} i(p')$;
 - (b) *i* preserves incompatibility, i.e., if $p \perp_{\mathbb{P}} p'$, then $i(p) \perp_{\mathbb{O}} i(p')$; and
 - (c) the image of \mathbb{P} under *i* is dense in \mathbb{Q} .

Show that every dense embedding is a complete embedding.

(38) Let \mathbb{T} be the partial order of finite sequences of natural numbers ordered by reverse inclusion. Show that there is a dense embedding from \mathbb{T} to \mathbb{Q} .

- (39) Let \mathbb{T}_{bin} be the partial order of finite zero-one sequences. Show that there is no dense embedding from \mathbb{T}_{bin} to \mathbb{T} .
- (40) We say that \mathbb{P} preserves cofinalities if for every \mathbb{P} -generic filter G over M and every limit ordinal $\lambda \in M$, we have that $cf(\lambda)^M = cf(\lambda)^{M[G]}$. Prove that if \mathbb{P} preserves cofinalities, then it preserves cardinals.
- (41) If κ is a cardinal, we say that \mathbb{P} has the κ -c.c. if every antichain in \mathbb{P} has cardinality smaller than κ . (Thus, the c.c.c. is the \aleph_1 -c.c.) If κ is a cardinal in M, we say that \mathbb{P} preserves cardinals $\geq \kappa$ if for every \mathbb{P} -generic filter G over M and every $\lambda \geq \kappa$, we have that $M \models ``\lambda$ is a cardinal" if and only if $M[G] \models ``\lambda$ is a cardinal". Show that if $M \models ``\kappa$ is a regular cardinal" and $M \models ``\mathbb{P}$ has the κ -c.c.", then \mathbb{P} preserves cardinals $\geq \kappa$.
- (42) A partial order \mathbb{P} is called λ -closed if whenever $\gamma < \lambda$ and $S := \{p_{\xi}; \xi < \gamma\}$ is a decreasing chain of elements in \mathbb{P} , then there is a $q \in \mathbb{P}$ such that q is below all elements of S. Suppose that \mathbb{P} is λ -closed, that $\alpha < \lambda$, β is any ordinal, that G is \mathbb{P} -generic over M, and that $f \in M[G]$ with $f : \alpha \to \beta$. Show that $f \in M$. Deduce that λ -closed forcing preserves cardinals $\leq \lambda$.
- (43) Let $A \subseteq \mathbb{N}$ be infinite. We say that $S \subseteq \mathbb{N}$ splits A if both $A \cap S$ and $A \setminus S$ are infinite. We say that S is a splitting set over M if for all $A \in M$, S splits A. Let $\mathbb{P} := \operatorname{Fn}(\omega, \omega)$ and G be \mathbb{P} -generic over M. Show that there is splitting set over M in M[G].
- (44) Let f: N → N a function. We say that f bounds M if for every g ∈ M such that g: N → N there are infinitely many numbers k such that g(k) < f(k).
 Let P := {(s, A); s is a partial function with dom(s) ∈ N, ran(s) ⊆ N, and A ⊆ N is infinite} with (s, A) ≤ (t, B) if s ⊇ t, A ⊆ B, and {s(i); i ∈ dom(s) \dom(t)} ⊆ B.
 Assume that G is P-generic over M and prove that there is a function f that bounds M.
- (45) We write $\operatorname{Fn}(I, J, \lambda)$ for the partial order of partial functions p with $\operatorname{dom}(p) \subseteq I$, $\operatorname{ran}(p) \subseteq J$, and $M \models |\operatorname{dom}(p)| < \lambda$, ordered by reverse inclusion. Let $\mathbb{P} := \operatorname{Fn}(\aleph_{\omega}^{M}, 2, \aleph_{\omega}^{M})$. Suppose that G is \mathbb{P} -generic over M. Show that in M[G], the ordinal \aleph_{ω}^{M} is countable.